(1) Let $p, q>1$ such that $\frac{1}{p}+\frac{1}{q}=1$. Consider the function $f(x, y)=$ $\frac{x^{p}}{p}+\frac{y^{q}}{q}-x y$ defined on the set $A=\{x \geq 0, y \geq 0\}$. Assuming that f has a minimum on A find it.
(2) Let $M(2,2)$ be the space of 2×2 matrices identified with \mathbb{R}^{4}. Let $f: M(2,2) \rightarrow M(2,2)$ be given by $f(A)=A^{2}$. Let $A_{0}=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$. Note that $f\left(A_{0}\right)=I d$. Is it true that there is an open set U containing A_{0} such that f is 1-1 on $U, f(U)$ is open and f^{-1} is differentiable on $f(U)$?
(3) Finish the proof of the following statement from class.

Let $f: G L(n, R) \rightarrow G L(n, R)$ be given by $f(A)=A^{-1}$. Let A_{0} be the identity matrix. Prove that $d f_{A_{0}}(X)=-X$ for any $n \times n$ matrix X.
(4) Give a careful proof of the following statement from class. Let $f(r, \theta)=(r \cos \theta, r \sin \theta)$ be defined on $U=\{1<r<2,0<\theta<2 \pi\}$. Prove that
(a) f is $1-1$ on U;
(b) $f(U)=V=\left\{1<x^{2}+y^{2}<4\right\} \backslash\{(x, 0)$ with $1<x<2\}$;
(c) $g=f^{-1}: V \rightarrow U$ is C^{1};
(d) $\left\|d g_{p}\right\|$ is bounded on V but g is not L-Lipschitz on V for any L.

Extra Credit Problem (to be written up and submitted separately)

Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a function such which is continuous in each variable, i.e. for every $x \in \mathbb{R}$ the function $y \mapsto f(x, y)$ is continuous and for every $y \in \mathbb{R}$ the function $x \mapsto f(x, y)$ is continuous.
(1) Give an example of such an f which is not everywhere continuous on \mathbb{R}^{2};
(2) Suppose we also assume in addition that for any compact set $K \subset \mathbb{R}^{2}$ its image $f(K)$ is compact. Prove that f is continuous on \mathbb{R}^{2}.

