MAT 257Y

Practice Final 2

1 . Let $A \subset \mathbb{R}^{n}$ be a rectangle. Let $f: A \rightarrow \mathbb{R}$ be integrable. Let

$$
f_{+}(x)=\left\{\begin{array}{l}
f(x) \text { if } f(x) \geq 0 \\
0 \text { if } f(x)<0
\end{array}\right.
$$

Prove that f_{+}is also integrable on A.
2. Mark True or False. If true, give a proof. If false, give a counterexample.
(a) Let $S \subset \mathbb{R}^{n}$. If $b d(S)$ is rectifiable then S is rectifiable.
(b) Let $A, B \subset \mathbb{R}^{n}$. Then $b d(A \cap B)=b d(A) \cap b d(B)$;
(c) Let $A \subset \mathbb{R}^{n}$. Then $\operatorname{int}(\operatorname{int} A)=\operatorname{int}(A)$
(d) Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be continuous. If $A \subset \mathbb{R}^{n}$ is open then $f(A)$ is open.
3. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be defined by

$$
f(x, y)=\left\{\begin{array}{l}
0 \text { if }(x, y)=(0,0) \\
\frac{2 x^{3}+x y^{2}}{x^{2}+y^{2}} \text { if }(x, y) \neq(0,0)
\end{array}\right.
$$

(a) Show that the partial derivatives $D_{1} f(0,0), D_{2} f(0,0)$ exist and compute them.
(b) Is f differentiable at $(0,0)$? If yes, find $d f_{(0,0)}$. If no, explain why not.
Hint: use part a).
4. Let $F(x, y)=\int_{x}^{y} \sqrt{e^{t x}+3 y} d t$. Let $c=F(0,1)$.

Show that near $(0,1)$ the level set $F(x, y)=c$ can be written as $y=g(x)$ for some differentiable function g and compute $g^{\prime}(0)$.
5. Let η be an alternating k-tensor on a vector space V. Let $v_{1}, \ldots v_{k} \in V$ be linearly dependent.
Show that $\eta\left(v_{1}, \ldots, v_{k}\right)=0$.
6. Let $M^{3}=\left\{(x, y, z) \in \mathbb{R}^{3} \mid\right.$ such that $\left.1 \leq x^{2}+y^{2}+z^{2} \leq 4\right\}$ with the orientation induced from \mathbb{R}^{3}.

Let $p=\left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right)$. Find a positive basis of $T_{p} \partial M$ with respect to the orientation of ∂M induced from M. 7 . Let (X, d) be a metric space.
(a) Let $p \in X$ be any point. Prove that $\{p\}$ is a closed subset of X.
(b) Let $C \subset X$ be compact. Prove that C is closed. You are not allowed to use any theorems about compact sets in the proof.
8. Let $U=\left\{(x, y) \in \mathbb{R}^{2} \mid x^{2}+y^{2}>1\right\}$. Let $f(x, y)=\frac{y}{x^{2}+y^{2}}$.

Determine if $\int_{U}^{e x t} f$ exists and if it does compute it.
9 . Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be given by $f(s, t)=(s t, s+2 t)$ and let $\omega=\sin x d y$. Compute $f^{*}(d \omega)$ and $d\left(f^{*} \omega\right)$ and verify that they are equal.
10. Let $a, b>0$ and Let $M \subset \mathbb{R}^{2}$ be the ellipse $\left\{\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1\right\}$ with the orientation induced by the standard orientation on $\left\{\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}} \leq 1\right\}$.
Find $\int_{M}(\cos x) y d x+(x+\sin (x)) d y$.

