- (1) Let A, B be $n \times n$ real matrices. Define $\langle A, B \rangle = tr(A \cdot B^t)$. Prove that this defines an inner product on the space of all $n \times n$ matrices.
- (2) Let $\{C_i\}_{i \in I}$ be a family of subsets in a set X. Prove that

$$X \setminus (\cup_i C_i) = \cap_i (X \setminus C_i)$$

(3) Show that the norm $|| \cdot ||_{\infty}$ on \mathbb{R}^n satisfies the triangle inequality

$$||x+y||_{\infty} \le ||x||_{\infty} + ||y||_{\infty}$$

for any $x, y \in \mathbb{R}^n$.

(4) Show that the norms $|| \cdot ||$ and $|| \cdot ||_{\infty}$ on \mathbb{R}^n satisfy

$$||x||_{\infty} \le ||x|| \le \sqrt{n} \cdot ||x||_{\infty}$$

for any $x \in \mathbb{R}^n$.

(5) Prove that metrics coming from $|| \cdot ||$ and $|| \cdot ||_{\infty}$ on \mathbb{R}^n define the same open sets.

Hint: Use Problem (4).

- (6) Show that interior of any set is an open set.
- (7) Prove that a set $A \subset \mathbb{R}^n$ is closed if and only if it contains all its boundary points.

Extra Credit Problem (to be written up and submitted separately)

Suppose $v_1, \ldots v_{k+1}$ are nonzero vectors in \mathbb{R}^n such that $\angle v_i v_j > \pi/2$ for any $i \neq j$.

Show that $v_1, \ldots v_k$ are linearly independent.