
MAT 257Y Solutions to Practice Final

(1) Let A ⊂ Rn be a rectangle and let f : A → R be
bounded. Let P1, P2 be two partitions of A . Prove
that L(f, P1) ≤ U(f, P2).

Solution

The statement is obvious if P1 = P2. In general,
let P ′ be a common refinement of P1 and P2. Then
L(f, P1) ≤ L(f, P ′). Indeed, for any rectangle Q′ of
P ′ contained in a rectangle Q of P1 we have that
m(f,Q) ≤ m(f,Q′). therefore

L(f, P ′) =
∑
Q′∈P ′

m(f,Q′)volQ′ =
∑
Q∈P

∑
Q′⊂Q

m(f,Q′)volQ′ ≥

∑
Q∈P

∑
Q′⊂Q

m(f,Q)volQ′ =
∑
Q∈P

m(f,Q)
∑
Q′⊂Q

volQ′ =

∑
Q∈P

m(f,Q)volQ = L(f, P1)

Thus L(f, P1) ≤ L(f, P ′) and similarly U(f, P ′) ≤
U(f, P2). This finally gives

L(f, P1) ≤ L(f, P ′) ≤ U(f, P ′) ≤ U(f, P2)

(2) let M = {(x, y) ∈ R2| such that x2 + y2 = 1. let
f : M → R be given by f(x, y) = x2 + y. Find the
minimum and the maximum of f on M .

Solution

Let g(x, y) = x2 + y2. By the Lagrange multiplier
method extremum points of f on M can only occur
when ∇f = λ∇g. We have ∇g(x, y) = (2x, 2y) and
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∇f(x, y) = (2x, 1). We need to solve
2x = λ2x

2y = λ

x2 + y2 = 1

If x 6= 0 the first equation give λ = 1. hence y =

1/2 and x = ±
√

3
2 .

If x = 0 then y = ±1. Thus we have four possible

points we need to test (0, 1), (0,−1), (
√

3
2 , 1/2) and

(−
√

3
2 , 1/2).

Computing f at these points we get f(0, 1) = 1, f(0,−1) =

−1, f(
√

3
2 , 1/2) = f(−

√
3

2 , 1/2) = 3/4 + 1/2 = 5/4.
Thus the maximum of f on M os 5/4 and the mini-
mum is −1.

(3) Let T : R2n = Rn × Rn → R be a 2-tensor on Rn.
Show that T is differentiable at (0, 0) and compute
dT (0, 0).

Solution

Let x = (x1, . . . xn) be the coordinates on the first
copy of Rn and y = (y1, . . . , yn) on the second. Then
by multilinearity we have that T (x, y) =

∑
ij Tijxiyj.

This function is a polynomial and hence is differen-
tiable. It is also obvious to check that its partial
derivatives at (0, 0) are all zero. therefore dT (0, 0) =
0.

(4) Let ω = xdy∧dz+ydz∧dx+zdx∧dy
(x2+y2+z2)3/2 be a 2-form onR3\(0, 0, 0).

Verify that ω is closed.
Hint: One way to simplify the computation is to

write ω = f · ω̃ where f = 1
(x2+y2+z2)3/2 and ω̃ =

xdy ∧ dz + ydz ∧ dx+ zdx.
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Solution

We have dω = df ∧ ω̃ + (−1)0fdω̃

df∧ω̃ = −3

2

1

(x2 + y2 + z2)5/2 (2xdx+2ydy+2zdz)∧(xdy∧dz+ydz∧dx+zdx)

= −3(x2 + y2 + z2)dx ∧ dy ∧ dz
(x2 + y2 + z2)5/2 = − 3dx ∧ dy ∧ dz

(x2 + y2 + z2)3/2

fdω̃ =
1

(x2 + y2 + z2)3/2 · 3dx∧ dy ∧ dz =
3dx ∧ dy ∧ dz

(x2 + y2 + z2)3/2

Therefore dω = df ∧ ω̃ + (−1)0fdω̃ = 0.
(5) Let f : R2 → R2 be given by f(x, y) = (e2y, 2x + y)

and let ω = x2ydx+ ydy.
Compute f ∗(dω) and d(f ∗(ω)) and verify that they

are equal.

Solution

dω = (2xydx+ x2dy)∧ dx+ dy ∧ dy = −x2dx∧ dy.
f ∗(dω) = −(e2y)2de2y∧ (2dx+dy) = −e6ydy∧ (2dx+
dy) = 2e6ydx ∧ dy.

On the other hand, f ∗(ω) = (e2y)2(2x + y)de2y +
(2x+y)(2dx+dy) = e6y(2x+y)dy+(2x+y)∧(2dx+
dy).

