MAT 257Y Solutions to Practice Final

(1) Let $A \subset \mathbb{R}^n$ be a rectangle and let $f: A \to \mathbb{R}$ be bounded. Let P_1, P_2 be two partitions of A. Prove that $L(f, P_1) \leq U(f, P_2)$.

Solution

The statement is obvious if $P_1 = P_2$. In general, let P' be a common refinement of P_1 and P_2 . Then $L(f, P_1) \leq L(f, P')$. Indeed, for any rectangle Q' of P' contained in a rectangle Q of P_1 we have that $m(f, Q) \leq m(f, Q')$. therefore

$$L(f, P') = \sum_{Q' \in P'} m(f, Q') \operatorname{vol} Q' = \sum_{Q \in P} \sum_{Q' \subset Q} m(f, Q') \operatorname{vol} Q' \ge$$
$$\sum_{Q \in P} \sum_{Q' \subset Q} m(f, Q) \operatorname{vol} Q' = \sum_{Q \in P} m(f, Q) \sum_{Q' \subset Q} \operatorname{vol} Q' =$$
$$\sum_{Q \in P} m(f, Q) \operatorname{vol} Q = L(f, P_1)$$

Thus $L(f, P_1) \leq L(f, P')$ and similarly $U(f, P') \leq U(f, P_2)$. This finally gives

$$L(f, P_1) \le L(f, P') \le U(f, P') \le U(f, P_2)$$

(2) let $M = \{(x, y) \in \mathbb{R}^2 | \text{ such that } x^2 + y^2 = 1.$ let $f \colon M \to \mathbb{R}$ be given by $f(x, y) = x^2 + y$. Find the minimum and the maximum of f on M.

Solution

Let $g(x, y) = x^2 + y^2$. By the Lagrange multiplier method extremum points of f on M can only occur when $\nabla f = \lambda \nabla g$. We have $\nabla g(x, y) = (2x, 2y)$ and $\nabla f(x,y) = (2x,1)$. We need to solve

$$\begin{cases} 2x = \lambda 2x \\ 2y = \lambda \\ x^2 + y^2 = 1 \end{cases}$$

If $x \neq 0$ the first equation give $\lambda = 1$. hence y = 1/2 and $x = \pm \frac{\sqrt{3}}{2}$.

If x = 0 then $y = \pm 1$. Thus we have four possible points we need to test $(0,1), (0,-1), (\frac{\sqrt{3}}{2}, 1/2)$ and $(-\frac{\sqrt{3}}{2}, 1/2).$

Computing f at these points we get $f(0,1) = 1, f(0,-1) = -1, f(\frac{\sqrt{3}}{2}, 1/2) = f(-\frac{\sqrt{3}}{2}, 1/2) = 3/4 + 1/2 = 5/4.$ Thus the maximum of f on M os 5/4 and the minimum is -1.

(3) Let $T: R^{2n} = R^n \times R^n \to R$ be a 2-tensor on R^n . Show that T is differentiable at (0,0) and compute dT(0,0).

Solution

Let $x = (x_1, \ldots, x_n)$ be the coordinates on the first copy of \mathbb{R}^n and $y = (y_1, \ldots, y_n)$ on the second. Then by multilinearity we have that $T(x, y) = \sum_{ij} T_{ij} x_i y_j$. This function is a polynomial and hence is differentiable. It is also obvious to check that its partial derivatives at (0, 0) are all zero. therefore dT(0, 0) =0.

(4) Let $\omega = \frac{xdy \wedge dz + ydz \wedge dx + zdx \wedge dy}{(x^2 + y^2 + z^2)^{3/2}}$ be a 2-form on $R^3 \setminus (0, 0, 0)$. Verify that ω is closed.

Hint: One way to simplify the computation is to write $\omega = f \cdot \tilde{\omega}$ where $f = \frac{1}{(x^2+y^2+z^2)^{3/2}}$ and $\tilde{\omega} = xdy \wedge dz + ydz \wedge dx + zdx$.

