(1) Let A be a rectangle in \mathbb{R}^{n} and let $Q \subset A$ be a subrectangle. Let $f: A \rightarrow \mathbb{R}$ be given by

$$
f(x)=\left\{\begin{array}{l}
1 \text { if } x \in Q \\
0 \text { if } x \notin Q
\end{array}\right.
$$

Using the definition of integrability prove that $\int_{A} f$ exists and $\int_{A} f=\operatorname{vol}(\mathrm{Q})$.
(2) A set $S \subset \mathbb{R}^{n}$ is said to have content zero if for any $\epsilon>0$ there exists a finite collection of rectangles Q_{i} covering S such that $\sum_{i} \operatorname{vol}\left(\mathrm{Q}_{\mathrm{i}}\right)<$ ϵ.
(a) Show that if $S \subset Q \subset \mathbb{R}^{n}$ has content zero then any bounded function $f: Q \rightarrow \mathbb{R}$ such that $f(x)=0$ if $x \notin S$ is integrable over Q and $\int_{Q} f=0$.
(b) Let $S \subset Q \subset \mathbb{R}^{n}$ have content zero. let $f, g: Q \rightarrow \mathbb{R}$ be bounded and satisfy $f(x)=g(x)$ if $x \notin S$. Prove that $\int_{Q} f$ exists if and only if $\int_{Q} g$ exists and if they both exist $\int_{Q} f=\int_{Q} g$.
(c) Show that a finite union of sets of content zero has content zero.
(d) Let Q be a rectangle in \mathbb{R}^{n} show that $b d(Q)$ has content zero.
(e) Show that if S has content zero then its closure $C l(S)$ also has content zero.
(f) Show that $S=\mathbb{Q} \cap[0,1] \subset \mathbb{R}$ does not have content zero. Here \mathbb{Q} is the set of rational numbers.
(3) Let $f: Q \rightarrow \mathbb{R}$ be integrable over Q. Let $c \in \mathbb{R}$ be a constant. Prove that $c f$ is also integrable over Q and $\int_{Q} c f=c \int_{Q} f$.
(4) Let $f_{1}, f_{2}: Q \rightarrow \mathbb{R}$ be integrable over Q. Prove that $f_{1}+f_{2}$ is also integrable over Q and $\int_{Q}\left(f_{1}+f_{2}\right)=\int_{Q} f_{1}+\int_{Q} f_{2}$.
(5) Let $f:[0,1] \rightarrow R$ be defined as follows
$f(x)=\left\{\begin{array}{l}1 / q \text { if } x=p / q \text { where } \mathrm{p}, \mathrm{q} \text { are positive integers with no common factor } \\ 0 \text { if } x \text { is irrational }\end{array}\right.$
Show that f is integrable on $[0,1]$ and compute $\int_{[0,1]} f$.
(6) Let $f: Q \rightarrow \mathbb{R}$ be integrable where Q is a rectangle in \mathbb{R}^{n}. The graph of f is the set $\Gamma_{f}=\left\{(x, y) \in R^{n+1} \mid\right.$ such that $\left.x \in Q, y=f(x)\right\}$.

Show that Γ_{f} has measure zero.
Hint: Use the definition of integrability of f.

