(1) Let $V \subset \mathbb{R}^n$ be a vector subspace of dimension n-1. Let $N \in \mathbb{R}^n$ be a nonzero vector normal to V. Let v_1, \ldots, v_{n-1} be a basis of V. We'll say that (v_1, \ldots, v_{n-1}) is a positive basis with respect to the orientation of V induced by N if $det(N, v_1, \ldots, v_{n-1}) > 0$.

Prove that this defines a well-defined orientation of V. in other words, suppose (u_1, \ldots, u_{n-1}) be another basis of V.

Prove that (u_1, \ldots, u_{n-1}) and (v_1, \ldots, v_{n-1}) have the same orientation if and only if $det(N, v_1, \ldots, v_{n-1})$ and $det(N, u_1, \ldots, u_{n-1})$ have the same sign.

(2) Let $M = \{x^2 + y^2 + z^2 \le 1\}$ in \mathbb{R}^3 with the orientation coming from the canonical orientation on \mathbb{R}^3 . Consider the induced orientation on ∂M and find a positive basis of $T_p \partial M$ at p = (1, 0, 0).

Further, let $N = S_+^2 = \{(x, y, z) | \text{ such that } x^2 + y^2 + z^2 = 1$ and $z \ge 0\}$. Consider the orientation on N coinciding with the orientation on $S^2 = \partial M$. Consider ∂N with the induced orientation from N. Find a positive basis of $T_p \partial N$ for p = (1, 0, 0).

- (3) Let $M_1 \subset \mathbb{R}^{n_1}, M_2 \subset \mathbb{R}^{n_2}$ be orientable manifolds without boundary. Prove that $M_1 \times M_2 \subset \mathbb{R}^{n_1+n_2}$ is orientable.
- (4) Let $M^k \subset \mathbb{R}^n$ be a C^{∞} manifold with boundary. Prove that for any $p \in \partial M$ there exists an open set $U \subset \partial M$ containing p on which we can construct a C^{∞} unit vector filed N tangent to M such that $N(x) \perp T_x \partial M$ for any $x \in U$.

Hint: Take a local parametrization $f: V \to U$ where $V \subset H^k$, $U \subset M$ and look at the vector fields $df_x(e_1), \ldots, df_x(e_k)$. Apply Gramm-Shmidt to those vector fields.

- (5) Let $M = \{x^2/9 + y^2/4 + z^2 \le 3\}$ in \mathbb{R}^3 . Consider the induced orien-
- (6) Let M = (w / v + y / 1 + x 2 ≤ 0) in R³. Consider the induced often tation on ∂M and find a positive basis of T_p∂M at p = (3, -2, 1).
 (6) Let M = S² = {x² + y² + z² = 1} ⊂ ℝ³ with the orientation induced from the ball {x² + y² + z² ≤ 1}. Let ω = zdx ∧ dy. Compute ∫_M ω.