MAT 257Y Solutions to Practice Final

(1) Let $A \subset R^{n}$ be a rectangle and let $f: A \rightarrow R$ be bounded. Let P_{1}, P_{2} be two partitions of A. Prove that $L\left(f, P_{1}\right) \leq U\left(f, P_{2}\right)$.

Solution

The statement is obvious if $P_{1}=P_{2}$. In general, let P^{\prime} be a common refinement of P_{1} and P_{2}. Then $L\left(f, P_{1}\right) \leq L\left(f, P^{\prime}\right)$. Indeed, for any rectangle Q^{\prime} of P^{\prime} contained in a rectangle Q of P_{1} we have that $m(f, Q) \leq m\left(f, Q^{\prime}\right)$. therefore

$$
\begin{gathered}
L\left(f, P^{\prime}\right)=\sum_{Q^{\prime} \in P^{\prime}} m\left(f, Q^{\prime}\right) \operatorname{vol} Q^{\prime}=\sum_{Q \in P} \sum_{Q^{\prime} \subset Q} m\left(f, Q^{\prime}\right) \operatorname{vol} Q^{\prime} \geq \\
\sum_{Q \in P} \sum_{Q^{\prime} \subset Q} m(f, Q) \operatorname{vol} Q^{\prime}=\sum_{Q \in P} m(f, Q) \sum_{Q^{\prime} \subset Q} \operatorname{vol} Q^{\prime}= \\
\sum_{Q \in P} m(f, Q) \operatorname{vol} Q=L\left(f, P_{1}\right)
\end{gathered}
$$

Thus $L\left(f, P_{1}\right) \leq L\left(f, P^{\prime}\right)$ and similarly $U\left(f, P^{\prime}\right) \leq$ $U\left(f, P_{2}\right)$. This finally gives

$$
L\left(f, P_{1}\right) \leq L\left(f, P^{\prime}\right) \leq U\left(f, P^{\prime}\right) \leq U\left(f, P_{2}\right)
$$

(2) let $M=\left\{(x, y) \in R^{2} \mid\right.$ such that $x^{2}+y^{2}=1$. let $f: M \rightarrow R$ be given by $f(x, y)=x^{2}+y$. Find the minimum and the maximum of f on M.

Solution

Let $g(x, y)=x^{2}+y^{2}$. By the Lagrange multiplier method extremum points of f on M can only occur when $\nabla f=\lambda \nabla g$. We have $\nabla g(x, y)=(2 x, 2 y)$ and
$\nabla f(x, y)=(2 x, 1)$. We need to solve

$$
\left\{\begin{array}{l}
2 x=\lambda 2 x \\
2 y=\lambda \\
x^{2}+y^{2}=1
\end{array}\right.
$$

If $x \neq 0$ the first equation give $\lambda=1$. hence $y=$ $1 / 2$ and $x= \pm \frac{\sqrt{3}}{2}$.

If $x=0$ then $y= \pm 1$. Thus we have four possible points we need to test $(0,1),(0,-1),\left(\frac{\sqrt{3}}{2}, 1 / 2\right)$ and $\left(-\frac{\sqrt{3}}{2}, 1 / 2\right)$.

Computing f at these points we get $f(0,1)=1, f(0,-1)=$ $-1, f\left(\frac{\sqrt{3}}{2}, 1 / 2\right)=f\left(-\frac{\sqrt{3}}{2}, 1 / 2\right)=3 / 4+1 / 2=5 / 4$. Thus the maximum of f on M os $5 / 4$ and the minimum is -1 .
(3) Let $T: R^{2 n}=R^{n} \times R^{n} \rightarrow R$ be a 2 -tensor on R^{n}. Show that T is differentiable at $(0,0)$ and compute $d T(0,0)$.

