(1) Let $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ be given by $f(x, y, z)=\sin (x y z)+e^{2 x+y(z-1)}$. show that the level set $\{f=1\}$ can be solved as $x=x(y, z)$ near $(0,0,0)$ and compute $\frac{\partial x}{\partial y}(0,0)$ and $\frac{\partial x}{\partial z}(0,0)$
(2) let $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ be given by $f_{1}(x, y, z)=\sin (x+y)-x+2 z$, $f_{2}(x, y, z)=y+\sin z$ Show that the level set $\left\{f_{1}=0, f_{2}=0\right\}$ can be solved near $(0,0,0)$ as $y=y(x), z=z(x)$ and compute $\frac{\partial y}{\partial x}(0)$ and $\frac{\partial z}{\partial x}(0)$
Extra Credit: Let $U \subset \mathbb{R}^{n}$ be open and $f: U \rightarrow \mathbb{R}^{m}$ be C^{1} where $m<n$.

Prove that f can not be 1-1 on U.