Solution

We have $d\omega = df \wedge \tilde{\omega} + (-1)^0 f d\tilde{\omega}$ $df \wedge \tilde{\omega} = -\frac{3}{2} \frac{1}{(x^2 + y^2 + z^2)^{5/2}} (2xdx + 2ydy + 2zdz) \wedge (xdy \wedge dz + ydz \wedge dx + zdx)$ $= -\frac{3(x^2 + y^2 + z^2)dx \wedge dy \wedge dz}{(x^2 + y^2 + z^2)^{5/2}} = -\frac{3dx \wedge dy \wedge dz}{(x^2 + y^2 + z^2)^{3/2}}$ $f d\tilde{\omega} = \frac{1}{(x^2 + y^2 + z^2)^{3/2}} \cdot 3dx \wedge dy \wedge dz = \frac{3dx \wedge dy \wedge dz}{(x^2 + y^2 + z^2)^{3/2}}$ Therefore $d\omega = df \wedge \tilde{\omega} + (-1)^0 f d\tilde{\omega} = 0$. (5) Let $f \colon R^2 \to R^2$ be given by $f(x, y) = (e^{2y}, 2x + y)$ and let $\omega = x^2 y dx + y dy$.

Compute $f^*(d\omega)$ and $d(f^*(\omega))$ and verify that they are equal.

Solution

 $\begin{aligned} d\omega &= (2xydx + x^2dy) \wedge dx + dy \wedge dy = -x^2dx \wedge dy.\\ f^*(d\omega) &= -(e^{2y})^2de^{2y} \wedge (2dx + dy) = -e^{6y}dy \wedge (2dx + dy) \\ dy) &= 2e^{6y}dx \wedge dy.\\ \text{On the other hand, } f^*(\omega) &= (e^{2y})^2(2x + y)de^{2y} + (2x + y)(2dx + dy) \\ &= e^{6y}(2x + y)dy + (2x + y) \wedge (2dx + dy). \end{aligned}$

Finally, $d(f^*(\omega)) = d(e^{6y}(2x+y)) \wedge dy + (2dx+dy) \wedge (2dx+dy) = (6e^{6y}(2x+y)dy + e^{6y}(2dx+dy) \wedge dy + 0 = 2e^{6y}dx \wedge dy.$

(6) Determine if $\int_{0 < x^2 + y^2 < 1}^{ext} \ln(x^2 + y^2)$ exists and if it does compute it.

Solution

Let $U = 0 < x^2 + y^2 < 1 \setminus \{(0,1) \times 0\}$. then $\int_{0 < x^2 + y^2 < 1}^{ext} \ln(x^2 + y^2)$ exists iff $\int_U^{ext} \ln(x^2 + y^2)$ exists and if they both exist they are equal. For the second integral make a polar change of variables $x = r \cos \theta, y = r \sin \theta$ where $0 < r < 1, 0 < \theta < 2\pi$. Then $\int_U^{ext} \ln(x^2 + y^2) = \int_0^{2\pi} (\int_0^1 r \ln r^2 dr) d\theta =$

$$4\pi \int_0^1 r \ln r dr = 4\pi \int_0^1 \ln r d(r^2/2) = 4\pi \left(\frac{r^2 \ln r}{2}\Big|_0^1 - \int_0^1 \frac{r^2}{2} d\ln r\right) = 4\pi (0 - \int_0^1 r/2 dr) = -4\pi r^3/6 \Big|_0^1 = -2\pi/3.$$
 Here we used the fact that $\lim_{r \to 0+} r^2 \ln r = 0.$
Thus $\int_{0 < x^2 + y^2 < 1}^{ext} \ln(x^2 + y^2) = -2\pi/3$

(7) Let U, V be open in \mathbb{R}^n . Let $f: \mathbb{R}^n \to \mathbb{R}$ be a continuous nonnegative function such that $\int_U^{ext} f$ and $\int_V^{ext} f$ exist.

Prove that $\int_{U \cup V}^{ext} f$ exists.

Hint: use compact exhaustions of U and V to construct a compact exhaustion of $U \cup V$.

Solution

let K_i be a compact exhaustion by measurable sets of U and C_i be a compact exhaustion by measurable sets of V. then we have that $\int_{K_i} f$ is increasing and $\lim_{i\to\infty} \int_{K_i} f = \int_U^{ext} f$. Similarly, $\lim_{i\to\infty} \int_{C_i} f = \int_V^{ext} f$.

Then it's easy to see that $K_i \cup C_i$ is a compact exhaustion by measurable sets of $U \cup V$. Since $f \ge 0$ we have that $\int_{C_i \cup K_i} f = \int_{C_i} f + \int_{K_i} f - \int_{C_i \cap K_i} f \le \int_{C_i} f + \int_{K_i} f \le \int_U^{ext} f + \int_V^{ext} f$. Therefore $\lim_{i\to\infty} \int_{K_i \cup C_i} f$ exists and hence so does $\int_{U \cup V}^{ext} f$.

