- (1) Let $U \subset \mathbb{R}^n$ be open and let $f: U \to \mathbb{R}^m$ be C^1 where m > n. Prove that f(U) has measure zero.
- (2) Let $A = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$.

Write \hat{A} as a composition of primitive linear diffeomorphisms.

- (3) Let $f: \mathbb{R}^2 \to \mathbb{R}$ be continuous and odd. Recall that f is called odd if f(-x) = -f(x) for any $x \in \mathbb{R}^2$. Prove that $\int_{x^2+y^2<1} f = 0.$
- (4) Let $\overline{B}(0, R)$ be the closed ball of radius R in R^n . Prove that $\operatorname{vol}\overline{B}(0, R) =$ $R^n vol\overline{B}(0,1).$
- (5) Let U be a rectifiable open set in the xz plane lying in the halfplane x > 0. Let V be the solid in \mathbb{R}^3 obtained by rotating U around the z axis.

Prove that volV = $\int_{U} 2\pi x$.

Hint: use cylindrical coordinates in \mathbb{R}^3 :

$$x = r\cos\theta, y = r\sin\theta, z = z.$$

(6) Prove that
$$\int_{(-\infty+\infty)}^{\infty} e^{-x^2} dx = \sqrt{\pi}$$

rove that $\int_{(-\infty+\infty)}^{ext} e^{-x^2} dx = \sqrt{\pi}$. *Hint:* Show that $(\int_{(-\infty+\infty)}^{ext} e^{-x^2} dx) (\int_{(-\infty+\infty)}^{ext} e^{-y^2} dy) = \pi$