- (1) Let S be a rectifiable subset of the xz plane in \mathbb{R}^3 such that $Cl(S) \subset \{x > 0\}$. Let V be a solid obtained by rotating S around z axis. Prove that V is rectifiable and $vol(V) = 2\pi \int_S x$. *Hint:* Use cylindrical coordinates.
- (2) Let n > 1. Give an example of an $n \times n$ matrix A which preserves volume but is not orthogonal.
- (3) Let A be an $n \times n$ matrix with det A = 0 and $S \subset \mathbb{R}^n$ be a rectifiable subset.

Prove that A(S) has volume 0.

(4) Let v_1, \ldots, v_n be *n* vectors in \mathbb{R}^n . Let *B* be an $n \times n$ matrix with $B_{ij} = \langle v_i, v_j \rangle$.

Prove that det $B \ge 0$ and volP $(v_1, \ldots, v_n) = \sqrt{\det B}$.

(5) Let $f: \mathbb{R} \to \mathbb{R}$ be given by f(x) = |x|. Prove that the graph of f is not a C^1 manifold.