(8) Let $F(x) = \int_{e^x}^{x^2} f(tx)dt$ where $f: R \to R$ is C^1 . Show that F(x) is C^1 and find the formula for F'(x).

Solution

Let $G(x, a, b) = \int_{a}^{b} f(tx)dt$. Then G is C^{1} by a theorem from class and. $\frac{\partial G}{\partial x}(x, a, b) = \int_{a}^{b} \frac{d}{dx}f(tx)dt = \int_{a}^{b} tf'(tx)dt$. Also, $\frac{\partial G}{\partial b}(x, a, b) = f(bx)$ and $\frac{\partial G}{\partial a}(x, a, b) = -f(ax)$.

Then
$$F(x) = G(x, e^x, x^2)$$
 is C^1 by the chain rule
and $F'(x) = \frac{\partial G}{\partial x}(x, e^x, x^2) + \frac{\partial G}{\partial a}(x, e^x, x^2) \cdot (e^x)' + \frac{\partial G}{\partial b}(x, e^x, x^2) \cdot (x^2)' = \int_{e^x}^{x^2} tf'(tx)dt - f(e^xx)e^x + f(x^3)2x.$
(9) Prove that a compact set is closed.

Solution

We will show that if $C \subset \mathbb{R}^n$ is compact then $U = \mathbb{R}^n \setminus C$ is open. let $p \in U$. let $U_i = \{x \in \mathbb{R}^n | \text{ such that } d(x, p) > 1/i\}$. then V_i is open and $\bigcup_i V_i = \mathbb{R}^n \setminus \{p\}$ covers C. By compactness C is covered by finitely many V_i s and hence, $C \subset V_j$ for some j. This means that $B(p, 1/j) \subset U$. since $p \in U$ is arbitrary, this means that U is open and C is closed.

(10) Let $x(t_1, t_2) = t_1 \cos t_2, y(t_1, t_2) = t_1^2 + e^{t_1 t_2}$. Let f(x, y) be a differentiable function $f: \mathbb{R}^2 \to \mathbb{R}$. Let $g(t_1, t_2) = f(x(t_1, t_2), y(t_1, t_2))$. Express $\frac{\partial g}{\partial t_1}(1, 0)$ and $\frac{\partial g}{\partial t_2}(1, 0)$ in terms of partial derivatives of f.

