MAT 257Y Solutions to Practice Final 2

1 . Let $A \subset \mathbb{R}^{n}$ be a rectangle. Let $f: A \rightarrow \mathbb{R}$ be integrable. Let

$$
f_{+}(x)=\left\{\begin{array}{l}
f(x) \text { if } f(x) \geq 0 \\
0 \text { if } f(x)<0
\end{array}\right.
$$

Prove that f_{+}is also integrable on A.

Solution

Since f is integrable there exists a set of measure zero $S \subset A$ such that f continuous at every $x \in A \backslash S$. Also f is bounded on A, that is $|f(x)| \leq M$ for all $x \in A$ for some $M>0$.
We have $f_{+}(x)=\frac{1}{2}(f(x)+|f(x)|)$ is also continuous on $x \in A \backslash S$ since $g(y)=|y|$ is continuous everywhere.
Clearly $\left|f_{+}(x)\right| \leq M$ for any $x \in A$. Therefore, by the criterion of integrability, f_{+}is integrable on A.
2. Mark True or False. If true, give a proof. If false, give a counterexample.
(a) Let $S \subset \mathbb{R}^{n}$. If $b d(S)$ is rectifiable then S is rectifiable.
(b) Let $A, B \subset \mathbb{R}^{n}$. Then $b d(A \cap B)=b d(A) \cap b d(B)$;
(c) Let $A \subset \mathbb{R}^{n}$. Then $\operatorname{int}(\operatorname{int} A)=\operatorname{int}(A)$
(d) Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be continuous. If $A \subset \mathbb{R}^{n}$ is open then $f(A)$ is open.

Solution

(a) False. For example, take $S=[0, \infty) \subset \mathbb{R}$. Then $b d(S)=\{0\}$ is rectifiable but S is not as it's not bounded.
(b) False. For example, take $A=\mathbb{Q}$ and $B=\mathbb{R} \backslash \mathbb{Q}$. Then $b d(A)=b d(B)=\mathbb{R}$ so that $b d(A) \cap b d(B)=\mathbb{R}$. But $A \cap B=\emptyset$ and hence $b d(A \cap B)=\emptyset$.
(c) True. $\operatorname{int}(A)$ is open and $\operatorname{int}(U)=U$ for any open set U.
(d) False. Let $f(x) \equiv 0$ and $A=\mathbb{R}^{n}$. Then A is open but $f(A)=\{0\}$ is not.
3 . Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be defined by

$$
f(x, y)=\left\{\begin{array}{l}
0 \text { if }(x, y)=(0,0) \\
\frac{2 x^{3}+x y^{2}}{x^{2}+y^{2}} \text { if }(x, y) \neq(0,0)
\end{array}\right.
$$

(a) Show that the partial derivatives $D_{1} f(0,0), D_{2} f(0,0)$ exist and compute them.
(b) Is f differentiable at $(0,0)$? If yes, find $d f_{(0,0)}$. If no, explain why not.
Hint: use part a).

Solution

(a) We compute $f(x, 0)=\frac{2 x^{3}}{x^{2}}=2 x$. Note that this formula remains true for $x=0$ as $f(0,0)=0$ and 2 . $0=0$. Therefore, $D_{1} f(0,0)=2$. Similarly, $f(0, y)=$ 0 so that $D_{2} f(0,0)=0$.
(b) We claim that f is not differentiable at $(0,0)$?If it were differentiable then the differential would be given by $B(x, y)=2 x$ by part a). However, we compute for $v=(1,1)$ that $D_{v} F(0,0)=\lim _{t \rightarrow 0} \frac{2 t^{3}+t^{3}}{2 t^{3}}=\frac{3}{2} \neq$ $B(1,1)=2$.
Therefore f is not differentiable at $(0,0)$.
4. Let $F(x, y)=\int_{x}^{y} \sqrt{e^{t x}+3 y} d t$. Let $c=F(0,1)$.

Show that near $(0,1)$ the level set $F(x, y)=c$ can be written as $y=g(x)$ for some differentiable function g and compute $g^{\prime}(0)$.

