- (1) Let $M = S^n \subset \mathbb{R}^{n+1}$ be the unit sphere around 0. Let S_{eq} be the equator in M, i.e $S_{eq} = M \cap (\mathbb{R}^n \times \{0\})$. Prove that S has measure zero in M.
- (2) Let M be the cylinder $\{(x, y, z) | \text{ such that } x^2 + y^2 = 1 \text{ and } 0 \le z \le 1 \}$ in \mathbb{R}^3 . Let $\omega = zdx$. Fix an orientation on M such that the $e_2 =$ $(0,1,0), e_3 = (0,0,1)$ give a positive basis of T_pM for p = (1,0,0). Compute $\int_M d\omega$ and $\int_{\partial M} \omega$ and verify that they are equal.
- (3) Let M be the solid torus obtained by rotating the disk $(x-2)^2 + z^2 \le$ 1 in the xz-plane around the z-axis with the canonical orientation coming from \mathbb{R}^3 .

Let $\omega = \frac{z}{\sqrt{x^2 + y^2}} dx \wedge dy$. Find $\int_{\partial M} \omega$.

Hint: Use Stokes' Theorem and cylindrical coordinates.