MAT 257Y Solutions to Practice Final 1

(1) Let $A \subset \mathbb{R}^n$ be a rectangle and let $f \colon A \to \mathbb{R}$ be bounded. Let P_1, P_2 be two partitions of A. Prove that $L(f, P_1) \leq U(f, P_2)$.

Solution

The statement is obvious if $P_1 = P_2$. In general, let P' be a common refinement of P_1 and P_2 . Then $L(f, P_1) \leq L(f, P')$. Indeed, for any rectangle Q' of P' contained in a rectangle Q of P_1 we have that $m(f, Q) \leq m(f, Q')$. therefore

$$L(f, P') = \sum_{Q' \in P'} m(f, Q') \operatorname{vol} Q' = \sum_{Q \in P} \sum_{Q' \subset Q} m(f, Q') \operatorname{vol} Q' \ge$$

$$\sum_{Q \in P} \sum_{Q' \subset Q} m(f, Q) \operatorname{vol} Q' = \sum_{Q \in P} m(f, Q) \sum_{Q' \subset Q} \operatorname{vol} Q' =$$

$$\sum_{Q \in P} m(f, Q) \operatorname{vol} Q = L(f, P_1)$$

Thus $L(f, P_1) \leq L(f, P')$ and similarly $U(f, P') \leq U(f, P_2)$. This finally gives

$$L(f, P_1) \le L(f, P') \le U(f, P') \le U(f, P_2)$$

(2) Let $T: R^{2n} = R^n \times R^n \to R$ be a 2-tensor on R^n . Show that T is differentiable at (0,0) and compute dT(0,0).

Solution

Let $x = (x_1, ... x_n)$ be the coordinates on the first copy of R^n and $y = (y_1, ..., y_n)$ on the second. Then by multilinearity we have that $T(x, y) = \sum_{ij} T_{ij} x_i y_j$. This function is a polynomial and hence is differentiable. It is also obvious to check that its partial derivatives at (0,0) are all zero. therefore dT(0,0) = 0.

(3) Let $\omega = \frac{xdy \wedge dz + ydz \wedge dx + zdx \wedge dy}{(x^2 + y^2 + z^2)^{3/2}}$ be a 2-form on $R^3 \setminus (0, 0, 0)$. Verify that ω is closed.

Hint: One way to simplify the computation is to write $\omega = f \cdot \tilde{\omega}$ where $f = \frac{1}{(x^2 + u^2 + z^2)^{3/2}}$ and $\tilde{\omega} =$ $xdy \wedge dz + ydz \wedge dx + zdx$

Solution

We have $d\omega = df \wedge \tilde{\omega} + (-1)^0 f d\tilde{\omega}$

$$df \wedge \tilde{\omega} = -\frac{3}{2} \frac{1}{(x^2 + y^2 + z^2)^{5/2}} (2xdx + 2ydy + 2zdz) \wedge (xdy \wedge dz + ydz \wedge dx + zdx)$$

$$= -\frac{3(x^2 + y^2 + z^2)dx \wedge dy \wedge dz}{(x^2 + y^2 + z^2)^{5/2}} = -\frac{3dx \wedge dy \wedge dz}{(x^2 + y^2 + z^2)^{3/2}}$$

$$fd\tilde{\omega} = \frac{1}{(x^2 + y^2 + z^2)^{3/2}} \cdot 3dx \wedge dy \wedge dz = \frac{3dx \wedge dy \wedge dz}{(x^2 + y^2 + z^2)^{3/2}}$$

Therefore $d\omega = df \wedge \tilde{\omega} + (-1)^0 f d\tilde{\omega} = 0$.

(4) Let $f: \mathbb{R}^2 \to \mathbb{R}^2$ be given by $f(x,y) = (e^{2y}, 2x + y)$ and let $\omega = x^2 y dx + y dy$.

Compute $f^*(d\omega)$ and $d(f^*(\omega))$ and verify that they are equal.

Solution

 $d\omega = (2xydx + x^2dy) \wedge dx + dy \wedge dy = -x^2dx \wedge dy.$ $f^*(d\omega) = -(e^{2y})^2 de^{2y} \wedge (2dx + dy) = -2e^{6y} dy \wedge (2dx + dy) =$ dy) = $4e^{6y}dx \wedge dy$.

On the other hand, $f^*(\omega) = (e^{2y})^2(2x+y)de^{2y} +$ $(2x+y)(2dx+dy) = 2e^{6y}(2x+y)dy + (2x+y)(2dx+y)($ dy).