Solution

By the chain rule $\frac{\partial g}{\partial t_1}(t_1, t_2) = \frac{\partial f}{\partial x}(x(t), y(t))\frac{\partial x}{\partial t_1} + \frac{\partial f}{\partial y}(x(t), y(t))\frac{\partial y}{\partial t_1} = \frac{\partial f}{\partial x}(t_1 \cos t_2, t_1^2 + e^{t_1 t_2})\cos t_2 + \frac{\partial f}{\partial y}(t_1 \cos t_2, t_1^2 + e^{t_1 t_2})(2t_1 + t_2e^{t_1 t_2}).$ Similarly, $\frac{\partial g}{\partial t_2}(t_1, t_2) = \frac{\partial f}{\partial x}(t_1 \cos t_2, t_1^2 + e^{t_1 t_2})(-t_1 \sin t_2) + \frac{\partial f}{\partial x}(t_1 \cos t_2, t_1^2 + e^{t_1 t_2})(-t_1 \sin t_2) + \frac{\partial f}{\partial x}(t_1 \cos t_2, t_1^2 + e^{t_1 t_2})(-t_1 \sin t_2) + \frac{\partial f}{\partial x}(t_1 \cos t_2, t_1^2 + e^{t_1 t_2})(-t_1 \sin t_2) + \frac{\partial f}{\partial x}(t_1 \cos t_2, t_1^2 + e^{t_1 t_2})(-t_1 \sin t_2) + \frac{\partial f}{\partial x}(t_1 \cos t_2, t_1^2 + e^{t_1 t_2})(-t_1 \sin t_2) + \frac{\partial f}{\partial x}(t_1 \cos t_2, t_1^2 + e^{t_1 t_2})(-t_1 \sin t_2) + \frac{\partial f}{\partial x}(t_1 \cos t_2, t_1^2 + e^{t_1 t_2})(-t_1 \sin t_2) + \frac{\partial f}{\partial x}(t_1 \cos t_2, t_1^2 + e^{t_1 t_2})(-t_1 \sin t_2) + \frac{\partial f}{\partial x}(t_1 \cos t_2, t_1^2 + e^{t_1 t_2})(-t_1 \sin t_2) + \frac{\partial f}{\partial x}(t_1 \cos t_2, t_1^2 + e^{t_1 t_2})(-t_1 \sin t_2) + \frac{\partial f}{\partial x}(t_1 \cos t_2, t_1^2 + e^{t_1 t_2})(-t_1 \sin t_2) + \frac{\partial f}{\partial x}(t_1 \cos t_2, t_1^2 + e^{t_1 t_2})(-t_1 \sin t_2) + \frac{\partial f}{\partial x}(t_1 \cos t_2, t_1^2 + e^{t_1 t_2})(-t_1 \sin t_2) + \frac{\partial f}{\partial x}(t_1 \cos t_2, t_1^2 + e^{t_1 t_2})(-t_1 \sin t_2) + \frac{\partial f}{\partial x}(t_1 \cos t_2, t_1^2 + e^{t_1 t_2})(-t_1 \sin t_2) + \frac{\partial f}{\partial x}(t_1 \cos t_2, t_1^2 + e^{t_1 t_2})(-t_1 \sin t_2) + \frac{\partial f}{\partial x}(t_1 \cos t_2, t_1^2 + e^{t_1 t_2})(-t_1 \sin t_2) + \frac{\partial f}{\partial x}(t_1 \cos t_2, t_1^2 + e^{t_1 t_2})(-t_1 \sin t_2) + \frac{\partial f}{\partial x}(t_1 \cos t_2, t_1^2 + e^{t_1 t_2})(-t_1 \sin t_2) + \frac{\partial f}{\partial x}(t_1 \cos t_2, t_1^2 + e^{t_1 t_2})(-t_1 \sin t_2) + \frac{\partial f}{\partial x}(t_1 \cos t_2, t_1^2 + e^{t_1 t_2})(-t_1 \sin t_2) + \frac{\partial f}{\partial x}(t_1 \cos t_2, t_1^2 + e^{t_1 t_2})(-t_1 \sin t_2) + \frac{\partial f}{\partial x}(t_1 \cos t_2, t_1^2 + e^{t_1 t_2})(-t_1 \sin t_2) + \frac{\partial f}{\partial x}(t_1 \cos t_2, t_1^2 + e^{t_1 t_2})(-t_1 \sin t_2) + \frac{\partial f}{\partial x}(t_1 \cos t_2, t_1^2 + e^{t_1 t_2})(-t_1 \sin t_2) + \frac{\partial f}{\partial x}(t_1 \cos t_2, t_1^2 + e^{t_1 t_2})(-t_1 \sin t_2) + \frac{\partial f}{\partial x}(t_1 \cos t_2, t_1^2 + e^{t_1 t_2})(-t_1 \sin t_2) + \frac{\partial f}{\partial x}(t_1 \cos t_2, t_1^2 + e^{t_1 t_2})(-t_1 \sin t_2) + \frac{\partial f}{\partial x}(t_1 \cos t_2, t_1^2 + e^{t_1 t_2})(-t_1 \sin t_2) + \frac{\partial f}{\partial x}(t_1 \cos t_2,$

$$\frac{\partial f}{\partial y}(t_1 \cos t_2, t_1^2 + e^{t_1 t_2})(t_1 e^{t_1 t_2}).$$

(11) Mark true or false. Justify your answer.

Let A, B be any subsets of \mathbb{R}^n .

- (a) $br(A) \subset Lim(A)$
- (b) $Lim(A) \subset A$
- (c) $br(A \cap B) \subset br(A) \cap br(B)$.

Solution

(a) **False.** Example $A = \{p\}$. Then $brA = \{p\}$ and $Lim(A) = \emptyset$.

