MAT 257Y Practice Final 2

1. Let $A \subset \mathbb{R}^n$ be a rectangle. Let $f \colon A \to \mathbb{R}$ be integrable. Let

$$f_{+}(x) = \begin{cases} f(x) \text{ if } f(x) \ge 0\\ 0 \text{ if } f(x) < 0 \end{cases}$$

Prove that f_+ is also integrable on A.

- 2. Mark True or False. If true, give a proof. If false, give a counterexample.
 - (a) Let $S \subset \mathbb{R}^n$. If bd(S) is rectifiable then S is rectifiable.
 - (b) Let $A, B \subset \mathbb{R}^n$. Then $bd(A \cap B) = bd(A) \cap bd(B)$;
 - (c) Let $A \subset \mathbb{R}^n$. Then int(intA) = int(A)
 - (d) Let $f: \mathbb{R}^n \to \mathbb{R}^n$ be continuous. If $A \subset \mathbb{R}^n$ is open then f(A) is open.
- 3. Let $f: \mathbb{R}^2 \to \mathbb{R}$ be defined by

$$f(x,y) = \begin{cases} 0 \text{ if } (x,y) = (0,0) \\ \frac{2x^3 + xy^2}{x^2 + y^2} \text{ if } (x,y) \neq (0,0) \end{cases}$$

- (a) Show that the partial derivatives $D_1 f(0,0), D_2 f(0,0)$ exist and compute them.
- (b) Is f differentiable at (0,0)? If yes, find $df_{(0,0)}$. If no, explain why not.

Hint: use part a).

- 4. Let $F(x,y) = \int_x^y \sqrt{e^{tx} + 3y} dt$. Let c = F(0,1). Show that near (0,1) the level set F(x,y) = c can be written as y = g(x) for some differentiable function g and compute g'(0).
- 5. Let η be an alternating k-tensor on a vector space V. Let $v_1, \ldots v_k \in V$ be linearly dependent. Show that $\eta(v_1, \ldots, v_k) = 0$.
- 6. Let $M^3 = \{(x, y, z) \in \mathbb{R}^3 | \text{ such that } 1 \leq x^2 + y^2 + z^2 \leq 4\}$ with the orientation induced from \mathbb{R}^3 .

Let $p = (\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}})$. Find a positive basis of $T_p \partial M$ with respect to the orientation of ∂M induced from M. 7. Let (X, d) be a metric space.

- (a) Let $p \in X$ be any point. Prove that $\{p\}$ is a closed subset of X.
- (b) Let $C \subset X$ be compact. Prove that C is closed. You are not allowed to use any theorems about compact sets in the proof.
- 8. Let $U = \{(x, y) \in \mathbb{R}^2 | x^2 + y^2 > 1\}$. Let $f(x, y) = \frac{y}{x^2 + y^2}$. Determine if $\int_U^{ext} f$ exists and if it does compute it. 9. Let $f \colon \mathbb{R}^2 \to \mathbb{R}^2$ be given by f(s, t) = (st, s + 2t) and
- 9. Let $f: \mathbb{R}^2 \to \mathbb{R}^2$ be given by f(s,t) = (st, s+2t) and let $\omega = \sin x dy$. Compute $f^*(d\omega)$ and $d(f^*\omega)$ and verify that they are equal.
- 10. Let a, b > 0 and Let $M \subset \mathbb{R}^2$ be the ellipse $\{\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\}$ with the orientation induced by the standard orientation on $\{\frac{x^2}{a^2} + \frac{y^2}{b^2} \le 1\}$.

Find $\int_M (\cos x)y dx + (x + \sin(x))dy$.