Practice Final

- (1) Let $A \subset \mathbb{R}^n$ be a rectangle and let $f: A \to \mathbb{R}$ be bounded. Let P_1, P_2 be two partitions of A. Prove that $L(f, P_1) \leq U(f, P_2)$.
- (2) let $M = \{(x, y) \in \mathbb{R}^2 | \text{ such that } x^2 + y^2 = 1.$ let $f \colon M \to \mathbb{R}$ be given by $f(x, y) = x^2 + y$. Find the minimum and the maximum of f on M.
- (3) Let $T: R^{2n} = R^n \times R^n \to R$ be a 2-tensor on R^n . Show that T is differentiable at (0,0) and compute df(0,0).
- (4) Let $\omega = \frac{xdy \wedge dz + ydz \wedge dx + zdx \wedge dy}{(x^2 + y^2 + z^2)^{3/2}}$ be a 2-form on $R^3 \setminus (0, 0, 0)$. Verify that ω is closed.

Hint: One way to simplify the computation is to write $\omega = f \cdot \tilde{\omega}$ where $f = \frac{1}{(x^2+y^2+z^2)^{3/2}}$ and $\tilde{\omega} = xdy \wedge dz + ydz \wedge dx + zdx$.

- (5) Let $f: \mathbb{R}^2 \to \mathbb{R}^2$ be given by $f(x, y) = (e^{2y}, 2x + y))$ and let $\omega = x^2 y dx + y dy$. Compute $f^*(d\omega)$ and $d(f^*(\omega))$ and verify that they are equal.
- (6) Determine if $\int_{0 < x^2 + y^2 < 1}^{ext} \ln(x^2 + y^2)$ exists and if it does compute it.
- (7) Let U, V be open in \mathbb{R}^n . Let $f: \mathbb{R}^n \to \mathbb{R}$ be a continuous nonnegative function such that $\int_U^{ext} f$ and $\int_V^{ext} f$ exist.

Prove that $\int_{U \cup V}^{ext} f$ exists.

Hint: use compact exhaustions of U and V to construct a compact exhaustion of $U \cup V$.

- (8) Let $F(x) = \int_{e^x}^{x^2} f(tx) dt$ where $f: R \to R$ is C^1 . Show that F(x) is C^1 and find the formula for F'(x).
- (9) Prove that a compact set is closed.
- (10) Let $x(t_1, t_2) = t_1 \cos t_2, y(t_1, t_2) = t_1^2 + e^{t_1 t_2}$. Let f(x, y) be a differentiable function $f: \mathbb{R}^2 \to \mathbb{R}$. Let

- $g(t_1, t_2) = f(x(t_1, t_2), y(t_1, t_2))$. Express $\frac{\partial g}{\partial t_1}(1, 0)$ and $\frac{\partial g}{\partial t_2}(1, 0)$ in terms of partial derivatives of f.
- (11) Mark true or false. Justify your answer. Let A, B be any subsets of \mathbb{R}^n .
 - (a) $br(A) \subset Lim(A)$
 - (a) of $(A) \subset Lim(A)$ (b) $Lim(A) \subset A$
 - (c) $br(A \cap B) \subset br(A) \cap br(B)$.
- (12) Let M^3 be a compact 3-manifold with boundary in R^3 and let n be the outward unit normal on ∂M . Let $F = (F_1, F_2, F_3)$ be a vector field on R^3 . Prove that

$$\int_{M} divF = \int_{\partial M} \langle F, n \rangle$$

Convert the integral over ∂M to an integral of a form in \mathbb{R}^3 and use Stokes' formula.

(13) let $M^2 \subset R^3$ be the torus of revolution obtained by rotating the circle $(x - 2)^2 + z^2 = 1$ in the xzplane around the yz axis. Consider the orientation on M induced by the outward normal field N where N(3,0,0) = (1,0,0).

Find $\int_M x dy \wedge dz$

(14) Let $M \subset \mathbb{R}^n$ be an oriented manifold. Prove that $\operatorname{vol}(M) = \int_M dA$ is positive.