MAT 257Y

Solutions to Term Test 1

(1) (15 pts) Let $f: X \to Y$ be a map between metric spaces and let $p \in X$. Suppose $\lim_{x\to p} f(x)$ exists. Prove that the limit is unique; i.e., if $\lim_{x\to p} f(x) = L_1$ and $\lim_{x\to p} f(x) = L_2$ then $L_1 = L_2$.

Solution

Suppose $L_1 \neq L_2$. Pick $\epsilon > 0$ such that $\epsilon < d(L_1, L_2)/2$. Then by the definition of limit there exists $\delta > 0$ such that for any $x \in B_{\delta}(p)\{p\}$ we have $d(f(x), L_1) < \epsilon$ and $d(f(x), L_2) < \epsilon$. Note that at least one such xexists because by definition of the limit p is not an isolated point. By the triangle inequality we have $d(L_1, L_2) < d(f(x), L_1) + d(f(x), L_2) < \epsilon + \epsilon = 2\epsilon < d(L_1, L_2)$. This is a contradiction and hence $L_1 = L_2$.

(2) (15 pts) Let X, Y be compact metric spaces and let $f: X \to Y$ be continuous, 1-1 and onto. Prove that $f^{-1}: Y \to X$ is continuous.

Hint: Use that a map is continuous if and only if the preimage of any closed set is closed.

Solution

Let $g = f^{-1}$. Let $C \subset X$ be closed. Then C is compact because X is compact. We have that $g^{-1}(C) = f(C)$. since an image of a compact set is compact we have that f(C) is compact. Hence it is closed. We have shown that $g^{-1}(C)$ is closed for any closed $C \subset X$. Therefore g is continuous.

(3) (15 pts) Let X be a metric space. Let $A \subset X$ satisfies $A \cap bd(A) = \emptyset$. Prove that A is open.

Solution

Let $a \in A$. Note that for any $\epsilon > 0$ we have that $B_{\epsilon}(a) \cap A$ contains a and is therefore non-empty. Since $a \notin bd(A)$ this means that there exists $\epsilon_0 > 0$ such that $B_{\epsilon_0}(a) \cap X \setminus A = \emptyset$ (otherwise $a \in bd(A)$). Therefore $B_{\epsilon_0} \subset A$. Since *a* was arbitrary this means that *A* is open.

- (4) (15 pts) Let $f: \mathbb{R}^n \to \mathbb{R}^m$ be continuous. Are the following statements true or false? Prove if true and give a counterexample if false.
 - (a) If $A \subset \mathbb{R}^n$ is closed then f(A) is closed.
 - (b) If $A \subset \mathbb{R}^n$ is bounded then f(A) is bounded.

Solution

- (a) **False**. For example take $f(x) = e^x$ and $A = (-\infty, 0]$. Then A is closed but f(A) = (0, 1] is not.
- (b) **True.** Since A is bounded it's contained in a closed ball $\bar{B}_R(0)$ for some finite R. Since $\bar{B}_R(0)$ is closed and bounded, it is compact and hence its image is compact and therefore bounded. Since $f(A) \subset f(\bar{B}_R(0))$ it is also bounded.
- (5) (15 pts) Let $g: \mathbb{R} \to \mathbb{R}$ be differentiable everywhere. Find the expressions for partial derivatives of the following functions

(a)

$$f(x,y) = \int_{x^2+y}^{xy^3} g(t)dt$$

(b)
$$h(x,y) = \sin(g(x^2 + y^3))$$

Solution

(a) Let $G(u,v) = \int_u^v g(t)dt$ and $H(x,y) = (x^2 + y, xy^3)$. Then $f = G \circ H$ and by the chain rule we get

$$\begin{aligned} \frac{\partial f}{\partial x}(x,y) &= \frac{\partial G}{\partial u}(H(x,y))\frac{\partial u}{\partial x}(x,y) + \frac{\partial G}{\partial v}(H(x,y))\frac{\partial v}{\partial x}(x,y) \\ &= g(xy^3)y^3 - g(x^2 + y) \cdot 2x \end{aligned}$$

Similarly,

$$\frac{\partial f}{\partial y}(x,y) = \frac{\partial G}{\partial u}(H(x,y))\frac{\partial u}{\partial y}(x,y) + \frac{\partial G}{\partial v}(H(x,y))\frac{\partial v}{\partial y}(x,y)$$

$$= g(xy^3)3xy^2 - g(x^2 + y)$$

(b) By the chain rule we get

$$\frac{\partial h}{\partial x}(x,y) = \cos(g(x^2 + y^3) \cdot g'(x^2 + y^3) \cdot 2x)$$

and

$$\frac{\partial h}{\partial y}(x,y) = \cos(g(x^2+y^3) \cdot g'(x^2+y^3) \cdot 3y^2)$$

(6) (15 pts) Let $f: \mathbb{R}^n \to \mathbb{R}^m$ be differentiable at p. Prove that f is continuous at p.

Solution

Let $A = df_p$ and let

$$F(h) = \begin{cases} \frac{f(p+h) - f(p) - A(h)}{|h|} & \text{if } h \neq 0\\ 0 & \text{if } h = 0 \end{cases}$$

Then F is continuous at 0 by definition of differentiability and $f(p+h) - f(p) = F(h) \cdot |h| + A(h)$ is continuous in h at 0 as a product and sum of continuous functions. Continuity of f(p+h) - f(p) at h = 0is clearly equalvalent to continuity of f at p.

(7) (10 pts) Let $U \subset \mathbb{R}^n$ be open and let $f: U \to \mathbb{R}^n$ be C^1 . Suppose $\det[df_x] \neq 0$ for any $x \in U$.

Prove that f(U) is open.

Solution

Let $q \in f(U)$. Then q = f(p) for some $p \in U$. By inverse function theorem there exists an open $U' \subset U$

Name:_____3

containing p such that f(U') is open. Hence it contains $B(q, \epsilon)$ for some $\epsilon > 0$. Since $B_{\epsilon}(q) \subset f(U') \subset f(U)$ this means that f(U) is open.