Solution

Let $x=\left(x_{1}, \ldots x_{n}\right)$ be the coordinates on the first copy of R^{n} and $y=\left(y_{1}, \ldots, y_{n}\right)$ on the second. Then by multilinearity we have that $T(x, y)=\sum_{i j} T_{i j} x_{i} y_{j}$. This function is a polynomial and hence is differentiable. It is also obvious to check that its partial derivatives at $(0,0)$ are all zero. therefore $d T(0,0)=$ 0.
(4) Let $\omega=\frac{x d y \wedge d z+y d z \wedge d x+z d x \wedge d y}{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}}$ be a 2 -form on $R^{3} \backslash(0,0,0)$.

Verify that ω is closed.
Hint: One way to simplify the computation is to write $\omega=f \cdot \tilde{\omega}$ where $f=\frac{1}{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}}$ and $\tilde{\omega}=$ $x d y \wedge d z+y d z \wedge d x+z d x$.

Solution

We have $d \omega=d f \wedge \tilde{\omega}+(-1)^{0} f d \tilde{\omega}$

$$
\begin{aligned}
& d f \wedge \tilde{\omega}=-\frac{3}{2} \frac{1}{\left(x^{2}+y^{2}+z^{2}\right)^{5 / 2}}(2 x d x+2 y d y+2 z d z) \wedge(x d y \wedge d z+y d z \wedge d x+z d x) \\
& \quad=-\frac{3\left(x^{2}+y^{2}+z^{2}\right) d x \wedge d y \wedge d z}{\left(x^{2}+y^{2}+z^{2}\right)^{5 / 2}}=-\frac{3 d x \wedge d y \wedge d z}{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}} \\
& f d \tilde{\omega}=\frac{1}{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}} \cdot 3 d x \wedge d y \wedge d z=\frac{3 d x \wedge d y \wedge d z}{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}}
\end{aligned}
$$

Therefore $d \omega=d f \wedge \tilde{\omega}+(-1)^{0} f d \tilde{\omega}=0$.
(5) Let $f: R^{2} \rightarrow R^{2}$ be given by $f(x, y)=\left(e^{2 y}, 2 x+y\right)$ and let $\omega=x^{2} y d x+y d y$.
Compute $f^{*}(d \omega)$ and $d\left(f^{*}(\omega)\right)$ and verify that they are equal.

Solution

$d \omega=\left(2 x y d x+x^{2} d y\right) \wedge d x+d y \wedge d y=-x^{2} d x \wedge d y$.
$f^{*}(d \omega)=-\left(e^{2 y}\right)^{2} d e^{2 y} \wedge(2 d x+d y)=-e^{6 y} d y \wedge(2 d x+$ $d y)=2 e^{6 y} d x \wedge d y$.

On the other hand, $f^{*}(\omega)=\left(e^{2 y}\right)^{2}(2 x+y) d e^{2 y}+$ $(2 x+y)(2 d x+d y)=e^{6 y}(2 x+y) d y+(2 x+y) \wedge(2 d x+$ dy).

Finally, $d\left(f^{*}(\omega)\right)=d\left(e^{6 y}(2 x+y)\right) \wedge d y+(2 d x+d y) \wedge$ $(2 d x+d y)=\left(6 e^{6 y}(2 x+y) d y+e^{6 y}(2 d x+d y) \wedge d y+0=\right.$ $2 e^{6 y} d x \wedge d y$.
(6) Determine if $\int_{0<x^{2}+y^{2}<1}^{e x t} \ln \left(x^{2}+y^{2}\right)$ exists and if it does compute it.

Solution

Let $U=0<x^{2}+y^{2}<1 \backslash\{(0,1) \times 0\}$.
then $\int_{0<x^{2}+y^{2}<1}^{e x t} \ln \left(x^{2}+y^{2}\right)$ exists iff $\int_{U}^{e x t} \ln \left(x^{2}+y^{2}\right)$ exists and if they both exist they are equal. For the second integral make a polar change of variables $x=r \cos \theta, y=r \sin \theta$ where $0<r<1,0<\theta<$ 2π. Then $\int_{U}^{e x t} \ln \left(x^{2}+y^{2}\right)=\int_{0}^{2 \pi}\left(\int_{0}^{1} r \ln r^{2} d r\right) d \theta=$
$4 \pi \int_{0}^{1} r \ln r d r=4 \pi \int_{0}^{1} \ln r d\left(r^{2} / 2\right)=4 \pi\left(\left.\frac{r^{2} \ln r}{2}\right|_{0} ^{1}-\int_{0}^{1} \frac{r^{2}}{2} d \ln r\right)=$ $4 \pi\left(0-\int_{0}^{1} r / 2 d r\right)=-4 \pi r^{3} /\left.6\right|_{0} ^{1}=-2 \pi / 3$. Here we used the fact that $\lim _{r \rightarrow 0+} r^{2} \ln r=0$.

