MAT 257Y Solutions to Practice Term Test 1

(1) Find the partial derivatives of the following functions
(a) $F(x, y)=f(g(x) k(y), h(x)+2 k(y))$
(b) $f(x, y, z)=\sin (x \sin (y \sin z))$
(c) $f(x, y, z)=x^{y z^{2}}$

Solution

(a) Let $f=f\left(t_{1}, t_{2}\right)$. Then, by the chain rule we have

$$
\begin{aligned}
& \frac{\partial F}{\partial x}(x, y)=\frac{\partial f}{\partial t_{1}}(g(x) k(y), h(x)+2 k(y)) \cdot \frac{\partial(g(x) k(y))}{\partial x}+ \\
& \quad+\frac{\partial f}{\partial t_{2}}(g(x) k(y), h(x)+2 k(y)) \cdot \frac{\partial(h(x)+k(y))}{\partial x}= \\
& =\frac{\partial f}{\partial t_{1}}(g(x) k(y), h(x)+2 k(y)) \cdot g^{\prime}(x) k(y)+\frac{\partial f}{\partial t_{2}}(g(x) k(y), h(x)+2 k(y)) \cdot h^{\prime}(x)
\end{aligned}
$$

Similarly,

$$
\left.\begin{array}{c}
\frac{\partial F}{\partial x}(x, y)= \\
=\frac{\partial f}{\partial t_{1}}(g(x) k(y), h(x)+2 k(y)) \cdot g(x) k^{\prime}(y)+\frac{\partial f}{\partial t_{2}}(g(x) k(y), h(x)+2 k(y)) \cdot 2 k^{\prime}(y) \\
\left(\text { b) } \frac{\partial f}{\partial x}(x, y, z)=(\cos (x \sin (y \sin z)))(\sin (y \sin z))\right. \\
\frac{\partial f}{\partial y}(x, y, z)=(\cos (x \sin (y \sin z)))(x \cos (y \sin z)) \sin z \\
\frac{\partial f}{\partial z}(x, y, z)=(\cos (x \sin (y \sin z)))(x \cos (y \sin z)) y \cos z \\
\text { (c) First, we rewrite } f(x, y, z) \text { as } f(x, y, z)=\left(e^{\ln x}\right) y z^{2}
\end{array}\right)=\begin{aligned}
& e^{(\ln x) y z^{2}} \\
& \frac{\partial f}{\partial x}(x, y, z)=\left(e^{(\ln x) y z^{2}}\right) \frac{y z^{2}}{x}=\left(x^{y z^{2}}\right) \frac{y z^{2}}{x} \\
& \frac{\partial f}{\partial y}(x, y, z)=\left(e^{(\ln x) y z^{2}}\right)(\ln x) z^{2}=\left(x^{y z^{2}}\right)(\ln x) z^{2} \\
& \frac{\partial f}{\partial z}(x, y, z)=\left(e^{(\ln x) y z^{2}}\right)(\ln x) y(2 z)=\left(x^{y z^{2}}\right)(\ln x) y(2 z)
\end{aligned}
$$

(2) give an example of a nonempty set $A \subset \mathbb{R}$ such that the set of limit points of A is the same as the set of boundary points of A.

Solution

Let $A=Q$. Then $\mathbb{R}=\operatorname{Lim} A=b d(A)$.
(3) Let $A, B \subset \mathbb{R}^{n}$ be compact.

Prove that the set $A+B=\{a+b \mid a \in A, b \in B\}$ is compact.

Solution

Consider the map $f: \mathbb{R}^{2 n}=\mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ given by $f(x, y)=x+y$. This map is linear and hence continuous. By construction, $A+B=f(A \times B)$. $A \times B$ is compact as a product of two compact sets and hence $A+B=f(A \times B)$ is also compact as an image of a compact set under a continuous map.
(4) Show that the intersection of an arbitrary collection of closed sets is closed.

Solution

Let $\left\{A_{\alpha}\right\}_{\alpha \in I}$ be a collection of closed sets in a metric space X. Let $U_{\alpha}=X \backslash A_{\alpha}$. Then U_{α} is open.

