MAT 257Y Term Test 2 Ptactice Test 1

(1) Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be C^{1} where $n>m$. Suppose [$d f\left(x_{0}\right)$] has rank m.
Show that there exists $\epsilon>0$ such that for any $y \in$ $B\left(f\left(x_{0}\right), \epsilon\right)$ there exists $x \in R^{n}$ such that $f(x)=y$.
(2) Let A be a rectangle in \mathbb{R}^{n} and let $S \subset A$ be a set of measure zero which is rectifiable. Show that S has content zero.

Hint: Use that $\int_{A} \chi_{S}$ exists and must be equal to zero.
(3) Let $f:[0,1] \times[0,1] \rightarrow \mathbb{R}$ be continuous.

Show that

$$
\int_{0}^{1}\left(\int_{0}^{x} f(x, y) d y\right) d x=\int_{0}^{1}\left(\int_{y}^{1} f(x, y) d x\right) d y
$$

(4) Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be C^{2}.

Prove that $F(x)=\int_{0}^{1} f(x, y) d y$ is C^{2} on \mathbb{R}.
(5) Prove that the union of countably many sets of measure zero has measure 0 .
(6) let $S=\left\{(x, y) \in \mathbb{R}^{2}\left|\quad x^{2}+y^{2} \leq 1, y \geq|x|\right\}\right.$. Compute $\int_{S} y$.
(7) Let $A \subset \mathbb{R}^{n}, B \subset \mathbb{R}^{m}$ be rectangles. let $f: A \times B \rightarrow$ \mathbb{R} be integrable.

Prove that there is a set $S \subset A$ of measure 0 such that for any $x \in A \backslash S$ the integral $\int_{B} f(x, y) d y$ exists.
(8) Let $f:[-1,1] \times[-1,1] \rightarrow \mathbb{R}$ be a continuous function. Suppose $f(-x, y)=-f(x, y)$ for any x, y.
Prove that $\int_{[-1,1] \times[-1,1]} f=0$.
Hint: use Fubini's theorem.