Thus $\int_{0<x^{2}+y^{2}<1}^{e x t} \ln \left(x^{2}+y^{2}\right)=-2 \pi / 3$
(7) Let U, V be open in R^{n}. Let $f: R^{n} \rightarrow R$ be a continuous nonnegative function such that $\int_{U}^{e x t} f$ and $\int_{V}^{e x t} f$ exist.

Prove that $\int_{U \cup V}^{e x t} f$ exists.
Hint: use compact exhaustions of U and V to construct a compact exhaustion of $U \cup V$.

Solution

let K_{i} be a compact exhaustion by measurable sets of U and C_{i} be a compact exhaustion by measurable sets of V. then we have that $\int_{K_{i}} f$ is increasing and $\lim _{i \rightarrow \infty} \int_{K_{i}} f=\int_{U}^{e x t} f$. Similarly, $\lim _{i \rightarrow \infty} \int_{C_{i}} f=$ $\int_{V}^{e x t} f$.

Then it's easy to see that $K_{i} \cup C_{i}$ is a compact exhaustion by measurable sets of $U \cup V$. Since $f \geq 0$ we have that $\int_{C_{i} \cup K_{i}} f=\int_{C_{i}} f+\int_{K_{i}} f-\int_{C_{i} \cap K_{i}} f \leq \int_{C_{i}} f+$ $\int_{K_{i}} f \leq \int_{U}^{e x t} f+\int_{V}^{e x t} f$. Therefore $\lim _{i \rightarrow \infty} \int_{K_{i} \cup C_{i}} f$ exists and hence so does $\int_{U \cup V}^{e x t} f$.
(8) Let $F(x)=\int_{e^{x}}^{x^{2}} f(t x) d t$ where $f: R \rightarrow R$ is C^{1}.

Show that $F(x)$ is C^{1} and find the formula for $F^{\prime}(x)$.

Solution

Let $G(x, a, b)=\int_{a}^{b} f(t x) d t$. Then G is C^{1} by a theorem from class and. $\frac{\partial G}{\partial x}(x, a, b)=\int_{a}^{b} \frac{d}{d x} f(t x) d t=$ $\int_{a}^{b} t f^{\prime}(t x) d t$. Also, $\frac{\partial G}{\partial b}(x, a, b)=f(b x)$ and $\frac{\partial G}{\partial a}(x, a, b)=$ $-f(a x)$.

Then $F(x)=G\left(x, e^{x}, x^{2}\right)$ is C^{1} by the chain rule and $F^{\prime}(x)=\frac{\partial G}{\partial x}\left(x, e^{x}, x^{2}\right)+\frac{\partial G}{\partial a}\left(x, e^{x}, x^{2}\right) \cdot\left(e^{x}\right)^{\prime}+\frac{\partial G}{\partial b}\left(x, e^{x}, x^{2}\right)$. $\left(x^{2}\right)^{\prime}=\int_{e^{x}}^{x^{2}} t f^{\prime}(t x) d t-f\left(e^{x} x\right) e^{x}+f\left(x^{3}\right) 2 x$.
(9) Prove that a compact set is closed.

