Practice Term Test 2

(1) Let (X, d) be a metric space. Let $A \subset X$ be a compact subset. Using only the definition of compactness prove that A is closed.
(2) Let $f: X \rightarrow \mathbb{R}$ be continuous at $a \in X$. Prove that there exists $\delta>0$ such that f is bounded on $B(a, \delta)$.
(3) Mark True or False. If True give a proof, if False give a counterexample.
Let (X, d) be a metric space. Let $A, B \subset X$ be subsets in X.
(a) $\operatorname{ext}(A)$ is open;
(b) $\operatorname{int}(A \cup B)=\operatorname{int}(A) \cup \operatorname{int}(B)$.
(4) Find expressions for the partial derivatives of the following functions
(a) $F(x, y)=\int_{k^{2}(x) h(y)}^{1} g(t) d t$
(b)

$$
f(x, y)=\int_{x}^{\int_{x}^{y} g(t) d t} g(t) d t
$$

Hint: put $F(x, y)=\int_{x}^{y} g(t) d t$ and express f as a composition.
(c) $f(x, y)=\ln \left(\left[\sin \left(x+y^{2}\right)\right]^{\cos 2 x}\right)$
(5) Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be given by

$$
f(x, y)=\left\{\begin{array}{l}
\frac{x y}{\sqrt{x^{2}+y^{2}}} \text { if }(x, y) \neq(0,0) \\
0 \text { if }(x, y)=(0,0)
\end{array}\right.
$$

(a) Is f continuous at $(0,0)$?
(b) Do $D_{1} f$ and $D_{2} f$ exist at $(0,0)$?
(c) Is f differentiable at $(0,0)$?
(6) Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be given by $f(x, y)=\left(x y, e^{x}+y\right)$.

Show that there exists an open set U containing $(0,1)$ such that $V=f(U)$ is open, f is 1-1 on U and $g=f^{-1}: V \rightarrow U$ is differentiable on V.

Compute $d g_{(0,2)}$.
(7) Let $M(n)$ be the set of all real $n \times n$ matrices identified with $\mathbb{R}^{n^{2}}$. Let $O(n) \subset M(n)$ be the set of all orthogonal matrices. Recall that an $n \times n$ matrix is called orthogonal if $A \cdot A^{t}=A^{t} \cdot A=\operatorname{Id}$ where A^{t} is the transpose of A.
(a) Prove that $O(n)$ is closed.
(b) Prove that $O(n)$ is bounded.