Finally, d(f ∗(ω)) = d(e6y(2x+y))∧dy+(2dx+dy)∧
(2dx+dy) = (6e6y(2x+y)dy+e6y(2dx+dy)∧dy+0 =
2e6ydx ∧ dy.

(6) Determine if
∫ ext

0<x2+y2<1 ln(x2+y2) exists and if it does
compute it.

Solution

Let U = 0 < x2 + y2 < 1\{(0, 1)× 0}.
then

∫ ext

0<x2+y2<1 ln(x2 + y2) exists iff
∫ ext

U ln(x2 + y2)
exists and if they both exist they are equal. For
the second integral make a polar change of variables
x = r cos θ, y = r sin θ where 0 < r < 1, 0 < θ <
2π. Then

∫ ext

U ln(x2 + y2) =
∫ 2π

0 (
∫ 1

0 r ln r2dr)dθ =
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4π
∫ 1

0 r ln rdr = 4π
∫ 1

0 ln rd(r2/2) = 4π(r
2 ln r
2 |

1
0−

∫ 1
0
r2

2 d ln r) =

4π(0 −
∫ 1

0 r/2dr) = −4πr3/6|10 = −2π/3. Here we
used the fact that limr→0+ r

2 ln r = 0.
Thus

∫ ext

0<x2+y2<1 ln(x2 + y2) = −2π/3

(7) Let U, V be open in Rn. Let f : Rn → R be a contin-

uous nonnegative function such that
∫ ext

U f and
∫ ext

V f
exist.

Prove that
∫ ext

U∪V f exists.
Hint: use compact exhaustions of U and V to con-

struct a compact exhaustion of U ∪ V .

Solution

let Ki be a compact exhaustion by measurable sets
of U and Ci be a compact exhaustion by measur-
able sets of V . then we have that

∫
Ki
f is increasing

and limi→∞
∫
Ki
f =

∫ ext

U f . Similarly, limi→∞
∫
Ci
f =∫ ext

V f .
Then it’s easy to see that Ki ∪Ci is a compact ex-

haustion by measurable sets of U∪V . Since f ≥ 0 we
have that

∫
Ci∪Ki

f =
∫
Ci
f+

∫
Ki
f−

∫
Ci∩Ki

f ≤
∫
Ci
f+∫

Ki
f ≤

∫ ext

U f+
∫ ext

V f . Therefore limi→∞
∫
Ki∪Ci

f ex-

ists and hence so does
∫ ext

U∪V f .

(8) Let F (x) =
∫ x2

ex f(tx)dt where f : R→ R is C1.
Show that F (x) is C1 and find the formula for

F ′(x).

Solution

Let G(x, a, b) =
∫ b

a f(tx)dt. Then G is C1 by a

theorem from class and. ∂G
∂x (x, a, b) =

∫ b

a
d
dxf(tx)dt =∫ b

a tf
′(tx)dt. Also, ∂G∂b (x, a, b) = f(bx) and ∂G

∂a (x, a, b) =
−f(ax).
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Then F (x) = G(x, ex, x2) is C1 by the chain rule
and F ′(x) = ∂G

∂x (x, ex, x2)+∂G
∂a (x, ex, x2)·(ex)′+∂G

∂b (x, ex, x2)·
(x2)′ =

∫ x2

ex tf
′(tx)dt− f(exx)ex + f(x3)2x.

(9) Prove that a compact set is closed.

Solution

We will show that if C ⊂ Rn is compact then U =
Rn\C is open. let p ∈ U . let Ui = {x ∈ Rn| such that
d(x, p) > 1/i}. then Vi is open and ∪iVi = Rn\{p}
covers C. By compactness C is covered by finitely
many Vis and hence, C ⊂ Vj for some j. This means
that B(p, 1/j) ⊂ U . since p ∈ U is arbitrary, this
means that U is open and C is closed.

(10) Let x(t1, t2) = t1 cos t2, y(t1, t2) = t21 + et1t2. Let
f(x, y) be a differentiable function f : R2 → R. Let
g(t1, t2) = f(x(t1, t2), y(t1, t2)). Express ∂g

∂t1
(1, 0) and

∂g
∂t2

(1, 0) in terms of partial derivatives of f .

Solution

By the chain rule
∂g
∂t1

(t1, t2) = ∂f
∂x(x(t), y(t)) ∂x∂t1 + ∂f

∂y (x(t), y(t)) ∂y∂t1 =
∂f
∂x(t1 cos t2, t

2
1+e

t1t2) cos t2+
∂f
∂y (t1 cos t2, t

2
1+e

t1t2)(2t1+

t2e
t1t2).