Solution

First we evaluate $\frac{\partial F(x, y)}{\partial x}=-\sqrt{e^{x^{2}}+3 y}+\int_{x}^{y} \frac{t e^{t x}}{2 \sqrt{e^{t x}}+3 y} d t$ and $\frac{\partial F(x, y)}{\partial y}=\sqrt{e^{x y}+3 y}+\int_{x}^{y} \frac{3}{2 \sqrt{e^{t x}+3 y}} d t$. Plugging in $x=0, y=1$ we get $\frac{\partial F(1,0)}{\partial x}=-\sqrt{e^{0^{2}}+3}+\int_{0}^{1} \frac{t e^{0}}{2 \sqrt{e^{0}+3}} d t=$ $-2+\int_{0}^{1} \frac{t}{4} d t=-2+\frac{1}{8}=-\frac{7}{8}$ and $\frac{\partial F(1,0)}{\partial y}=\sqrt{e^{0}+3}+$
$\int_{0}^{1} \frac{3}{2 \sqrt{e^{0}+3}} d t=2+\int_{0}^{1} \frac{3}{4} d t=2+\frac{3}{4}=\frac{11}{4}$. Since $\frac{\partial F(1,0)}{\partial y} \neq 0$, by the Implicit Function theorem we conclude that near $(0,1)$ the level set $F(x, y)=c$ can be written as a graph of a differentiable function $y=g(x)$ and

$$
g^{\prime}(0)=-\frac{\frac{\partial F(1,0)}{\partial x}}{\frac{\partial F(1,0)}{\partial y}}=-\frac{-\frac{7}{8}}{\frac{11}{4}}=\frac{7}{22}
$$

5. Let η be an alternating k-tensor on a vector space V.

Let $v_{1}, \ldots v_{k} \in V$ be linearly dependent.
Show that $\eta\left(v_{1}, \ldots, v_{k}\right)=0$.

Solution

WLOG we can assume that v_{1} is a linear combination of v_{2}, \ldots, v_{k}, that is $v_{1}=\sum_{i=2}^{k} \lambda_{i} v_{i}$. Therefore $\eta\left(v_{1}, \ldots, v_{k}\right)=\eta\left(\sum_{i=2}^{k} \lambda_{i} v_{i}, v_{2}, \ldots, v_{k}\right)=\sum_{i=2}^{k} \lambda_{i} \eta\left(v_{i}, \ldots, v_{i}, \ldots, v_{k}\right)=$ 0 since η is alternating.
6. Let $M^{3}=\left\{(x, y, z) \in \mathbb{R}^{3} \mid\right.$ such that $\left.1 \leq x^{2}+y^{2}+z^{2} \leq 4\right\}$ with the orientation induced from \mathbb{R}^{3}.

Let $p=\left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right)$. Find a positive basis of $T_{p} \partial M$ with respect to the orientation of ∂M induced from M.

Solution

It's easy to see that that outward unit normal to M at p is $n=-\left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right)$ and the tangent space $T_{p} M$ is given by $x+y+z=0$. Let $u_{1}=(1,-1,0), u_{2}=(1,0,-1)$. This is obviously a basis of $T_{p} M$. To determine if this basis if positive we compute the sign of the

$$
\begin{aligned}
& \operatorname{det}\left(n, u_{1}, u_{2}\right)=\operatorname{det}\left(\begin{array}{ccc}
-\frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{3}} \\
1 & -1 & 0 \\
1 & 0 & -1
\end{array}\right)= \\
& \quad=-\frac{1}{\sqrt{3}} \operatorname{det}\left(\begin{array}{ccc}
1 & 1 & 1 \\
1 & -1 & 0 \\
1 & 0 & -1
\end{array}\right)=-\sqrt{3}<0
\end{aligned}
$$

Thus, this basis is negative. Therefore the basis $-u_{1}=$ $(-1,1,0), u_{2}=(1,0,-1)$ is positive.
7. Let (X, d) be a metric space.
(a) Let $p \in X$ be any point. Prove that $\{p\}$ is a closed subset of X.
(b) Let $C \subset X$ be compact. Prove that C is closed.

You are not allowed to use any theorems about compact sets in the proof.

