MAT 257Y Solutions to Practice Term Test 3

(1) Let $v_1, \ldots, v_k \in \mathbb{R}^n$ where $n \geq k$. Prove that $\operatorname{vol}_k P(v_1, \ldots, v_k) = 0$ if and only if v_1, \ldots, v_k are linearly dependent.

Solution

Let A be the $n \times k$ matrix with columns v_1, \ldots, v_k . Then by definition, $\operatorname{vol}_k P(v_1, \ldots, v_k) = \sqrt{\det A^t \cdot A}$. If v_1, \ldots, v_k are linearly dependent then $\operatorname{rank}(A) < k$ and hence $\operatorname{rank}(A^t \cdot A) \leq \operatorname{rank} A < k$ which means that $\det A^t \cdot A = 0$ and hence $\operatorname{vol}_k P(v_1, \ldots, v_k) = 0$.

Conversely, if $\operatorname{vol}_k P(v_1, \dots, v_k) = 0$ then $\det A^t \cdot A = 0$.

Therefore there exists $x = (x_1, ..., v_k) \in \mathbb{R}^k$ such that $x \neq 0$ and $A^t \cdot Ax = 0$. Hence, $0 = \langle A^t Ax, x \rangle = \langle Ax, Ax \rangle = ||Ax||^2$. Therefore Ax = 0. But $Ax = x_1v_1 + ... + x_kv_k$ and hence $v_1, ..., v_k$ are linearly dependent.

(2) Let T be a k-tensor on \mathbb{R}^n . Prove that T is C^{∞} as a map $\mathbb{R}^{nk} \to \mathbb{R}$.

Solution

Let e_1, \ldots, e_n be the standard basis of \mathbb{R}^n . Let $v_1, \ldots, v_k \in \mathbb{R}^n$. we can write them in coordinates $v_i = \sum_j x_i^j e_j$

Then $T(v_1, ..., v_k) = T(\sum_{j_1} x_1^{j_1} e_{j_1}, ..., \sum_{j_k} x_k^{j_k} e_{j_k}) = \sum_{j_1,...,j_k} x_1^{j_1} \cdot ... \cdot x_k^{j_k} T(e_{j_1}, ..., e_{j_k})$. This is a polynomial in $x_j^{i_1}$'s and hence is C^{∞} .

(3) Let M be a union of x and y axis in \mathbb{R}^2 . Prove that M is not a C^1 manifold.

Solution

Suppose M is a C^1 manifold. Then there exists an open neighborhood $U \subset \mathbb{R}^2$ of the origin and a C^1 map $f \colon U \to \mathbb{R}$ such that c = f(0,0) is a regular value and $M \cap U = f^{-1}(c)$. But then f(x,0) = 0 on U and hence $\frac{\partial f}{\partial x}(0,0) = 0$. Similarly, f(0,y) = 0 on

U and hence $\frac{\partial f}{\partial u}(0,0) = 0$. Hence $df_{(0,0)} = 0$ which means that c = f(0,0) is not a regular value. This is a contradiction and hence M is not a manifold.

(4) Prove that $S_+^2 = \{(x, y, z) \in \mathbb{R}^3 | \text{ such that } x^2 + y^2 + y^3 \}$ $z^2 = 1, z \ge 0$ is a manifold with boundary.

Solution

Consider the following parametrization $f(\theta, \phi) =$ $(\cos \phi \cos \theta, \cos \phi \sin \theta, \sin \phi)$ where $(\theta, \phi) \in U_a = \{a < \phi \}$ $\theta < a + 2\pi, 0 \le \phi < \pi/2$ for a fixed $a \in \mathbb{R}$. Note that $U_a \subset H^2$ is open in H^2 .

Also, ϕ is C^{∞} , 1-1 with continuous inverse, and $[df] = \left[\frac{\partial f}{\partial \theta}, \frac{\partial f}{\partial \phi}\right]$ has rank=2 everywhere. Indeed, we

 $\frac{\partial f}{\partial \theta} = (-\cos\phi\sin\theta, \cos\phi\cos\theta, 0) \text{ and } \frac{\partial f}{\partial \phi} = (-\sin\phi\cos\theta, -\sin\phi\sin\theta, \cos\phi)$

We compute $\frac{\partial f}{\partial \theta} \times \frac{\partial f}{\partial \phi} = (\cos^2 \phi \cos \theta, \cos^2 \phi \sin \theta, \cos \phi \sin \phi)$ and hence $\left|\frac{\partial f}{\partial \theta} \times \frac{\partial f}{\partial \phi}\right|^2 = \cos^4 \phi \cos^2 \theta + \cos^4 \phi \sin^2 \theta +$ $\cos^2\phi\sin^2\phi = \cos^4\phi + \cos^2\phi\sin^2\phi = \cos^2\phi \neq 0$ for $0 \le \phi < \pi/2$. This means that $\frac{\partial f}{\partial \theta}$ and $\frac{\partial f}{\partial \phi}$ are linearly independent and hence [df] has rank=2. Therefore f satisfies the definition of a paramterization in a definition of a manifold with boundary. varying a we can cover all of S^2_+ by images of such parametrizations with the exception of the north pole p = (0, 0, 1). However, near this point S_+^2 is given by the graph of a C^{∞} function $z = \sqrt{1 - x^2 - y^2}$ and therefore it admits a parametrization near p also.

