(1) Show that the union of finitely many compact sets is compact.
(2) Using only the definition of differentiability prove that if $f, g: \mathbb{R}^{n} \rightarrow$ \mathbb{R}^{m} are differentiable at $p \in \mathbb{R}^{n}$ then $f+g$ is also differentiable at p and $d(f+g)_{p}=d f_{p}+d g_{p}$.
(3) Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be given by $f(x, y)=x y$.

Prove that f is differentiable everywhere and compute $d f_{p}$ for $p=$ (a, b).
(4) Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be given by

$$
f(x, y)=\left\{\begin{array}{l}
\sqrt{|x y|} \text { if } x \geq 0 \\
-\sqrt{|x y|} \text { if } x<0
\end{array}\right.
$$

Show that $D_{h} f((0,0))$ exists for any $h \in \mathbb{R}^{2}$ but f is not differentiable at $(0,0)$.
(5) Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be given by

$$
f(x, y)=x y+y^{2}
$$

Let $p=(1,2)$. Prove that f is differentiable at p and compute $d f_{p}$.
(6) Finish the proof of a theorem from class: Let $f=\left(f_{1}, \ldots, f_{k}\right): \mathbb{R}^{n} \rightarrow$ \mathbb{R}^{k}. Then f is differentiable at p if each f_{i} is differentiable at p.

Extra Credit Problem (to be written up and submitted separately)

Prove that any two norms on \mathbb{R}^{n} define the same open sets.

