(1) Let X be a metric space and let $f: X \to \mathbb{R}$ be a bounded function. Let $p \in X$ and $\delta > 0$. Define $\nu(f, p.\delta) = \sup_{x \in B_{\delta}(p)} f(x) - \inf_{x \in B_{\delta}(p)} f(x)$. Further define $\nu(f, p) = \inf_{\delta > 0} \nu(f, p, \delta)$. $\nu(f, p)$ is called the *oscillation* of f at p.

Prove that f is continuous at p if and only if $\nu(f, p) = 0$.

(2) Let A be a rectangle in \mathbb{R}^n and let $f: A \to \mathbb{R}$ be a bounded function. Let P be a partition of A. Prove that f is integrable on A iff f is integrable over each $Q \in P$ in which case

$$\int_A f = \sum_{Q \in P} \int_Q f$$

- (3) Let A be a rectangle in \mathbb{R}^n and let $f: A \to \mathbb{R}$ be a bounded function. Suppose f is integrable on A, $f \ge 0$ on A and $\int_A f = 0$. Prove that f = 0 almost everywhere on A.
- (4) Give an example of a function f: R → R such that f is differentiable on [0, 1] but f' is not integrable on [0, 1]. *Hint:* Construct a function differentiable on [0, 1] such that it's
 - derivative is not bounded on [0, 1].
- (5) Let $f: Q \to \mathbb{R}$ be integrable. Prove that |f| is integrable and $|\int_Q f| \le \int_Q |f|$.
- (6) Let $f: [0,1] \to [01]$ be integrable. Consider the following function $f: Q = [0,1] \times [0,1] \to \mathbb{R}$

$$F(x,y) = \begin{cases} 1 \text{ if } y < f(x) \\ 0 \text{ if } y \ge f(x) \end{cases}$$

Prove that F is integrable over Q and $\int_Q F = \int_0^1 f$. (7) Let $f: [0,1] \times [0,4] \to \mathbb{R}$ be given by

$$f(x,y) = \begin{cases} xy^2 \text{ if } y < x^2\\ x + 2y \text{ if } y \ge x^2 \end{cases}$$

Verify that f is integrable and compute $\int_Q f$ in two different ways using Fubini's theorem.

(8) Let Q be a rectangle in \mathbb{R}^n . Let $S \subset Q$. consider the characteristic function of S on Q given by

$$\chi_S(x) = \begin{cases} 1 \text{ if } x \in S \\ 0 \text{ if } x \notin S \end{cases}$$

prove that $\chi_S(x)$ is integrable if and only if bd(S) has measure 0.

Extra Credit: Give an example of two functions $f, g: [0,1] \rightarrow [0,1]$ such that f is continuous, g is integrable but $g \circ f$ is not integrable.