MAT 257Y

Practice Term Test 1

- (1) Find the partial derivatives of the following functions
 - (a) F(x,y) = f(g(x)k(y), h(x) + 2k(y))
 - (b) $f(x, y, z) = \sin(x \sin(y \sin z))$
 - (c) $f(x, y, z) = x^{yz^2}$
- (2) Give an example of a nonempty subset A of \mathbb{R} such that the set of limit points of A in \mathbb{R} is the same as the set of boundary points of A.
- (3) Let $A, B \subset \mathbb{R}^n$ be compact.

Prove that the set $A + B = \{a + b | a \in A, b \in B\}$ is compact.

- (4) Show that the intersection of an arbitrary collection of closed sets is closed.
- (5) Prove that $f: \mathbb{R}^n \to \mathbb{R}^m$ is continuous if and only if $f^{-1}(A)$ is closed for any closed $A \subset \mathbb{R}^m$.
- (6) Let GL(n,R) be the set of all $n \times n$ invertible matrices identified with \mathbb{R}^{n^2} . Show that GL(n,R) is open in \mathbb{R}^{n^2} .
- (7) Let $f = (f_1, f_2)$: $\mathbb{R}^2 \to \mathbb{R}^2$ be given by the formula $f_1(x, y) = x + y + y^3 + 1$, $f_2(x, y) = xe^y + 2$

Show that there is an open set U containing (0,0) such that $f: U \to f(U)$ is a bijection and f^{-1} is differentiable on f(U) and compute $df_{(1,2)}^{-1}$.

(8) Let $f(x,y) = x^y$ be defined on $U = \{(x,y)|x>0\}$.

Verify that

$$\frac{\partial^2 f}{\partial x \partial y}(x, y) = \frac{\partial^2 f}{\partial y \partial x}(x, y)$$

for any $(x, y) \in U$.