(1) Let X be a metric space and let $f: X \rightarrow \mathbb{R}$ be a function. Define support of f (which will denote as $\operatorname{supp}(f))$ as the closure of the set of points $x \in X$ where $f(x) \neq 0$.

Prove that $X \backslash \operatorname{supp}(f)=\{x \in X$ such that there exists $\epsilon>0$ such that f is identically zero on $\left.B_{\epsilon}(f)\right\}$.
(2) Consider the modified Cantor set S on $[0,1]$ constructed as follows. Let S_{1} be obtained from $[0,1]$ by removing the open interval $\left(\frac{1}{2}-\right.$ $\frac{1}{2.5}, \frac{1}{2}+\frac{1}{2.5}$) of length $\frac{1}{5}$. Note that S_{1} is a union of two closed intervals $I_{1}=\left[0, \frac{1}{2}-\frac{1}{2 \cdot 5}\right]$ and $I_{2}=\left[\frac{1}{2}+\frac{1}{2 \cdot 5}, 1\right]$. Let S_{2} be obtained from S_{1} by further removing the "middle" open intervals of length $\frac{1}{5^{2}}$ from I_{1} and I_{2} etc. Let $S=\cap_{i=1}^{\infty} S_{i}$ be the Cantor set. Let $U=[0,1] \backslash S$

Prove that $\int_{U}^{e x t} 1$ exists and compute it.
(3) Determine if $\int_{(1, \infty)}^{e x t} \frac{\sin x}{x} d x$ exists.
(4) Let $U_{1}, U_{2} \subset \mathbb{R}^{n}$ be open. Let $U=U_{1} \cup U_{2}, V=U_{1} \cap U_{2}$. Let $f: U \rightarrow \mathbb{R}$ be continuous almost everywhere and locally bounded. Suppose $\int_{U_{1}}^{e x t} f$ and $\int_{U_{2}}^{e x t} f$ exist. Prove that $\int_{U}^{e x t} f$ and $\int_{V}^{e x t} f$ also exist and

$$
\int_{U}^{e x t} f=\int_{U_{1}}^{e x t} f+\int_{U_{2}}^{e x t} f-\int_{V}^{e x t} f
$$

(5) Let $U=\left\{(x, y, z) \in \mathbb{R}^{3} \mid\right.$ such that $\left.z>0, x^{2}+y^{2}+z^{2}<1\right\}$.

Find $\int_{U}^{e x t} z$ using spherical change of variables.
(6) Let $U=\left\{(x, y) \in R^{2} \mid x^{2}+y^{2}<1\right\}$. Let $f(x, y)=e^{x^{2}+y^{2}}$. Find $\int_{U}^{e x t} f$.
(7) Finish the proof of the following theorem from class:

Let $f: U \rightarrow V$ be a diffeomorphism between open subsets of R^{n}. Let $C \subset U$ be a compact subset.

Prove that $f(b d(C))=b d(f(C))$.

Extra Credit Problem (to be written up and submitted separately)

Give an example of a diffeomorphism between open sets in R^{n} which is not C^{1}.

Hint: Look at the map $f: \mathbb{R} \rightarrow \mathbb{R}$ given by

$$
f(x)=\left\{\begin{array}{l}
3 x+x^{2} \sin (1 / x) \text { if } x \neq 0 \\
0 \text { if } x=0
\end{array}\right.
$$

