(1) Let A, B be $n \times n$ real matrices. Define $\langle A, B\rangle=\operatorname{tr}\left(A \cdot B^{t}\right)$.

Prove that this defines an inner product on the space of all $n \times n$ matrices.
(2) Let $\left\{C_{i}\right\}_{i \in I}$ be a family of subsets in a set X. Prove that

$$
X \backslash\left(\cup_{i} C_{i}\right)=\cap_{i}\left(X \backslash C_{i}\right)
$$

(3) Show that the norm $\|\cdot\|_{\infty}$ on \mathbb{R}^{n} satisfies the triangle inequality

$$
\|x+y\|_{\infty} \leq\|x\|_{\infty}+\|y\|_{\infty}
$$

for any $x, y \in \mathbb{R}^{n}$.
(4) Show that the norms $\|\cdot\|$ and $\|\cdot\|_{\infty}$ on \mathbb{R}^{n} satisfy

$$
\|x\|_{\infty} \leq\|x\| \leq \sqrt{n} \cdot\|x\|_{\infty}
$$

for any $x \in \mathbb{R}^{n}$.
(5) Prove that metrics coming from $\|\cdot\|$ and $\|\cdot\|_{\infty}$ on \mathbb{R}^{n} define the same open sets.

Hint: Use Problem (4).
(6) Show that interior of any set is an open set.
(7) Prove that a set $A \subset R^{n}$ is closed if and only if it contains all its boundary points.

Extra Credit Problem (to be written up and submitted separately)
Suppose $v_{1}, \ldots v_{k+1}$ are nonzero vectors in R^{n} such that $\angle v_{i} v_{j}>\pi / 2$ for any $i \neq j$.

Show that $v_{1}, \ldots v_{k}$ are linearly independent.

