Practice Term Test 1

(1) Find the partial derivatives of the following functions
(a) $F(x, y)=f(g(x) k(y), h(x)+2 k(y))$
(b) $f(x, y, z)=\sin (x \sin (y \sin z))$
(c) $f(x, y, z)=x^{y z^{2}}$
(2) Give an example of a nonempty subset A of \mathbb{R} such that the set of limit points of A in \mathbb{R} is the same as the set of boundary points of A.
(3) Let $A, B \subset \mathbb{R}^{n}$ be compact.

Prove that the set $A+B=\{a+b \mid a \in A, b \in B\}$ is compact.
(4) Show that the intersection of an arbitrary collection of closed sets is closed.
(5) Prove that $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is continuous if and only if $f^{-1}(A)$ is closed for any closed $A \subset \mathbb{R}^{m}$.
(6) Let $G L(n, R)$ be the set of all $n \times n$ invertible matrices identified with $\mathbb{R}^{n^{2}}$.

Show that $G L(n, R)$ is open in $\mathbb{R}^{n^{2}}$.
(7) Let $f=\left(f_{1}, f_{2}\right): \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be given by the formula $f_{1}(x, y)=x+y+y^{3}+1$, $f_{2}(x, y)=x e^{y}+2$

Show that there is an open set U containing $(0,0)$ such that $f: U \rightarrow f(U)$ is a bijection and f^{-1} is differentiable on $f(U)$ and compute $d f_{(1,2)}^{-1}$.
(8) Let $f(x, y)=x^{y}$ be defined on $U=\{(x, y) \mid x>0\}$.

Verify that

$$
\frac{\partial^{2} f}{\partial x \partial y}(x, y)=\frac{\partial^{2} f}{\partial y \partial x}(x, y)
$$

for any $(x, y) \in U$.

