- (1) Let $A \subset \mathbb{R}^n$ be a rectangle and let $f: A \to \mathbb{R}$ be bounded. Let P_1, P_2 be two partitions of A. Prove that $L(f, P_1) \leq U(f, P_2)$.
- (2) Let $T: \mathbb{R}^{2n} = \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ be a 2-tensor on \mathbb{R}^n . Show that T is differentiable at (0,0) and compute df(0,0).
- (3) Let $\omega = \frac{xdy \wedge dz + ydz \wedge dx + zdx \wedge dy}{(x^2 + y^2 + z^2)^{3/2}}$ be a 2-form on $\mathbb{R}^3 \setminus (0, 0, 0)$. Verify that ω is closed.

Hint: One way to simplify the computation is to write $\omega = f \cdot \tilde{\omega}$ where $f = \frac{1}{(x^2+y^2+z^2)^{3/2}}$ and $\tilde{\omega} = xdy \wedge dz + ydz \wedge dx + zdx$.

(4) Let $f: \mathbb{R}^2 \to \mathbb{R}^2$ be given by $f(x, y) = (e^{2y}, 2x + y))$ and let $\omega = x^2 y dx + y dy$. Compute $f^*(d\omega)$ and $d(f^*(\omega))$ and verify that they

are equal. $(a\omega)$ and $a(f(\omega))$ and verify that they

- (5) Determine if $\int_{0 < x^2 + y^2 < 1}^{ext} \ln(x^2 + y^2)$ exists and if it does compute it.
- (6) Let U, V be open in \mathbb{R}^n . Let $f: \mathbb{R}^n \to \mathbb{R}$ be a continuous nonnegative function such that $\int_U^{ext} f$ and $\int_V^{ext} f$ exist.

Prove that $\int_{U\cup V}^{ext} f$ exists.

Hint: use compact exhaustions of U and V to construct a compact exhaustion of $U \cup V$.

- (7) Let $F(x) = \int_{e^x}^{x^2} f(tx) dt$ where $f \colon \mathbb{R} \to \mathbb{R}$ is C^1 . Show that F(x) is C^1 and find the formula for F'(x).
- (8) Let $x(t_1, t_2) = t_1 \cos t_2, y(t_1, t_2) = t_1^2 + e^{t_1 t_2}$. Let f(x, y) be a differentiable function $f \colon \mathbb{R}^2 \to \mathbb{R}$. Let $g(t_1, t_2) = f(x(t_1, t_2), y(t_1, t_2))$. Express $\frac{\partial g}{\partial t_1}(1, 0)$ and $\frac{\partial g}{\partial t_2}(1, 0)$ in terms of partial derivatives of f.
- (9) Mark true or false. Justify your answer. Let A, B be any subsets of \mathbb{R}^n . Then

- (a) $bd(A) \subset Lim(A)$
- (b) $Lim(A) \subset A$
- (c) $bd(A \cap B) \subset bd(A) \cap bd(B)$.
- (10) let $M^2 \subset \mathbb{R}^3$ be the torus of revolution obtained by rotating the circle $(x-2)^2 + z^2 = 1$ in the xz plane around the yz axis. Consider the orientation on Minduced by the normal field N where N(3,0,0) =(1,0,0).

Find $\int_M x dy \wedge dz$.

(11) Let $M \subset \mathbb{R}^n$ be an oriented manifold.

Prove that $\operatorname{vol}(M) = \int_M dV$ is positive.