Solution

(a) It's enough to show that $X \backslash\{p\}$ is open. Let $q \in$ $X \backslash\{p\}$ Then $p \neq q$. Let $\varepsilon=\frac{d(p, q)}{2}$. Then $p \notin B_{\varepsilon}(q)$, i.e. $B_{\varepsilon}(q) \subset X \backslash\{p\}$.
(b) It's enough to show that $X \backslash C$ is open. Let $p \in X \backslash C$. Let $U_{n}=\left\{x \in X \mid\right.$ such that $\left.d(x, p)>\frac{1}{n}\right\}$. Then U_{n} is open and $\cup_{n=1}^{\infty} U_{n}=X \backslash\{p\} \supset C$. Therefore we can choose a finite cover of C out of this open cover. as the sets U_{n} are nested this means that $C \subset U_{m}$ for some m which means that $B\left(p, \frac{1}{m}\right) \subset X \backslash C$.
8. Let $U=\left\{(x, y) \in \mathbb{R}^{2} \mid x^{2}+y^{2}>1\right\}$. Let $f(x, y)=\frac{y}{x^{2}+y^{2}}$.

Determine if $\int_{U}^{e x t} f$ exists and if it does compute it.

Solution

Let $U_{n}=\left\{1<x^{2}+y^{2}, n^{2}\right\}$. Then U_{n} form an open exhaustion of U so that $\int_{U}^{e x t} f$ exists iff $\lim _{n \rightarrow \infty} \int_{U_{n}}^{e x t}|f|$ exists. Let $V_{n}=U_{n} \backslash[0 \infty) \times\{0\}$. Then f is integrable on U_{n} and we have $\int_{U_{n}}^{e x t}|f|=\iint_{V_{n}}^{e x t}|f|$. By making polar coordinates change of variables we get

$$
\iint_{V_{n}}^{e x t}|f|=\int_{0}^{n}\left(\int_{0}^{2 \pi} \frac{|r \sin \theta|}{r^{2}} r d \theta\right) d r=2 \int_{0}^{n} \int_{0}^{\pi} \sin \theta d \theta d r=4 n
$$

Therefore, $\lim _{n \rightarrow \infty} \int_{U_{n}}^{e x t}|f|$ does not exists and hence $\int_{U}^{e x t} f$ does not exist.
9. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be given by $f(s, t)=(s t, s+2 t)$ and let $\omega=\sin x d y$. Compute $f^{*}(d \omega)$ and $d\left(f^{*} \omega\right)$ and verify that they are equal.

Solution

We compute $d \omega=\cos x d x \wedge d y$ and $f^{*}(d \omega)=\cos (s t) d(s t) \wedge$ $d(s+2 t)=\cos (s t)(s d t+t d s) \wedge(d s+2 d t)=\cos (s t)(2 t-$ $s) d s \wedge d t$.
Next, $f^{*}(\omega)=\sin (s t) d(s+2 t)=\sin (s t) d s+2 \sin (s t) d t$ and $d f^{*}(\omega)=d \sin (s t) \wedge d s+2 d \sin (s t) \wedge d t=(\cos (s t) s d t+$ $\cos (s t) t d s \wedge d s+2(\cos (s t) s d t+\cos (s t) t d s \wedge d t)=-\cos (s t) s d s \wedge$ $d t+2 t \cos (s t) d s \wedge d t=\cos (s t)(2 t-s) d s \wedge d t$
10. Let $a, b>0$ and Let $M \subset \mathbb{R}^{2}$ be the ellipse $\left\{\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1\right\}$ with the orientation induced by the standard orientation on $\left\{\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}} \leq 1\right\}$.

Find $\int_{M}(\cos x) y d x+(x+\sin (x)) d y$.

Solution

Let $\omega=(\cos x) y d x+(x+\sin (x)) d y$.
Note that $M=\partial N$ where $N=\left\{\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}} \leq 1\right\}$ taken with the standard orientation coming from \mathbb{R}^{2}. By Stokes's Theorem this gives $\int_{M} \omega=\int_{N} d \omega$. We compute $d \omega=$ $(\cos x) d y \wedge d x+(1+\cos x) d x \wedge d y=d x \wedge d y$. Thus $\int_{N} d \omega=\int_{N} 1$. Using the change of avriables $x=a u, y=$ $b v$ we get $\int_{N} 1=\int_{\left\{u^{2}+v^{2} \leq 1\right\}} a b=\pi a b$.