Similarly, ∂g
∂t2

(t1, t2) = ∂f
∂x(t1 cos t2, t

2
1+e

t1t2)(−t1 sin t2)+
∂f
∂y (t1 cos t2, t

2
1 + et1t2)(t1e

t1t2).

(11) Mark true or false. Justify your answer.
Let A,B be any subsets of Rn.

(a) br(A) ⊂ Lim(A)
(b) Lim(A) ⊂ A
(c) br(A ∩B) ⊂ br(A) ∩ br(B).

Solution

(a) False. Example A = {p}. Then brA = {p} and
Lim(A) = ∅.
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(b) False. ExampleA = (0, 1) ⊂ R. Then Lim(A) =
[0, 1] is not contained in A.

(c) False. Example A = [0, 2], B = [1, 3]. Then
A ∩ B = [1, 2] and br(A ∩ B) = {1, 2}. On the
other hand, br(A) ∩ br(B) = ∅.

(12) Let M 3 be a compact 3-manifold with boundary in
R3 and let n be the outward unit normal on ∂M . Let
F = (F1, F2, F3) be a vector field on R3. Prove that∫

M

divF =

∫
∂M

〈F, n〉

Hint: Convert the integral over ∂M to an integral
of a form in R3 and use Stokes’ formula.

Solution

recall that divF = ∂F1

∂x +∂F2

∂y +∂F3

∂z . Let n = (n1, n2, n3).
Let ω = F1dy ∧ dz + F2dz ∧ dx+ F3dx ∧ dy.
then

∫
∂M〈F, n〉dA =

∫
∂M ω. Indeed, 〈F, n〉 = F1n1+

F2n2 + F3n3. Recall that n1dA = dy ∧ dz, n2dA =
dz ∧ dz and n3dA = dx ∧ dy. Therefore,∫
∂M

〈F, n〉dA =

∫
∂M

(F1n1 + F2n2 + F3n3)dA =∫
∂M

F1dy ∧ dz + F2dz ∧ dx+ F3dx ∧ dy =

∫
∂M

ω

By Stokes’ formula this is equal to
∫
M dω =

∫
M(∂F1

∂x +
∂F2

∂y + ∂F3

∂z )dx ∧ dy ∧ dz =
∫
M divF .

(13) let M 2 ⊂ R3 be the torus of revolution obtained
by rotating the circle (x − 2)2 + z2 = 1 in the xz
plane around the yz axis. Consider the orientation
on M induced by the outward normal field N where
N(3, 0, 0) = (1, 0, 0).

Find
∫
M xdy ∧ dz
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Solution

Let V be the solid obtained by rotating the disk
U = (x− 2)2 + z2 ≤ 1 in the xz plane around the yz
axis. then M = ∂V and by Stokes’ formula

∫
M xdy∧

dz =
∫
V d(xdy∧dz) =

∫
V dx∧dy∧dz = volV . Recall

that by a homework problem this is equal to 2π
∫
U x.

Using polar coordinates change of variables x = 2 +
r cos θ, y = r sin θ we compute∫

U x =
∫ 2π

0

∫ 1
0 (2+r cos θ)rdrdθ =

∫ 2π
0

∫ 1
0 (2r+r2 cos θ)drdθ =

2π. Therefore
∫
M xdy ∧ dz = 4π2.

(14) Let M ⊂ Rn be an oriented manifold.
Prove that vol(M) =

∫
M dA is positive.

Solution

Let Ui be a covering of M by orientation preserv-
ing coordinate patches fi : Wi → M and let φi be
the partition of unity subordinate to this covering.
Note that 0 ≤ φi ≤ 1. Then

∫
M dA =

∑
i

∫
M φidA =∑

i

∫
Wi
f ∗i (φidA) =

∑
i

∫
Wi

(φi ◦ fi)f ∗i (dA). Note that

φi ◦ fi(x) ≥ 0 for any x ∈ Wi and is positive at some
point of Wi. We also have that f ∗i (dA) = u(x)dx1 ∧
. . . ∧ dxk where u(x) = dA(fi∗e1, . . . , fi∗ek) > 0 since
fi is orientation preserving. Altogether the above
means that

∫
Wi

(φi ◦ fi)f ∗i (dA) =
∫
Wi
gi(x) where gi is

a continuos nonnegative function with compact sup-
port which is positive somewhere. therefore

∫
Wi
gi(x) >

0 and hence
∫
M dA =

∑
i

∫
M φidA > 0.


