
MAT 257Y Solutions to Term Test 1

(1) (15 pts) Let f : X → Y be a map between metric
spaces and let p ∈ X. Suppose limx→p f(x) exists.
Prove that the limit is unique; i.e., if limx→p f(x) =
L1 and limx→p f(x) = L2 then L1 = L2.

Solution

Suppose L1 6= L2. Pick ε > 0 such that ε < d(L1, L2)/2.
Then by the definition of limit there exists δ > 0 such
that for any x ∈ Bδ(p){p} we have d(f(x), L1) < ε
and d(f(x), L2) < ε. Note that at least one such x
exists because by definition of the limit p is not an
isolated point. By the triangle inequality we have
d(L1, L2) < d(f(x), L1) + d(f(x), L2) < ε + ε = 2ε <
d(L1, L2). This is a contradiction and hence L1 = L2.

(2) (15 pts) Let X, Y be compact metric spaces and let
f : X → Y be continuous, 1-1 and onto. Prove that
f−1 : Y → X is continuous.
Hint: Use that a map is continuous if and only if

the preimage of any closed set is closed.

Solution

Let g = f−1. Let C ⊂ X be closed. Then C
is compact because X is compact. We have that
g−1(C) = f(C). since an image of a compact set is
compact we have that f(C) is compact. Hence it is
closed. We have shown that g−1(C) is closed for any
closed C ⊂ X. Therefore g is continuous.

(3) (15 pts) Let X be a metric space. Let A ⊂ X satisfies
A ∩ bd(A) = ∅. Prove that A is open.

Solution

Let a ∈ A. Note that for any ε > 0 we have that
Bε(a) ∩ A contains a and is therefore non-empty.
Since a /∈ bd(A) this means that there exists ε0 > 0
such that Bε0(a) ∩ X\A = ∅ (otherwise a ∈ bd(A)).
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Therefore Bε0 ⊂ A. Since a was arbitrary this means
that A is open.

(4) (15 pts) Let f : Rn → Rm be continuous. Are the
following statements true or false? Prove if true and
give a counterexample if false.
(a) If A ⊂ Rn is closed then f(A) is closed.
(b) If A ⊂ Rn is bounded then f(A) is bounded.

Solution

(a) False. For example take f(x) = ex and A =
(−∞, 0]. Then A is closed but f(A) = (0, 1] is
not.

(b) True. Since A is bounded it’s contained in a
closed ball B̄R(0) for some finite R. Since B̄R(0)
is closed and bounded, it is compact and hence its
image is compact and therefore bounded. Since
f(A) ⊂ f(B̄R(0)) it is also bounded.

(5) (15 pts) Let g : R→ R be differentiable everywhere.
Find the expressions for partial derivatives of the fol-
lowing functions
(a)

f(x, y) =

∫ xy3

x2+y

g(t)dt

(b) h(x, y) = sin(g(x2 + y3))

Solution

(a) Let G(u, v) =
∫ v
u g(t)dt and H(x, y) = (x2 +

y, xy3). Then f = G ◦ H and by the chain rule
we get

∂f

∂x
(x, y) =

∂G

∂u
(H(x, y))

∂u

∂x
(x, y) +

∂G

∂v
(H(x, y))

∂v

∂x
(x, y)

= g(xy3)y3 − g(x2 + y) · 2x
Similarly,



MAT 257Y Term Test October 23, 2008 Name: 3

∂f

∂y
(x, y) =

∂G

∂u
(H(x, y))

∂u

∂y
(x, y) +

∂G

∂v
(H(x, y))

∂v

∂y
(x, y)

= g(xy3)3xy2 − g(x2 + y)

(b) By the chain rule we get

∂h

∂x
(x, y) = cos(g(x2 + y3) · g′(x2 + y3) · 2x

and

∂h

∂y
(x, y) = cos(g(x2 + y3) · g′(x2 + y3) · 3y2

(6) (15 pts) Let f : Rn → Rm be differentiable at p.
Prove that f is continuous at p.

Solution

Let A = dfp and let

F (h) =

{
f(p+h)−f(p)−A(h)

|h| if h 6= 0

0 if h = 0

Then F is continuous at 0 by definition of differen-
tiability and f(p + h) − f(p) = F (h) · |h| + A(h) is
continuos in h at 0 as a product and sum of continu-
ous functions. Continuity of f(p+h)−f(p) at h = 0
is clearly equaivalent to continuity of f at p.

(7) (10 pts) Let U ⊂ Rn be open and let f : U → Rn be
C1. Suppose det[dfx] 6= 0 for any x ∈ U .

Prove that f(U) is open.

Solution

Let q ∈ f(U). Then q = f(p) for some p ∈ U . By
inverse function theorem there exists an open U ′ ⊂ U
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containing p such that f(U ′) is open. Hence it con-
tains B(q, ε) for some ε > 0. Since Bε(q) ⊂ f(U ′) ⊂
f(U) this means that f(U) is open.


