- (1) Let $f: [0.1] \to \mathbb{R}$ be given by $f(x) = \sqrt{x}$. Using the definition prove that f is uniformly continuous but not Lipschitz on [0, 1].
- (2) (a) Let $f(x) = \int_{x^2}^{3x} \sqrt{t^3 + x^3} dt$ Find the expression for f'(x). You **DO NOT** need to evaluate the integral in that expression.
 - (b) Let $f(x) = \int_0^{h(x)} (g(x,t))^4 dt$ where h and g are C^1 . Find the formula for f'(x).
 - (c) Let $f(x) = \int_a^{\int_a^b g(x,y)dy} g(x,y)dy$ where g is C^1 . Find the formula for f'(x).
- (3) Let $S \subset \mathbb{R}^n$ be bounded and let $f: S \to \mathbb{R}$ be bounded. Show that $\int_{S} f$ is well defined. That is, let

$$f_S(x) = \begin{cases} f(x) \text{ if } x \in S\\ 0 \text{ if } x \notin S \end{cases}$$

Take a rectangle A containing S. Suppose $\int_A f_s$ exists.

prove that for any other rectangle A' containing S the integral $\int_{A'} f_S$ also exists and $\int_{A'} f_S = \int_A f_S$. (4) Let $S \subset \mathbb{R}^n$ be a rectifiable set and let $f: S \to \mathbb{R}$ be continuous and

- bounded. Prove that f is integrable over S.
- (5) Consider the modified Cantor set S on [0, 1] constructed as follows. Let S_1 be obtained from [0,1] by removing the open interval $(\frac{1}{2} \frac{1}{2\cdot5}, \frac{1}{2}+\frac{1}{2\cdot5}$) of length $\frac{1}{5}$. Note that S_1 is a union of two closed intervals $I_1 = [0, \frac{1}{2} - \frac{1}{2\cdot5}]$ and $I_2 = [\frac{1}{2} + \frac{1}{2\cdot5}, 1]$. Let S_2 be obtained from S_1 by further removing the "middle" open intervals of length $\frac{1}{5^2}$ from I_1 and I_2 etc. Let $S = \bigcap_{i=1}^{\infty} S_i$ be the Cantor set.
 - (a) Show that S = bd(S);
 - (b) Show that S is not rectifiable.

Hint: Argue by contradiction. Assume that S has measure zero. Then show that [0,1] can be covered by countably many intervals with total length < 1.