(5) Let $c: [0,1] \to (\mathbb{R}^n)^n$ be continuous. Suppose that $c^1(t), \ldots, c^n(t)$ is a basis of \mathbb{R}^n for any t.

Prove that $(c^1(0), \ldots, c^n(0))$ and $(c^1(1), \ldots, c^n(1))$ have the same orientation.

Solution

Let $f(t) = \det[c^1(t), \ldots, c^n(t)]$. Then f(t) is continuous and never zero. therefore f(t) > 0 for all t or f(t) < 0 for all t by the intermediate value theorem. In either case f(1)/f(0) > 0. Let A be the transition matrix from $(c^1(0), \ldots, c^n(0))$ to $(c^1(1), \ldots, c^n(1))$. then $A = [c^1(0), \ldots, c^n(0)]^{-1}[c^1(1), \ldots, c^n(1)]$. hence $\det(A) = f(1)/f(0) > 0$ which means that $(c^1(0), \ldots, c^n(0))$ and $(c^1(1), \ldots, c^n(1))$ have the same orientation.

(6) Let C be the triangle in \mathbb{R}^2 with vertices (0,0), (1,2), (-1,3)Compute $\int_C x + y$.

Solution

Let's make a change of variable

$$\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 1 & -1 \\ 2 & 3 \end{bmatrix} \cdot \begin{bmatrix} u \\ v \end{bmatrix}$$

or x = u - v, y = 2u + 3v.

We have that $\det \begin{bmatrix} 1 & -1 \\ 2 & 3 \end{bmatrix} = 5$. Therefore,

 $\int_C x + y = \int_U 5((u - v) + (2u + 3v)) \text{ where } U = \{(u, v) | u > 0, v > 0, u + v < 1\}.$ Therefore using Fubini's theorem we compute

$$\int_{U} 5((u-v) + (2u+3v)) = \int_{0}^{1} \int_{0}^{1-u} 5(3u+2v)dvdu =$$

$$= 5 \int_{0}^{1} (3uv + v^{2})|_{0}^{1-u}du = 5 \int_{0}^{1} 3u(1-u) + (1-u)^{2}du =$$

$$= 5 \int_{0}^{1} -2u^{2} + u + 1du = 5(-2/3u^{3} + u^{2}/2 + u)|_{0}^{1} = 25/6$$

(7) Let e_1, e_2 be a basis of a vector space V of dimension 2. Let $T \in \mathcal{L}^2(V)$ be given by $e_1^* \otimes e_1^* + e_2^* \otimes e_2^*$. Prove that T can not be written as $S \otimes U$ with $S, U \in \mathcal{L}^1(V)$.

Solution

Suppose $e_1^* \otimes e_1^* + e_2^* \otimes e_2^* = S \otimes U$ for some $S = ae_1^* + be_2^*$, $U = ce_1^* + de_2^*$. Then $S \otimes U = (ae_1^* + be_2^*) \otimes (ce_1^* + de_2^*) = ace_1^* \otimes e_1^* + bce_2^* \otimes e_1^* + ade_2^* \otimes e_1^* + bde_2^* \otimes e_2^* = e_1^* \otimes e_1^* + e_2^* \otimes e_2^*$. This means that ac = 1, bc = 0, ad = 0, bd = 1. It's easy to see that this system has no solutions. for example, $abcd = (bc)(ad) = 0 \cdot 0 = 0$ and on the other hand, $abcd = (ac)(bd) = 1 \cdot 1 = 1$. This is a contradiction.

(8) Let $U \subset \mathbb{R}^n$ be open. Let $f, g \colon U \to \mathbb{R}$ be continuous and $|f| \leq g$. Suppose $\int_U^{ext} g$ exists.

Prove that $\int_{U}^{ext} f$ also exists.

Solution

Let ϕ_i be a partition of unity on U. Then by definition of extended integral, $\sum_{i=1}^{\infty} \int_{U} |g| \phi_i < \infty$

Therefore

 $\sum_{i=1}^{\infty} \int_{U} |f| \phi_{i} \leq \sum_{i=1}^{\infty} \int_{U} |g| \phi_{i} < \infty \text{ and hence } \int_{U}^{ext} f$ exists by the definition.