- (b) False. Example $A = (0, 1) \subset R$. Then Lim(A) = [0, 1] is not contained in A.
- (c) **False.** Example A = [0, 2], B = [1, 3]. Then $A \cap B = [1, 2]$ and $br(A \cap B) = \{1, 2\}$. On the other hand, $br(A) \cap br(B) = \emptyset$.
- (12) Let M^3 be a compact 3-manifold with boundary in R^3 and let n be the outward unit normal on ∂M . Let $F = (F_1, F_2, F_3)$ be a vector field on R^3 . Prove that

$$\int_{M} divF = \int_{\partial M} \langle F, n \rangle$$

Hint: Convert the integral over ∂M to an integral of a form in \mathbb{R}^3 and use Stokes' formula.

Solution

recall that $div F = \frac{\partial F_1}{\partial x} + \frac{\partial F_2}{\partial y} + \frac{\partial F_3}{\partial z}$. Let $n = (n_1, n_2, n_3)$. Let $\omega = F_1 dy \wedge dz + F_2 dz \wedge dx + F_3 dx \wedge dy$. then $\int_{\partial M} \langle F, n \rangle dA = \int_{\partial M} \omega$. Indeed, $\langle F, n \rangle = F_1 n_1 + F_2 n_2 + F_3 n_3$. Recall that $n_1 dA = dy \wedge dz, n_2 dA = dz \wedge dz$ and $n_3 dA = dx \wedge dy$. Therefore,

$$\int_{\partial M} \langle F, n \rangle dA = \int_{\partial M} (F_1 n_1 + F_2 n_2 + F_3 n_3) dA =$$
$$\int_{\partial M} F_1 dy \wedge dz + F_2 dz \wedge dx + F_3 dx \wedge dy = \int_{\partial M} \omega$$
By Stokes' formula this is equal to $\int_{\partial M} d\omega = \int_{\partial M} (\frac{\partial F_1}{\partial M})^2 dx$

By Stokes' formula this is equal to $\int_M d\omega = \int_M (\frac{\partial F_1}{\partial x} + \frac{\partial F_2}{\partial y} + \frac{\partial F_3}{\partial z}) dx \wedge dy \wedge dz = \int_M div F.$ (13) let $M^2 \subset R^3$ be the torus of revolution obtained

(13) let $M^2 \subset R^3$ be the torus of revolution obtained by rotating the circle $(x - 2)^2 + z^2 = 1$ in the xzplane around the yz axis. Consider the orientation on M induced by the outward normal field N where N(3,0,0) = (1,0,0).

Find $\int_M x dy \wedge dz$

Solution

Let V be the solid obtained by rotating the disk $U = (x-2)^2 + z^2 \leq 1$ in the xz plane around the yz axis. then $M = \partial V$ and by Stokes' formula $\int_M x dy \wedge dz = \int_V d(x dy \wedge dz) = \int_V dx \wedge dy \wedge dz = \text{vol}V$. Recall that by a homework problem this is equal to $2\pi \int_U x$. Using polar coordinates change of variables $x = 2 + r \cos \theta$, $y = r \sin \theta$ we compute

 $\int_U x = \int_0^{2\pi} \int_0^1 (2+r\cos\theta) r dr d\theta = \int_0^{2\pi} \int_0^1 (2r+r^2\cos\theta) dr d\theta = 2\pi.$ Therefore $\int_M x dy \wedge dz = 4\pi^2.$

(14) Let $M \subset \mathbb{R}^n$ be an oriented manifold.

Prove that $vol(M) = \int_M dA$ is positive. Solution

Let U_i be a covering of M by orientation preserving coordinate patches $f_i: W_i \to M$ and let ϕ_i be the partition of unity subordinate to this covering. Note that $0 \leq \phi_i \leq 1$. Then $\int_M dA = \sum_i \int_M \phi_i dA =$ $\sum_i \int_{W_i} f_i^*(\phi_i dA) = \sum_i \int_{W_i} (\phi_i \circ f_i) f_i^*(dA)$. Note that $\phi_i \circ f_i(x) \geq 0$ for any $x \in W_i$ and is positive at some point of W_i . We also have that $f_i^*(dA) = u(x)dx^1 \wedge$ $\dots \wedge dx^k$ where $u(x) = dA(f_{i*}e_1, \dots, f_{i*}e_k) > 0$ since f_i is orientation preserving. Altogether the above means that $\int_{W_i} (\phi_i \circ f_i) f_i^*(dA) = \int_{W_i} g_i(x)$ where g_i is a continuos nonnegative function with compact support which is positive somewhere. therefore $\int_{W_i} g_i(x) >$ 0 and hence $\int_M dA = \sum_i \int_M \phi_i dA > 0$.