- (1) Finish the proof of the theorem from class: Let $M^k \subset \mathbb{R}^n$ be a manifold with boundary. Let $V_1, V_2 \subset H^k$ be open subsets and let $f_i: V_i \to M$ (with i = 1, 2) be local parameterizations from the definition of a manifold such that $f_i(q_i) = p$. Let $g = f_2^{-1} \circ f_1 \colon V'_1 \to \mathbb{R}^k$ where $V'_1 = f_1^{-1}(f_2(V_2))$. Prove that g is differentiable at q_1 and dg_{q_1} is invertible.
- (2) Let $M^k \subset \mathbb{R}^n$ be a manifold with boundary. Prove that $\partial M \subset M$ is closed in M. Is it true that ∂M must be closed in \mathbb{R}^n ?
- (3) Prove that $M = (x, y) \in \mathbb{R}^2$ such that $y \ge \sqrt{|x|}$ is **not** a manifold with boundary.

Extra Credit: Let $M_r(m,n) \subset \mathbb{R}^{mn}$ be the set of all $m \times n$ matrices of rank = r where $r \leq min(m,n)$. Prove that $M_r(m,n)$ is a manifold of dimension (m-r)(n-r).

Hint: Use that a matrix has rank = r if and only if it can be reduced by elementary row operations to a matrix whose last (m - r) rows are zero and the first r rows are linearly independent. Also use that elementary row operations are given by multiplications by invertible matrices.