MAT 257Y

Practice Final

(1) Let $A \subset R^{n}$ be a rectangle and let $f: A \rightarrow R$ be bounded. Let P_{1}, P_{2} be two partitions of A. Prove that $L\left(f, P_{1}\right) \leq U\left(f, P_{2}\right)$.
(2) let $M=\left\{(x, y) \in R^{2} \mid\right.$ such that $x^{2}+y^{2}=1$. let $f: M \rightarrow R$ be given by $f(x, y)=x^{2}+y$. Find the minimum and the maximum of f on M.
(3) Let $T: R^{2 n}=R^{n} \times R^{n} \rightarrow R$ be a 2 -tensor on R^{n}. Show that T is differentiable at $(0,0)$ and compute $d f(0,0)$.
(4) Let $\omega=\frac{x d y \wedge d z+y d z \wedge d x+z d x \wedge d y}{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}}$ be a 2 -form on $R^{3} \backslash(0,0,0)$. Verify that ω is closed.
Hint: One way to simplify the computation is to write $\omega=f \cdot \tilde{\omega}$ where $f=\frac{1}{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}}$ and $\tilde{\omega}=$ $x d y \wedge d z+y d z \wedge d x+z d x$.
(5) Let $f: R^{2} \rightarrow R^{2}$ be given by $\left.f(x, y)=\left(e^{2 y}, 2 x+y\right)\right)$ and let $\omega=x^{2} y d x+y d y$.

Compute $f^{*}(d \omega)$ and $d\left(f^{*}(\omega)\right)$ and verify that they are equal.
(6) Determine if $\int_{0<x^{2}+y^{2}<1}^{e x t} \ln \left(x^{2}+y^{2}\right)$ exists and if it does compute it.
(7) Let U, V be open in R^{n}. Let $f: R^{n} \rightarrow R$ be a continuous nonnegative function such that $\int_{U}^{e x t} f$ and $\int_{V}^{e x t} f$ exist.

Prove that $\int_{U \cup V}^{e x t} f$ exists.
Hint: use compact exhaustions of U and V to construct a compact exhaustion of $U \cup V$.
(8) Let $F(x)=\int_{e^{x}}^{x^{2}} f(t x) d t$ where $f: R \rightarrow R$ is C^{1}. Show that $F(x)$ is C^{1} and find the formula for $F^{\prime}(x)$.
(9) Prove that a compact set is closed.
(10) Let $x\left(t_{1}, t_{2}\right)=t_{1} \cos t_{2}, y\left(t_{1}, t_{2}\right)=t_{1}^{2}+e^{t_{1} t_{2}}$. Let $f(x, y)$ be a differentiable function $f: R^{2} \rightarrow R$. Let
$g\left(t_{1}, t_{2}\right)=f\left(x\left(t_{1}, t_{2}\right), y\left(t_{1}, t_{2}\right)\right)$. Express $\frac{\partial g}{\partial t_{1}}(1,0)$ and $\frac{\partial g}{\partial t_{2}}(1,0)$ in terms of partial derivatives of f.
(11) Mark true or false. Justify your answer.

Let A, B be any subsets of R^{n}.
(a) $\operatorname{br}(A) \subset \operatorname{Lim}(A)$
(b) $\operatorname{Lim}(A) \subset A$
(c) $b r(A \cap B) \subset b r(A) \cap b r(B)$.
(12) Let M^{3} be a compact 3 -manifold with boundary in R^{3} and let n be the outward unit normal on ∂M. Let $F=\left(F_{1}, F_{2}, F_{3}\right)$ be a vector field on R^{3}. Prove that

$$
\int_{M} \operatorname{div} F=\int_{\partial M}\langle F, n\rangle
$$

Convert the integral over ∂M to an integral of a form in R^{3} and use Stokes' formula.
(13) let $M^{2} \subset R^{3}$ be the torus of revolution obtained by rotating the circle $(x-2)^{2}+z^{2}=1$ in the $x z$ plane around the $y z$ axis. Consider the orientation on M induced by the outward normal field N where $N(3,0,0)=(1,0,0)$.

Find $\int_{M} x d y \wedge d z$
(14) Let $M \subset R^{n}$ be an oriented manifold.

Prove that $\operatorname{vol}(M)=\int_{M} d A$ is positive.

