(1) Let $V \subset \mathbb{R}^{n}$ be a vector subspace of dimension $n-1$. Let $N \in \mathbb{R}^{n}$ be a nonzero vector normal to $V$. Let $v_{1}, \ldots, v_{n-1}$ be a basis of $V$. We'll say that $\left(v_{1}, \ldots, v_{n-1}\right)$ is a positive basis with respect to the orientation of $V$ induced by $N$ if $\operatorname{det}\left(N, v_{1}, \ldots, v_{n-1}\right)>0$.

Prove that this defines a well-defined orientation of $V$. in other words, suppose $\left(u_{1}, \ldots, u_{n-1}\right)$ be another basis of $V$.

Prove that $\left(u_{1}, \ldots, u_{n-1}\right)$ and $\left(v_{1}, \ldots, v_{n-1}\right)$ have the same orientation if and only if $\operatorname{det}\left(N, v_{1}, \ldots, v_{n-1}\right)$ and $\operatorname{det}\left(N, u_{1}, \ldots, u_{n-1}\right)$ have the same sign.
(2) Let $M=\left\{x^{2}+y^{2}+z^{2} \leq 1\right\}$ in $\mathbb{R}^{3}$ with the orientation coming from the canonical orientation on $\mathbb{R}^{3}$. Consider the induced orientation on $\partial M$ and find a positive basis of $T_{p} \partial M$ at $p=(1,0,0)$.

Further, let $N=S_{+}^{2}=\left\{(x, y, z) \mid\right.$ such that $x^{2}+y^{2}+z^{2}=1$ and $z \geq 0\}$. Consider the orientation on $N$ coinciding with the orientation on $S^{2}=\partial M$. Consider $\partial N$ with the induced orientation from $N$. Find a positive basis of $T_{p} \partial N$ for $p=(1,0,0)$.
(3) Let $M_{1} \subset \mathbb{R}^{n_{1}}, M_{2} \subset \mathbb{R}^{n_{2}}$ be orientable manifolds without boundary. Prove that $M_{1} \times M_{2} \subset \mathbb{R}^{n_{1}+n_{2}}$ is orientable.
(4) Let $M^{k} \subset \mathbb{R}^{n}$ be a $C^{\infty}$ manifold with boundary. Prove that for any $p \in \partial M$ there exists an open set $U \subset \partial M$ containing $p$ on which we can construct a $C^{\infty}$ unit vector filed $N$ tangent to $M$ such that $N(x) \perp T_{x} \partial M$ for any $x \in U$.

Hint: Take a local parametrization $f: V \rightarrow U$ where $V \subset H^{k}$, $U \subset M$ and look at the vector fields $d f_{x}\left(e_{1}\right), \ldots, d f_{x}\left(e_{k}\right)$. Apply Gramm-Shmidt to those vector fields.
(5) Let $M=\left\{x^{2} / 9+y^{2} / 4+z^{2} \leq 3\right\}$ in $R^{3}$. Consider the induced orientation on $\partial M$ and find a positive basis of $T_{p} \partial M$ at $p=(3,-2,1)$.
(6) Let $M=S^{2}=\left\{x^{2}+y^{2}+z^{2}=1\right\} \subset \mathbb{R}^{3}$ with the orientation induced from the ball $\left\{x^{2}+y^{2}+z^{2} \leq 1\right\}$. Let $\omega=z d x \wedge d y$. Compute $\int_{M} \omega$.

