- (1) Let p, q > 1 such that $\frac{1}{p} + \frac{1}{q} = 1$. Consider the function f(x, y) = $\frac{x^p}{p} + \frac{y^q}{q} - xy$ defined on the set $A = \{x \ge 0, y \ge 0\}$. Assuming that f has a minimum on A find it.
- (2) Let M(2,2) be the space of 2×2 matrices identified with \mathbb{R}^4 . Let $f: M(2,2) \to M(2,2)$ be given by $f(A) = A^2$. Let $A_0 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$. Note that $f(A_0) = Id$. Is it true that there is an open set U containing A_0 such that f is 1-1 on U, f(U) is open and f^{-1} is differentiable on f(U)?
- (3) Finish the proof of the following statement from class. Let $f: GL(n,R) \to GL(n,R)$ be given by $f(A) = A^{-1}$. Let A_0 be the identity matrix. Prove that $df_{A_0}(X) = -X$ for any $n \times n$ matrix X.
- (4) Give a careful proof of the following statement from class. Let $f(r,\theta) = (r\cos\theta, r\sin\theta) \text{ be defined on } U = \{1 < r < 2, 0 < \theta < 2\pi\}.$ Prove that
 - (a) f is 1 1 on U;
 - (b) $f(U) = V = \{1 < x^2 + y^2 < 4\} \setminus \{(x, 0) \text{ with } 1 < x < 2\};$ (c) $g = f^{-1}: V \to U \text{ is } C^1;$

 - (d) $||dg_p||$ is bounded on V but g is not L-Lipschitz on V for any L.

Extra Credit Problem (to be written up and submitted separately)

Let $f: \mathbb{R}^2 \to \mathbb{R}$ be a function such which is continuous in each variable, i.e. for every $x \in \mathbb{R}$ the function $y \mapsto f(x, y)$ is continuous and for every $y \in \mathbb{R}$ the function $x \mapsto f(x, y)$ is continuous.

- (1) Give an example of such an f which is not everywhere continuous on \mathbb{R}^2 ;
- (2) Suppose we also assume in addition that for any compact set $K \subset \mathbb{R}^2$ its image f(K) is compact. Prove that f is continuous on \mathbb{R}^2 .