(1) Let $U \subset \mathbb{R}^{n}$ be open and let $f: U \rightarrow \mathbb{R}^{m}$ be C^{1} where $m>n$. Prove that $f(U)$ has measure zero.
(2) Let $A=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$.

Write A as a composition of primitive linear diffeomorphisms.
(3) Let $f: R^{2} \rightarrow R$ be continuous and odd. Recall that f is called odd if $f(-x)=-f(x)$ for any $x \in R^{2}$.

Prove that $\int_{x^{2}+y^{2}<1} f=0$.
(4) Let $\bar{B}(0, R)$ be the closed ball of radius R in R^{n}. Prove that $\operatorname{vol} \overline{\mathrm{B}}(0, \mathrm{R})=$ $\mathrm{R}^{\mathrm{n}} \mathrm{vol} \overline{\mathrm{B}}(0,1)$.
(5) Let U be a rectifiable open set in the $x z$ plane lying in the halfplane $x>0$. Let V be the solid in R^{3} obtained by rotating U around the z axis.

Prove that volV $=\int_{\mathrm{U}} 2 \pi \mathrm{x}$.
Hint: use cylindrical coordinates in R^{3} :
$x=r \cos \theta, y=r \sin \theta, z=z$.
(6) Prove that $\int_{(-\infty+\infty)}^{e x t} e^{-x^{2}} d x=\sqrt{\pi}$.

Hint: Show that $\left(\int_{(-\infty+\infty)}^{e x t} e^{-x^{2}} d x\right)\left(\int_{(-\infty+\infty)}^{e x t} e^{-y^{2}} d y\right)=\pi$

