(1) Let $M=S^{n} \subset \mathbb{R}^{n+1}$ be the unit sphere around 0 . Let $S_{e q}$ be the equator in M, i.e $S_{e q}=M \cap\left(\mathbb{R}^{n} \times\{0\}\right)$.

Prove that S has measure zero in M.
(2) Let M be the cylinder $\left\{(x, y, z) \mid\right.$ such that $x^{2}+y^{2}=1$ and $\left.0 \leq z \leq 1\right\}$ in R^{3}. Let $\omega=z d x$. Fix an orientation on M such that the $e_{2}=$ $(0,1,0), e_{3}=(0,0,1)$ give a positive basis of $T_{p} M$ for $p=(1,0,0)$. Compute $\int_{M} d \omega$ and $\int_{\partial M} \omega$ and verify that they are equal.
(3) Let M be the solid torus obtained by rotating the disk $(x-2)^{2}+z^{2} \leq$ 1 in the $x z$-plane around the z-axis with the canonical orientation coming from \mathbb{R}^{3}.

Let $\omega=\frac{z}{\sqrt{x^{2}+y^{2}}} d x \wedge d y$.
Find $\int_{\partial M} \omega$.
Hint: Use Stokes' Theorem and cylindrical coordinates.