We have

$$
X \backslash \cap_{\alpha} A_{\alpha}=\cup_{\alpha} U_{\alpha}
$$

is open as a union of open sets. Hence $\cap_{\alpha} A_{\alpha}$ is closed.
(5) Show that $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is continuous if and only if $f^{-1}(A)$ is closed for any closed $A \subset \mathbb{R}^{m}$.

Solution

Let f be continuous.
Suppose $A \subset \mathbb{R}^{m}$ is closed. Then $\mathbb{R}^{m} \backslash A$ is open. By continuity of f this implies that $f^{-1}\left(\mathbb{R}^{m} \backslash A\right)$ is open. It's easy to see that $f^{-1}\left(\mathbb{R}^{m} \backslash A\right)=\mathbb{R}^{n} \backslash f^{-1}(A)$. hence $f^{-1}(A)$ is closed. The reverse implication is proved similarly.
(6) Let $G L(n, \mathbb{R})$ be the set of all $n \times n$ invertible matrices identified with $\mathbb{R}^{n^{2}}$.

Show that $G L(n, \mathbb{R})$ is open in $\mathbb{R}^{n^{2}}$.

Solution

Let $f: \mathbb{R}^{n^{2}} \rightarrow \mathbb{R}$ be given by $f(A)=\operatorname{det} A$ where A is an $n \times n$ matrix. Then f is continuous since it's a polynomial function. Since a matrix A is invertible iff $\operatorname{det} A \neq 0$ we have that $G L(n, \mathbb{R})=f^{-1}((-\infty, 0) \cup$ $(0, \infty))$. Hence it is open as a preimage of an open set under a continuous map.
(7) Let $f=\left(f_{1}, f_{2}\right): \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be given by the formula $f_{1}(x, y)=x+y+y^{3}+1, f_{2}(x, y)=x e^{y}+2$

Show that there exists an open set U containing $(0,0)$ such that $f: U \rightarrow f(U)$ is a bijection and f^{-1} is differentiable on $f(U)$ and compute $d f^{-1}(1,2)$.

Solution

Clearly f is differentiable everywhere. we compute $\frac{\partial f_{1}}{\partial x}(x, y)=1, \frac{\partial f_{1}}{\partial y}(x, y)=1+3 y^{2}, \frac{\partial f_{2}}{\partial x}(x, y)=e^{y}, \frac{\partial f_{2}}{\partial y}(x, y)=$
$x e^{y}$

Therefore

$$
[d f(0,0)]=\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right)
$$

This matrix has det $=-1 \neq 0 . \quad f(0,0)=(1,2)$. hence, by the inverse function theorem, there exists an open set U containing $(0,0)$ such that $f: U \rightarrow$ $f(U)$ is a bijection and f^{-1} is differentiable on $f(U)$ and $\left[d f^{-1}(1,2)\right]=[d f(0,0)]^{-1}=\left(\begin{array}{cc}0 & 1 \\ 1 & -1\end{array}\right)$
(8) Let $f(x, y)=x^{y}$ be defined on $U=\{(x, y) \mid x>0\}$.

Verify that

$$
\frac{\partial^{2} f}{\partial x \partial y}(x, y)=\frac{\partial^{2} f}{\partial y \partial x}(x, y)
$$

Solution

First we rewrite $f(x, y)=e^{(\ln x) y}$. we compute

$$
\begin{gathered}
\frac{\partial f}{\partial x}(x, y)=e^{(\ln x) y \frac{y}{x}}, \frac{\partial f}{\partial y}(x, y)=e^{(\ln x) y} \ln x . \text { Hence } \\
\frac{\partial^{2} f}{\partial x \partial y}(x, y)=e^{(\ln x) y \frac{y}{x} \ln x+e^{(\ln x) y} \frac{1}{x}} \text { and } \\
\frac{\partial^{2} f}{\partial y \partial x}(x, y)=e^{(\ln x) y} \ln x \frac{y}{x}+e^{(\ln x) y} \frac{1}{x} . \text { Thus } \\
\frac{\partial^{2} f}{\partial x \partial y}(x, y)=\frac{\partial^{2} f}{\partial y \partial x}(x, y)
\end{gathered}
$$

