(1) Let $M \subset \mathbb{R}^{n}$ be a k-dimensional manifold. Let ω be an l-form on M. recall that ω is called smooth if it can be extended to a smooth form on an open set containing M.
a) Prove that ω is smooth if and only if it's locally smooth. Here a form on M is locally smooth if for every $p \in M$ there exists open subset $U \subset \mathbb{R}^{n}$ containing p such that $\left.\omega\right|_{M \cap U}$ is smooth. Hint: use partition of unity.
b) Prove that ω is smooth if and only if for any smooth tangent fields $V_{1}(x), \ldots V_{l}(x)$ on M the function $\omega\left(V_{1}(x), \ldots V_{l}(x)\right)$ is smooth in x.
Hint: For the if direction: by a) it's enough to argue locally. Extend local coordinates on M to a local diffeomorphism between open sets in \mathbb{R}^{n}, look at the form in those local coordinates and extend it there.
(2) Let $U \subset \mathbb{R}^{k}, V \subset \mathbb{R}^{n}$ be open where $n \geq k$. Let $\omega=d y_{I}$ be a k-form on V where $I=\left(i_{1}<i_{2}<\ldots<i_{k}\right)$. Let $f=\left(f_{1}, f_{2}, \ldots, f_{n}\right): U \rightarrow$ V be smooth. Let $f_{I}=\left(f_{i_{1}}, f_{i_{2}}, \ldots, f_{i_{k}}\right): \mathbb{R}^{k} \rightarrow \mathbb{R}^{k}$

Prove that $f^{*}\left(d y_{I}\right)(x)=\operatorname{det}\left[d f_{x}\right] d x_{1} \wedge d x_{2} \ldots \wedge d x_{k}$.
(3) Let $f: R^{3} \rightarrow R^{3}$ be given by $f(x, y, z)=\left(y \sin (z), x e^{z}, 1+y^{2}\right)$. Let $\omega=z d x \wedge d y$. Compute $d f^{*}(\omega)$ and $f^{*}(d \omega)$ and verify that they are equal.
(4) Prove that every closed $C^{\infty} 1$-form on \mathbb{R}^{2} is exact.

Hint: Let $\omega=P(x, y) d x+Q(x, y) d y$ with $d \omega=0$. We want to find a function $F(x, y)$ such that $\omega=d F$, i.e. $P=\frac{\partial F}{\partial x}$ and $Q=\frac{\partial F}{\partial y}$.

Define $F(x, y)=\int_{0}^{x} P(x, 0) d x+\int_{0}^{y} Q(x, y) d y$. Use that $d \omega=0$ to show that $d F=\omega$.
(5) A subset $X \subset \mathbb{R}^{n}$ is called path connected if for any points $p, q \in$ X there exists a continuous map $\gamma:[0,1] \rightarrow X$ such that $\gamma(0)=$ $p, \gamma(1)=q$. Let $U: \mathbb{R}^{n}$ be an open path connected set and $f: U \rightarrow$ V be a C^{1} diffeomorphism onto an open set $V \subset \mathbb{R}^{n}$.

Prove that $\operatorname{det}\left[d f_{x}\right]>0$ for all $x \in U$ or $\operatorname{det}\left[d f_{x}\right]<0$ for all $x \in U$.
(6) Let $\sigma:(0,1)^{2} \rightarrow R^{3}$ be given by $\sigma(x, y)=\left(x y, 2 x+y, y^{2}\right)$. Let ω be a 2 -form on R^{3} given by $x_{1} d x_{2} \wedge d x_{3}+x_{2}^{2} d x_{1} \wedge d x_{3}$.

Find $\int_{\sigma} \omega$.
(7) Let $U \subset \mathbb{R}_{n}$ be open and $w \subset \Omega^{1}(U)$ be exact. Let $p, q \in U$ be fixed and let $\gamma:[0,1] \rightarrow U$ be C^{1} such that $\gamma(0)=p, \gamma(1)=q$.

Prove that $\int_{\gamma} \omega$ is independent of γ.
(8) Let $\omega=\frac{x d y-y d x}{x^{2}+y^{2}}$ be a 1 -form on $\mathbb{R}^{2} \backslash(0,0)$
(a) Verify that ω is closed.
(b) Prove that ω is not exact.

Hint: Use the previous problem.

Extra Credit: John Nash's Problem.
Is it true that every closed 1-form on $R^{3} \backslash\{(0,0,0)\}$ is exact?

