(1) Let $M \subset \mathbb{R}^{n}$ be a C^{r} manifold and let $f, g: M \rightarrow \mathbb{R}^{m}$ be C^{r} maps such that $\left.f\right|_{M}=\left.g\right|_{M}$. Let $p \in M$.

Prove that $\left.d f_{p}\right|_{T_{p} M}=\left.d g_{p}\right|_{T_{p} M}$.
(2) Let $M \subset \mathbb{R}^{n}$ be a smooth (i.e. C^{∞}) manifold. Prove that there exists a smooth tangent vector field defined on M which is not identically zero on M. Hint: Use partition of unity to glue together locally defined tangent vector fields.
(3) Let V be a smooth vector field on \mathbb{R}^{n}. Let $M \subset \mathbb{R}^{n}$ be a smooth manifold. Let for $p \in M$ let $V^{t}(p)$ be the result of the orthogonal projection of $V(p)$ to $T_{p} M$.

Prove that V^{t} is smooth.
Hint: use that one can construct a local family of smooth orthonormal vector fields tangent to M.
(4) Let V be a n-dimensional vector space and let $\langle\cdot, \cdot\rangle$ be a scalar product on V and let μ be an orientation on V.

Prove that there exists a unique alternating n-tensor $\omega \in \mathcal{A}^{n}(V)$ such that $\omega\left(e_{1}, \ldots, e_{n}\right)=1$ for any positively oriented orthonormal basis e_{1}, \ldots, e_{n} of V.
(5) Let Let $M \subset \mathbb{R}^{3}$ be given by $\left\{x^{2}+y^{2}-5 z^{2}=0\right\} \cap\{2 x-y+z=1\}$. Prove that M is a manifold and find $T_{p} M$ for $p=(1,2,1)$.
(6) Prove the theorem stated in class: A l-tensor field T on a manifold $M \subset \mathbb{R}^{k}$ is smooth if an only if for any coordinate parameterization ϕ coming from the definition of a manifold we have that $T\left(\phi_{*}\left(e_{i_{1}}\right)(p), \ldots \phi_{*}\left(e_{i_{l}}\right)(p)\right)$ is smooth as a function of p for any $I=$ $\left(i_{1}, \ldots i_{l}\right)$.

