(1) Let S be a rectifiable subset of the $x z$ plane in \mathbb{R}^{3} such that $C l(S) \subset$ $\{x>0\}$. Let V be a solid obtained by rotating S around z axis. Prove that V is rectifiable and $\operatorname{vol}(V)=2 \pi \int_{S} x$.

Hint: Use cylindrical coordinates.
(2) Let $n>1$. Give an example of an $n \times n$ matrix A which preserves volume but is not orthogonal.
(3) Let A be an $n \times n$ matrix with $\operatorname{det} A=0$ and $S \subset \mathbb{R}^{n}$ be a rectifiable subset.

Prove that $A(S)$ has volume 0 .
(4) Let v_{1}, \ldots, v_{n} be n vectors in \mathbb{R}^{n}. Let B be an $n \times n$ matrix with $B_{i j}=\left\langle v_{i}, v_{j}\right\rangle$.

Prove that det $B \geq 0$ and $\operatorname{volP}\left(\mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{n}}\right)=\sqrt{\operatorname{det} \mathrm{B}}$.
(5) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be given by $f(x)=|x|$. Prove that the graph of f is not a C^{1} manifold.

