MAT 257Y Solutions to Term Test 1

(1) (15 pts) Let $f: X \rightarrow Y$ be a map between metric spaces and let $p \in X$. Suppose $\lim _{x \rightarrow p} f(x)$ exists. Prove that the limit is unique; i.e., if $\lim _{x \rightarrow p} f(x)=$ L_{1} and $\lim _{x \rightarrow p} f(x)=L_{2}$ then $L_{1}=L_{2}$.

Solution

Suppose $L_{1} \neq L_{2}$. Pick $\epsilon>0$ such that $\epsilon<d\left(L_{1}, L_{2}\right) / 2$. Then by the definition of limit there exists $\delta>0$ such that for any $x \in B_{\delta}(p)\{p\}$ we have $d\left(f(x), L_{1}\right)<\epsilon$ and $d\left(f(x), L_{2}\right)<\epsilon$. Note that at least one such x exists because by definition of the limit p is not an isolated point. By the triangle inequality we have $d\left(L_{1}, L_{2}\right)<d\left(f(x), L_{1}\right)+d\left(f(x), L_{2}\right)<\epsilon+\epsilon=2 \epsilon<$ $d\left(L_{1}, L_{2}\right)$. This is a contradiction and hence $L_{1}=L_{2}$.
(2) (15 pts) Let X, Y be compact metric spaces and let $f: X \rightarrow Y$ be continuous, 1-1 and onto. Prove that $f^{-1}: Y \rightarrow X$ is continuous.

Hint: Use that a map is continuous if and only if the preimage of any closed set is closed.

Solution

Let $g=f^{-1}$. Let $C \subset X$ be closed. Then C is compact because X is compact. We have that $g^{-1}(C)=f(C)$. since an image of a compact set is compact we have that $f(C)$ is compact. Hence it is closed. We have shown that $g^{-1}(C)$ is closed for any closed $C \subset X$. Therefore g is continuous.
(3) (15 pts) Let X be a metric space. Let $A \subset X$ satisfies $A \cap b d(A)=\emptyset$. Prove that A is open.

Solution

Let $a \in A$. Note that for any $\epsilon>0$ we have that $B_{\epsilon}(a) \cap A$ contains a and is therefore non-empty. Since $a \notin b d(A)$ this means that there exists $\epsilon_{0}>0$ such that $B_{\epsilon_{0}}(a) \cap X \backslash A=\emptyset$ (otherwise $a \in b d(A)$).

Therefore $B_{\epsilon_{0}} \subset A$. Since a was arbitrary this means that A is open.
(4) (15 pts) Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be continuous. Are the following statements true or false? Prove if true and give a counterexample if false.
(a) If $A \subset \mathbb{R}^{n}$ is closed then $f(A)$ is closed.
(b) If $A \subset \mathbb{R}^{n}$ is bounded then $f(A)$ is bounded.

Solution

(a) False. For example take $f(x)=e^{x}$ and $A=$ $(-\infty, 0]$. Then A is closed but $f(A)=(0,1]$ is not.
(b) True. Since A is bounded it's contained in a closed ball $\bar{B}_{R}(0)$ for some finite R. Since $\bar{B}_{R}(0)$ is closed and bounded, it is compact and hence its image is compact and therefore bounded. Since $f(A) \subset f\left(\bar{B}_{R}(0)\right)$ it is also bounded.
(5) (15 pts) Let $g: \mathbb{R} \rightarrow \mathbb{R}$ be differentiable everywhere. Find the expressions for partial derivatives of the following functions
(a)

$$
f(x, y)=\int_{x^{2}+y}^{x y^{3}} g(t) d t
$$

(b) $h(x, y)=\sin \left(g\left(x^{2}+y^{3}\right)\right)$

Solution

(a) Let $G(u, v)=\int_{u}^{v} g(t) d t$ and $H(x, y)=\left(x^{2}+\right.$ $\left.y, x y^{3}\right)$. Then $f=G \circ H$ and by the chain rule we get

$$
\begin{gathered}
\frac{\partial f}{\partial x}(x, y)=\frac{\partial G}{\partial u}(H(x, y)) \frac{\partial u}{\partial x}(x, y)+\frac{\partial G}{\partial v}(H(x, y)) \frac{\partial v}{\partial x}(x, y) \\
=g\left(x y^{3}\right) y^{3}-g\left(x^{2}+y\right) \cdot 2 x
\end{gathered}
$$

Similarly,

$$
\begin{gathered}
\frac{\partial f}{\partial y}(x, y)=\frac{\partial G}{\partial u}(H(x, y)) \frac{\partial u}{\partial y}(x, y)+\frac{\partial G}{\partial v}(H(x, y)) \frac{\partial v}{\partial y}(x, y) \\
=g\left(x y^{3}\right) 3 x y^{2}-g\left(x^{2}+y\right)
\end{gathered}
$$

(b) By the chain rule we get

$$
\begin{aligned}
& \frac{\partial h}{\partial x}(x, y)=\cos \left(g\left(x^{2}+y^{3}\right) \cdot g^{\prime}\left(x^{2}+y^{3}\right) \cdot 2 x\right. \\
& \quad \text { and }
\end{aligned}
$$

$$
\frac{\partial h}{\partial y}(x, y)=\cos \left(g\left(x^{2}+y^{3}\right) \cdot g^{\prime}\left(x^{2}+y^{3}\right) \cdot 3 y^{2}\right.
$$

(6) (15 pts) Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be differentiable at p. Prove that f is continuous at p.

Solution

Let $A=d f_{p}$ and let

$$
F(h)=\left\{\begin{array}{l}
\frac{f(p+h)-f(p)-A(h)}{|h|} \text { if } h \neq 0 \\
0 \text { if } h=0
\end{array}\right.
$$

Then F is continuous at 0 by definition of differentiability and $f(p+h)-f(p)=F(h) \cdot|h|+A(h)$ is continuos in h at 0 as a product and sum of continuous functions. Continuity of $f(p+h)-f(p)$ at $h=0$ is clearly equaivalent to continuity of f at p.
(7) (10 pts) Let $U \subset \mathbb{R}^{n}$ be open and let $f: U \rightarrow \mathbb{R}^{n}$ be C^{1}. Suppose $\operatorname{det}\left[d f_{x}\right] \neq 0$ for any $x \in U$.

Prove that $f(U)$ is open.

Solution

Let $q \in f(U)$. Then $q=f(p)$ for some $p \in U$. By inverse function theorem there exists an open $U^{\prime} \subset U$
containing p such that $f\left(U^{\prime}\right)$ is open. Hence it contains $B(q, \epsilon)$ for some $\epsilon>0$. Since $B_{\epsilon}(q) \subset f\left(U^{\prime}\right) \subset$ $f(U)$ this means that $f(U)$ is open.

