- (1) Show that the union of finitely many compact sets is compact.
- (2) Using only the definition of differentiability prove that if f, g: Rⁿ → R^m are differentiable at p ∈ Rⁿ then f + g is also differentiable at p and d(f + g)_p = df_p + dg_p.
 (3) Let f: R² → R be given by f(x, y) = xy.
- (3) Let $f: \mathbb{R}^2 \to \mathbb{R}$ be given by f(x, y) = xy. Prove that f is differentiable everywhere and compute df_p for p = (a, b).
- (4) Let $f: \mathbb{R}^2 \to \mathbb{R}$ be given by

$$f(x,y) = \begin{cases} \sqrt{|xy|} & \text{if } x \ge 0\\ -\sqrt{|xy|} & \text{if } x < 0 \end{cases}$$

Show that $D_h f((0,0))$ exists for any $h \in \mathbb{R}^2$ but f is not differentiable at (0,0).

(5) Let $f: \mathbb{R}^2 \to \mathbb{R}$ be given by

$$f(x,y) = xy + y^2$$

Let p = (1, 2). Prove that f is differentiable at p and compute df_p . (6) Finish the proof of a theorem from class: Let $f = (f_1, \ldots, f_k) \colon \mathbb{R}^n \to \mathbb{R}^k$. Then f is differentiable at p if each f_i is differentiable at p.

Extra Credit Problem (to be written up and submitted separately)

Prove that any two norms on \mathbb{R}^n define the same open sets.