Recall that a linear functional $L: V \to F$ is called bounded if there exisits constant c > 0 such that $|L(v)| \le c \cdot ||v||$ for any $v \in V$.

Let V = C[0, 1] be the vector space of real valued continuous functions on [0, 1].

- a) construct an unbounded linear functional $L: V \to \mathbb{R}$;
- b) construct a bounded linear functional $L: V \to \mathbb{R}$ which can not be represented as $L(v) = \langle v, y \rangle$ for some $y \in V$.