(1) Let $x\left(t_{1}, t_{2}\right)=t_{1} e^{t_{2}}, y\left(t_{1}, t_{2}\right)=t_{1}^{2}+\sin \left(t_{1} t_{2}\right)$. Let $f(x, y)$ be a differentiable function $f: R^{2} \rightarrow R$. Let $g\left(t_{1}, t_{2}\right)=f\left(x\left(t_{1}, t_{2}\right), y\left(t_{1}, t_{2}\right)\right)$. Express $\frac{\partial g}{\partial t_{1}}(1,0)$ and $\frac{\partial g}{\partial t_{2}}(1,0)$ in terms of partial derivatives of f.
(2) Show that the following functions are differentiable and find their differentials
(a) $f(x, y, z)=x^{y^{z}}$ where $x>0, y>0, z \in \mathbb{R}$
(b) $f(x, y)=\int_{x^{2}}^{x+y} g(t) d t$ where $g: \mathbb{R} \rightarrow \mathbb{R}$ is continuous.
(3) Let $f, g: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be differentiable at $a \in \mathbb{R}^{n}$. Using the definition of differentiability prove that $f \cdot g: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is differentiable at a and $d(f g)_{a}=f(a) d g_{a}+g(a) d f_{a}$.

Hint: Write $f(a+h) g(a+h)-f(a) g(a)$ as $f(a+h) g(a+h)-$ $f(a) g(a)=f(a+h) g(a+h)-f(a+h) g(a)+f(a+h) g(a)-f(a) g(a)=$ $f(a+h)(g(a+h)-g(a))+g(a)(f(a+h)-f(a))$.

Extra Credit Problem (to be written up and submitted sepa-

 rately)Let A be an $n \times n$ matrix. Define e^{a} by the formula

$$
e^{A}=\sum_{k=0}^{\infty} \frac{A^{k}}{k!}
$$

Prove that
(1) e^{A} is well defined for any $n \times n$ matrix A.
(2) The function $A \mapsto e^{A}$ is continuous everywhere on the vector space of all $n \times n$ matrices identified with $\mathbb{R}^{n^{2}}$.
(3) The function $A \mapsto e^{A}$ is differentiable everywhere on the vector space of all $n \times n$ matrices.

