(1) Let $\sigma \in S_{n}$. Define P_{σ} to be the $n \times n$ matrix with $\left(P_{\sigma}\right)_{i j}=\delta_{i, \sigma(j)}$.

Prove that the map $\sigma \mapsto P_{\sigma}$ is a homomorphism from S_{n} to $O(n)$. What is the kernel of this homomorphism?
(2) Let $\sigma=\left(\begin{array}{llllll}1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 6 & 1 & 5 & 4 & 2\end{array}\right)$ Find $\operatorname{sign}(\sigma)$.
(3) Let A be an $n \times n$ matrix.

Prove that det $A=\sum_{\sigma \in S_{n}} \operatorname{sign}(\sigma) A_{1 \sigma(1)} \cdot \ldots \cdot A_{n \sigma(n)}$.
(4) Let T be a k-tensor on V. Prove that T is alternating if and only if $T\left(v_{1}, \ldots v_{k}\right)=0$ for any $v_{1}, \ldots v_{k}$ such that $v_{i}=v_{j}$ for some $i \neq j$.
(5) let $\sigma \in S_{k+l}$ be the following permutation

$$
\left(\begin{array}{cccccc}
1 & \ldots & k & k+1 & \ldots & k+l \\
l+1 & \ldots & l+k & 1 & \ldots & l
\end{array}\right)
$$

Prove that $\operatorname{sign}(\sigma)=(-1)^{k l}$.