Finally, $d(f^*(\omega)) = d(2e^{6y}(2x + y)) \wedge dy + (2dx + y)$ $(dy) \wedge (2dx + dy) = (12e^{6y}(2x+y)dy + 2e^{6y}(2dx+dy) \wedge (2dx+dy) + 2e^{6y}(2dx+dy) + 2e^{6y}$ $dy + 0 = 4e^{6y}dx \wedge dy.$

(5) Determine if $\int_{0 < x^2 + y^2 < 1}^{ext} \ln(x^2 + y^2)$ exists and if it does compute it.

Solution

Let
$$U = 0 < x^2 + y^2 < 1 \setminus \{(0,1) \times 0\}$$
. then $\int_{0 < x^2 + y^2 < 1}^{ext} \ln(x^2 + y^2)$ exists iff $\int_{U}^{ext} \ln(x^2 + y^2)$ exists and if they both exist they are equal. For the second integral make a polar change of variables $x = r \cos \theta, y = r \sin \theta$ where $0 < r < 1, 0 < \theta < 2\pi$. Then $\int_{U}^{ext} \ln(x^2 + y^2) = \int_{0}^{2\pi} (\int_{0}^{1} r \ln r^2 dr) d\theta = 4\pi \int_{0}^{1} r \ln r dr = 4\pi \int_{0}^{1} \ln r d(r^2/2) = 4\pi (\frac{r^2 \ln r}{2}|_{0}^{1} - \int_{0}^{1} \frac{r^2}{2} d \ln r) = 4\pi (0 - \int_{0}^{1} r/2 dr) = -4\pi r^3/6|_{0}^{1} = -2\pi/3$. Here we used the fact that $\lim_{r \to 0+} r^2 \ln r = 0$. Thus $\int_{0 < x^2 + y^2 < 1}^{ext} \ln(x^2 + y^2) = -2\pi/3$

(6) Let U, V be open in \mathbb{R}^n . Let $f: \mathbb{R}^n \to \mathbb{R}$ be a continuous nonnegative function such that $\int_U^{ext} f$ and $\int_V^{ext} f$ exist.

Prove that $\int_{U \cup V}^{ext} f$ exists.

Hint: use compact exhaustions of U and V to construct a compact exhaustion of $U \cup V$.

Solution

let K_i be a compact exhaustion by measurable sets of U and C_i be a compact exhaustion by measurable sets of V. then we have that $\int_{K_i} f$ is increasing and $\lim_{i\to\infty} \int_{K_i} f = \int_U^{ext} f$. Similarly, $\lim_{i\to\infty} \int_{C_i} f = \int_V^{ext} f$.

Then it's easy to see that $K_i \cup C_i$ is a compact exhaustion by measurable sets of $U \cup V$. Since $f \geq 0$ we have that $\int_{C_i \cup K_i} f = \int_{C_i} f + \int_{K_i} f - \int_{C_i \cap K_i} f \leq \int_{C_i} f + \int_{K_i} f \leq \int_U^{ext} f + \int_V^{ext} f$. Therefore $\lim_{i \to \infty} \int_{K_i \cup C_i} f$ exists and hence so does $\int_{U \cup V}^{ext} f$.

(7) Let $F(x) = \int_{e^x}^{x^2} f(tx)dt$ where $f: R \to R$ is C^1 .

Show that F(x) is C^1 and find the formula for F'(x).

Solution

Let $G(x, a, b) = \int_a^b f(tx)dt$. Then G is C^1 by a theorem from class and. $\frac{\partial G}{\partial x}(x, a, b) = \int_a^b \frac{d}{dx} f(tx)dt = \int_a^b t f'(tx)dt$. Also, $\frac{\partial G}{\partial b}(x, a, b) = f(bx)$ and $\frac{\partial G}{\partial a}(x, a, b) = -f(ax)$.

Then $F(x) = G(x, e^x, x^2)$ is C^1 by the chain rule and $F'(x) = \frac{\partial G}{\partial x}(x, e^x, x^2) + \frac{\partial G}{\partial a}(x, e^x, x^2) \cdot (e^x)' + \frac{\partial G}{\partial b}(x, e^x, x^2) \cdot (x^2)' = \int_{e^x}^{x^2} t f'(tx) dt - f(e^x x) e^x + f(x^3) 2x.$ (8) Let $x(t_1, t_2) = t_1 \cos t_2, y(t_1, t_2) = t_1^2 + e^{t_1 t_2}$. Let

(8) Let $x(t_1, t_2) = t_1 \cos t_2, y(t_1, t_2) = t_1^2 + e^{t_1 t_2}$. Let f(x, y) be a differentiable function $f: R^2 \to R$. Let $g(t_1, t_2) = f(x(t_1, t_2), y(t_1, t_2))$. Express $\frac{\partial g}{\partial t_1}(1, 0)$ and $\frac{\partial g}{\partial t_2}(1, 0)$ in terms of partial derivatives of f.

