(1) Let $f:[0.1] \rightarrow \mathbb{R}$ be given by $f(x)=\sqrt{x}$.

Using the definition prove that f is uniformly continuous but not Lipschitz on $[0,1]$.
(2) (a) Let $f(x)=\int_{x^{2}}^{3 x} \sqrt{t^{3}+x^{3}} d t$ Find the expression for $f^{\prime}(x)$.

You DO NOT need to evaluate the integral in that expression.
(b) Let $f(x)=\int_{0}^{h(x)}(g(x, t))^{4} d t$
where h and g are C^{1}.
Find the formula for $f^{\prime}(x)$.
(c) Let $f(x)=\int_{a}^{\int_{b}^{x} g(x, y) d y} g(x, y) d y$ where g is C^{1}.

Find the formula for $f^{\prime}(x)$.
(3) Let $S \subset \mathbb{R}^{n}$ be bounded and let $f: S \rightarrow \mathbb{R}$ be bounded. Show that $\int_{S} f$ is well defined. That is, let

$$
f_{S}(x)=\left\{\begin{array}{l}
f(x) \text { if } x \in S \\
0 \text { if } x \notin S
\end{array}\right.
$$

Take a rectangle A containing S. Suppose $\int_{A} f_{s}$ exists. prove that for any other rectangle A^{\prime} containing S the integral $\int_{A^{\prime}} f_{S}$ also exists and $\int_{A^{\prime}} f_{S}=\int_{A} f_{S}$.
(4) Let $S \subset \mathbb{R}^{n}$ be a rectifiable set and let $f: S \rightarrow \mathbb{R}$ be continuous and bounded. Prove that f is integrable over S.
(5) Consider the modified Cantor set S on $[0,1]$ constructed as follows. Let S_{1} be obtained from $[0,1]$ by removing the open interval $\left(\frac{1}{2}-\right.$ $\frac{1}{2 \cdot 5}, \frac{1}{2}+\frac{1}{2 \cdot 5}$) of length $\frac{1}{5}$. Note that S_{1} is a union of two closed intervals $I_{1}=\left[0, \frac{1}{2}-\frac{1}{2 \cdot 5}\right]$ and $I_{2}=\left[\frac{1}{2}+\frac{1}{2 \cdot 5}, 1\right]$. Let S_{2} be obtained from S_{1} by further removing the "middle" open intervals of length $\frac{1}{5^{2}}$ from I_{1} and I_{2} etc. Let $S=\cap_{i=1}^{\infty} S_{i}$ be the Cantor set.
(a) Show that $S=b d(S)$;
(b) Show that S is not rectifiable.

Hint: Argue by contradiction. Assume that S has measure zero. Then show that $[0,1]$ can be covered by countably many intervals with total length <1.