Solution

We will show that if $C \subset R^{n}$ is compact then $U=$ $R^{n} \backslash C$ is open. let $p \in U$. let $U_{i}=\left\{x \in R^{n} \mid\right.$ such that $d(x, p)>1 / i\}$. then V_{i} is open and $\cup_{i} V_{i}=R^{n} \backslash\{p\}$ covers C. By compactness C is covered by finitely many V_{i} s and hence, $C \subset V_{j}$ for some j. This means that $B(p, 1 / j) \subset U$. since $p \in U$ is arbitrary, this means that U is open and C is closed.
(10) Let $x\left(t_{1}, t_{2}\right)=t_{1} \cos t_{2}, y\left(t_{1}, t_{2}\right)=t_{1}^{2}+e^{t_{1} t_{2}}$. Let $f(x, y)$ be a differentiable function $f: R^{2} \rightarrow R$. Let $g\left(t_{1}, t_{2}\right)=f\left(x\left(t_{1}, t_{2}\right), y\left(t_{1}, t_{2}\right)\right)$. Express $\frac{\partial g}{\partial t_{1}}(1,0)$ and $\frac{\partial g}{\partial t_{2}}(1,0)$ in terms of partial derivatives of f.

Solution

By the chain rule
$\frac{\partial g}{\partial t_{1}}\left(t_{1}, t_{2}\right)=\frac{\partial f}{\partial x}(x(t), y(t)) \frac{\partial x}{\partial t_{1}}+\frac{\partial f}{\partial y}(x(t), y(t)) \frac{\partial y}{\partial t_{1}}=$ $\frac{\partial f}{\partial x}\left(t_{1} \cos t_{2}, t_{1}^{2}+e^{t_{1} t_{2}}\right) \cos t_{2}+\frac{\partial f}{\partial y}\left(t_{1} \cos t_{2}, t_{1}^{2}+e^{t_{1} t_{2}}\right)\left(2 t_{1}+\right.$ $\left.t_{2} e^{t_{1} t_{2}}\right)$.
Similarly, $\frac{\partial g}{\partial t_{2}}\left(t_{1}, t_{2}\right)=\frac{\partial f}{\partial x}\left(t_{1} \cos t_{2}, t_{1}^{2}+e^{t_{1} t_{2}}\right)\left(-t_{1} \sin t_{2}\right)+$ $\frac{\partial f}{\partial y}\left(t_{1} \cos t_{2}, t_{1}^{2}+e^{t_{1} t_{2}}\right)\left(t_{1} e^{t_{1} t_{2}}\right)$.
(11) Mark true or false. Justify your answer.

Let A, B be any subsets of R^{n}.
(a) $\operatorname{br}(A) \subset \operatorname{Lim}(A)$
(b) $\operatorname{Lim}(A) \subset A$
(c) $b r(A \cap B) \subset b r(A) \cap b r(B)$.

Solution

(a) False. Example $A=\{p\}$. Then $b r A=\{p\}$ and $\operatorname{Lim}(A)=\emptyset$.
(b) False. Example $A=(0,1) \subset R$. Then $\operatorname{Lim}(A)=$ $[0,1]$ is not contained in A.
(c) False. Example $A=[0,2], B=[1,3]$. Then $A \cap B=[1,2]$ and $\operatorname{br}(A \cap B)=\{1,2\}$. On the other hand, $b r(A) \cap b r(B)=\emptyset$.
(12) Let M^{3} be a compact 3 -manifold with boundary in R^{3} and let n be the outward unit normal on ∂M. Let $F=\left(F_{1}, F_{2}, F_{3}\right)$ be a vector field on R^{3}. Prove that

$$
\int_{M} \operatorname{div} F=\int_{\partial M}\langle F, n\rangle
$$

Hint: Convert the integral over ∂M to an integral of a form in R^{3} and use Stokes' formula.

