(1) Let X be a metric space and let $f: X \rightarrow \mathbb{R}$ be a bounded function. Let $p \in X$ and $\delta>0$. Define $\nu(f, p . \delta)=\sup _{x \in B_{\delta}(p)} f(x)-$ $\inf _{x \in B_{\delta}(p)} f(x)$. Further define $\nu(f, p)=\inf _{\delta>0} \nu(f, p, \delta)$. $\nu(f, p)$ is called the oscillation of f at p.

Prove that f is continuous at p if and only if $\nu(f, p)=0$.
(2) Let A be a rectangle in \mathbb{R}^{n} and let $f: A \rightarrow \mathbb{R}$ be a bounded function. Let P be a partition of A. Prove that f is integrable on A iff f is integrable over each $Q \in P$ in which case

$$
\int_{A} f=\sum_{Q \in P} \int_{Q} f
$$

(3) Let A be a rectangle in \mathbb{R}^{n} and let $f: A \rightarrow \mathbb{R}$ be a bounded function. Suppose f is integrable on $A, f \geq 0$ on A and $\int_{A} f=0$. Prove that $f=0$ almost everywhere on A.
(4) Give an example of a function $f: \mathbb{R} \rightarrow \mathbb{R}$ such that f is differentiable on $[0,1]$ but f^{\prime} is not integrable on $[0,1]$.

Hint: Construct a function differentiable on $[0,1]$ such that it's derivative is not bounded on $[0,1]$.
(5) Let $f: Q \rightarrow \mathbb{R}$ be integrable.

Prove that $|f|$ is integrable and $\left|\int_{Q} f\right| \leq \int_{Q}|f|$.
(6) Let $f:[0,1] \rightarrow[01]$ be integrable. Consider the following function $f: Q=[0,1] \times[0,1] \rightarrow \mathbb{R}$

$$
F(x, y)=\left\{\begin{array}{l}
1 \text { if } y<f(x) \\
0 \text { if } y \geq f(x)
\end{array}\right.
$$

Prove that F is integrable over Q and $\int_{Q} F=\int_{0}^{1} f$.
(7) Let $f:[0,1] \times[0,4] \rightarrow \mathbb{R}$ be given by

$$
f(x, y)=\left\{\begin{array}{l}
x y^{2} \text { if } y<x^{2} \\
x+2 y \text { if } y \geq x^{2}
\end{array}\right.
$$

Verify that f is integrable and compute $\int_{Q} f$ in two different ways using Fubini's theorem.
(8) Let Q be a rectangle in \mathbb{R}^{n}. Let $S \subset Q$. consider the characteristic function of S on Q given by

$$
\chi_{S}(x)=\left\{\begin{array}{l}
1 \text { if } x \in S \\
0 \text { if } x \notin S
\end{array}\right.
$$

prove that $\chi_{S}(x)$ is integrable if and only if $b d(S)$ has measure 0 .

Extra Credit: Give an example of two functions $f, g:[0,1] \rightarrow[0,1]$ such that f is continuous, g is integrable but $g \circ f$ is not integrable.