Solution

By the chain rule

$$\frac{\partial g}{\partial t_1}(t_1, t_2) = \frac{\partial f}{\partial x}(x(t), y(t)) \frac{\partial x}{\partial t_1} + \frac{\partial f}{\partial y}(x(t), y(t)) \frac{\partial y}{\partial t_1} = \frac{\partial f}{\partial x}(t_1 \cos t_2, t_1^2 + e^{t_1 t_2}) \cos t_2 + \frac{\partial f}{\partial y}(t_1 \cos t_2, t_1^2 + e^{t_1 t_2})(2t_1 + t_2 e^{t_1 t_2}).$$

Similarly, $\frac{\partial g}{\partial t_2}(t_1, t_2) = \frac{\partial f}{\partial x}(t_1 \cos t_2, t_1^2 + e^{t_1 t_2})(-t_1 \sin t_2) + \frac{\partial f}{\partial y}(t_1 \cos t_2, t_1^2 + e^{t_1 t_2})(t_1 e^{t_1 t_2}).$

(9) Mark true or false. Justify your answer.

Let A, B be any subsets of \mathbb{R}^n .

- (a) $bd(A) \subset Lim(A)$
- (b) $Lim(A) \subset A$
- (c) $bd(A \cap B) \subset bd(A) \cap bd(B)$.

Solution

- (a) **False.** Example $A = \{p\}$. Then $bdA = \{p\}$ and $Lim(A) = \emptyset$.
- (b) **False.** Example $A = (0,1) \subset R$. Then Lim(A) = [0,1] is not contained in A.

- (c) **False.** Example A = [0,2], B = [1,3]. Then $A \cap B = [1,2]$ and $bd(A \cap B) = \{1,2\}$. On the other hand, $bd(A) \cap bd(B) = \emptyset$.
- (10) let $M^2 \subset R^3$ be the torus of revolution obtained by rotating the circle $(x-2)^2 + z^2 = 1$ in the xzplane around the yz axis. Consider the orientation on M induced by the outward normal field N where N(3,0,0) = (1,0,0).

Find $\int_M x dy \wedge dz$

Solution

Let V be the solid obtained by rotating the disk $U=(x-2)^2+z^2\leq 1$ in the xz plane around the yz axis. then $M=\partial V$ and by Stokes' formula $\int_M xdy\wedge dz=\int_V d(xdy\wedge dz)=\int_V dx\wedge dy\wedge dz=\mathrm{vol}V$. Recall that by a homework problem this is equal to $2\pi\int_U x$. Using polar coordinates change of variables $x=2+r\cos\theta,y=r\sin\theta$ we compute

 $\int_{U} x = \int_{0}^{2\pi} \int_{0}^{1} (2+r\cos\theta) r dr d\theta = \int_{0}^{2\pi} \int_{0}^{1} (2r+r^{2}\cos\theta) dr d\theta = 2\pi.$ Therefore $\int_{M} x dy \wedge dz = 4\pi^{2}.$

(11) Let $M \subset \mathbb{R}^n$ be an oriented manifold.

Prove that $vol(M) = \int_M dV$ is positive.

Solution

Let U_i be a covering of M by orientation preserving coordinate patches $f_i \colon W_i \to M$ and let ϕ_i be the partition of unity subordinate to this covering. Note that $0 \le \phi_i \le 1$. Then $\int_M dV = \sum_i \int_M \phi_i dV = \sum_i \int_{W_i} f_i^*(\phi_i dV) = \sum_i \int_{W_i} (\phi_i \circ f_i) f_i^*(dV)$. Note that $\phi_i \circ f_i(x) \ge 0$ for any $x \in W_i$ and is positive at some point of W_i . We also have that $f_i^*(dV) = u(x) dx^1 \wedge \ldots \wedge dx^k$ where $u(x) = dV(f_{i*}e_1, \ldots, f_{i*}e_k) > 0$ since f_i is orientation preserving. Altogether the above means that $\int_{W_i} (\phi_i \circ f_i) f_i^*(dV) = \int_{W_i} g_i(x)$ where g_i is

a continuos nonnegative function with compact support which is positive somewhere. Therefore $\int_{W_i} g_i(x) > 0$ and hence $\int_M dV = \sum_i \int_M \phi_i dV > 0$.