- (1) Let $x(t_1, t_2) = t_1 e^{t_2}, y(t_1, t_2) = t_1^2 + \sin(t_1 t_2)$. Let f(x, y) be a differ-entiable function $f: \mathbb{R}^2 \to \mathbb{R}$. Let $g(t_1, t_2) = f(x(t_1, t_2), y(t_1, t_2))$. Express $\frac{\partial g}{\partial t_1}(1, 0)$ and $\frac{\partial g}{\partial t_2}(1, 0)$ in terms of partial derivatives of f. (2) Show that the following functions are differentiable and find their
- differentials

(a) $f(x, y, z) = x^{y^z}$ where $x > 0, y > 0, z \in \mathbb{R}$

- (b) $f(x,y) = \int_{x^2}^{x+y} g(t)dt$ where $g: \mathbb{R} \to \mathbb{R}$ is continuous. (3) Let $f, g: \mathbb{R}^n \to \mathbb{R}$ be differentiable at $a \in \mathbb{R}^n$. Using the definition of differentiability prove that $f\cdot g\colon\,\mathbb{R}^n\to\mathbb{R}$ is differentiable at a and $d(fg)_a = f(a)dg_a + g(a)df_a.$

Hint: Write
$$f(a+h)g(a+h) - f(a)g(a)$$
 as $f(a+h)g(a+h) - f(a)g(a) = f(a+h)g(a+h) - f(a+h)g(a) + f(a+h)g(a) - f(a)g(a) = f(a+h)(g(a+h) - g(a)) + g(a)(f(a+h) - f(a)).$

Extra Credit Problem (to be written up and submitted separately)

Let A be an $n \times n$ matrix. Define e^a by the formula

$$e^A = \sum_{k=0}^{\infty} \frac{A^k}{k!}$$

Prove that

- (1) e^A is well defined for any $n \times n$ matrix A.
- (2) The function $A \mapsto e^A$ is continuous everywhere on the vector space of all $n \times n$ matrices identified with \mathbb{R}^{n^2} .
- (3) The function $A \mapsto e^A$ is differentiable everywhere on the vector space of all $n \times n$ matrices.