Practice Term Test 2

- (1) Let (X, d) be a metric space. Let $A \subset X$ be a compact subset. Using only the definition of compactness prove that A is closed.
- (2) Let $f: X \to \mathbb{R}$ be continuous at $a \in X$. Prove that there exists $\delta > 0$ such that f is bounded on $B(a, \delta)$.
- (3) Mark True or False. If True give a proof, if False give a counterexample.

Let (X, d) be a metric space. Let $A, B \subset X$ be subsets in X.

- (a) ext(A) is open;
- (b) $int(A \cup B) = int(A) \cup int(B)$.
- (4) Find expressions for the partial derivatives of the following functions

(a)
$$F(x, y) = \int_{k^2(x)h(y)}^{1} g(t)dt$$

(b)

$$f(x,y) = \int_{x}^{\int_{x}^{y} g(t)dt} g(t)dt$$

Hint: put $F(x,y) = \int_x^y g(t)dt$ and express f as a composition.

(c)
$$f(x, y) = \ln([\sin(x + y^2)]^{\cos 2x})$$

(5) Let $f: \mathbb{R}^2 \to \mathbb{R}$ be given by

$$f(x,y) = \begin{cases} \frac{xy}{\sqrt{x^2 + y^2}} & \text{if } (x,y) \neq (0,0) \\ 0 & \text{if } (x,y) = (0,0) \end{cases}$$

- (a) Is f continuous at (0,0)?
- (b) Do $D_1 f$ and $D_2 f$ exist at (0, 0)?
- (c) Is f differentiable at (0,0)?

(6) Let $f: \mathbb{R}^2 \to \mathbb{R}^2$ be given by $f(x, y) = (xy, e^x + y)$.

Show that there exists an open set U containing (0,1) such that V = f(U) is open, f is 1-1 on U and $g = f^{-1}$: $V \to U$ is differentiable on V. Compute $dg_{(0,2)}$.

- (7) Let M(n) be the set of all real $n \times n$ matrices identified with \mathbb{R}^{n^2} . Let $O(n) \subset M(n)$ be the set of all orthogonal matrices. Recall that an $n \times n$ matrix is called orthogonal if $A \cdot A^t = A^t \cdot A$ =Id where A^t is the transpose of A.
 - (a) Prove that O(n) is closed.
 - (b) Prove that O(n) is bounded.

 $\mathbf{2}$