Solution

recall that $\operatorname{div} F=\frac{\partial F_{1}}{\partial x}+\frac{\partial F_{2}}{\partial y}+\frac{\partial F_{3}}{\partial z}$. Let $n=\left(n_{1}, n_{2}, n_{3}\right)$.
Let $\omega=F_{1} d y \wedge d z+F_{2} d z \wedge d x+F_{3} d x \wedge d y$.
then $\int_{\partial M}\langle F, n\rangle d A=\int_{\partial M} \omega$. Indeed, $\langle F, n\rangle=F_{1} n_{1}+$ $F_{2} n_{2}+F_{3} n_{3}$. Recall that $n_{1} d A=d y \wedge d z, n_{2} d A=$ $d z \wedge d z$ and $n_{3} d A=d x \wedge d y$. Therefore,

$$
\begin{aligned}
& \int_{\partial M}\langle F, n\rangle d A=\int_{\partial M}\left(F_{1} n_{1}+F_{2} n_{2}+F_{3} n_{3}\right) d A= \\
& \int_{\partial M} F_{1} d y \wedge d z+F_{2} d z \wedge d x+F_{3} d x \wedge d y=\int_{\partial M} \omega
\end{aligned}
$$

By Stokes' formula this is equal to $\int_{M} d \omega=\int_{M}\left(\frac{\partial F_{1}}{\partial x}+\right.$ $\left.\frac{\partial F_{2}}{\partial y}+\frac{\partial F_{3}}{\partial z}\right) d x \wedge d y \wedge d z=\int_{M} d i v F$.
(13) let $M^{2} \subset R^{3}$ be the torus of revolution obtained by rotating the circle $(x-2)^{2}+z^{2}=1$ in the $x z$ plane around the $y z$ axis. Consider the orientation on M induced by the outward normal field N where $N(3,0,0)=(1,0,0)$.
Find $\int_{M} x d y \wedge d z$

Solution

Let V be the solid obtained by rotating the disk $U=(x-2)^{2}+z^{2} \leq 1$ in the $x z$ plane around the $y z$ axis. then $M=\partial V$ and by Stokes' formula $\int_{M} x d y \wedge$ $d z=\int_{V} d(x d y \wedge d z)=\int_{V} d x \wedge d y \wedge d z=\operatorname{vol} V$. Recall that by a homework problem this is equal to $2 \pi \int_{U} x$. Using polar coordinates change of variables $x=2+$ $r \cos \theta, y=r \sin \theta$ we compute

$$
\int_{U} x=\int_{0}^{2 \pi} \int_{0}^{1}(2+r \cos \theta) r d r d \theta=\int_{0}^{2 \pi} \int_{0}^{1}\left(2 r+r^{2} \cos \theta\right) d r d \theta=
$$ 2π. Therefore $\int_{M} x d y \wedge d z=4 \pi^{2}$.

(14) Let $M \subset R^{n}$ be an oriented manifold.

Prove that $\operatorname{vol}(M)=\int_{M} d A$ is positive.

Solution

Let U_{i} be a covering of M by orientation preserving coordinate patches $f_{i}: W_{i} \rightarrow M$ and let ϕ_{i} be the partition of unity subordinate to this covering. Note that $0 \leq \phi_{i} \leq 1$. Then $\int_{M} d A=\sum_{i} \int_{M} \phi_{i} d A=$ $\sum_{i} \int_{W_{i}} f_{i}^{*}\left(\phi_{i} d A\right)=\sum_{i} \int_{W_{i}}\left(\phi_{i} \circ f_{i}\right) f_{i}^{*}(d A)$. Note that $\phi_{i} \circ f_{i}(x) \geq 0$ for any $x \in W_{i}$ and is positive at some point of W_{i}. We also have that $f_{i}^{*}(d A)=u(x) d x^{1} \wedge$ $\ldots \wedge d x^{k}$ where $u(x)=d A\left(f_{i *} e_{1}, \ldots, f_{i *} e_{k}\right)>0$ since f_{i} is orientation preserving. Altogether the above means that $\int_{W_{i}}\left(\phi_{i} \circ f_{i}\right) f_{i}^{*}(d A)=\int_{W_{i}} g_{i}(x)$ where g_{i} is a continuos nonnegative function with compact support which is positive somewhere. therefore $\int_{W_{i}} g_{i}(x)>$ 0 and hence $\int_{M} d A=\sum_{i} \int_{M} \phi_{i} d A>0$.

