1. Whitney Embedding

Theorem 1.0.1. Let M^n be a smooth manifold. Then M^n admits a smooth proper embedding into \mathbb{R}^{2n+1}.

Proof. We will only give a proof when M is compact. It’s enough to show that there exists a smooth $1-1$ immersion $f: M \to \mathbb{R}^{2n+1}$. Such an f will be automatically a proper embedding due to compactness of M.

Lemma 1.0.2. Let M^n be a compact n-manifold. There exists a a smooth $1-1$ immersion $f: M \to \mathbb{R}^k$ for some large k depending on M.

Proof of Lemma 1.0.2. For any point p choose a coordinate ball B'_p containing p and let $x_p: B'_p \to V'_p$ be a local coordinate chart where V'_p is an open ball in \mathbb{R}^n. Let $B_p \subset B'_p$ be a smaller coordinate ball containing p and such that $x_p(B_p) = V_p$ is a concentric ball to V'_p of smaller radius. Then B_p is compact and is contained in B'_p. We have that $\cup_{p \in M} = M$ is an open cover of M. By compactness we can choose a finite subcover by coordinate balls B_1, \ldots, B_m such that $x_i: B'_i \to V'_i, i = 1, \ldots, m$ are local coordinate charts. Let $\varphi_i: M \to \mathbb{R}$ be a smooth function such that $\varphi_i = 1$ on B_i, $\varphi_i = 0$ on $\bar{M}\setminus B'_i$ and $0 < \varphi_i < 1$ on $B'_i \setminus B_i$.

Let $f: M \to \mathbb{R}^{m(n+1)}$ be given by

$$f(p) = (\varphi_1(p)x_1(p), \ldots, \varphi_m(p)x_m(p), \varphi_1(p), \ldots, \varphi_m(p))$$

Claim 1: f is $1-1$.

Let $p, q \in M$ be distinct points. If $p, q \in B_i$ for some i then $\varphi_i(p) = \varphi_i(q) = 1$ but $x_i(p) \neq x_i(q)$ since x_i is a diffeomorphism on B'_i and in particular it’s 1-1 on B'_i. Hence $\varphi_i(p)x_i(p) \neq \varphi_i(q)x_i(q)$ and therefore $f(p) \neq f(q)$.

If p, q don’t belong to the same B_i for any i then there is an i such that $p \in B_i$ but $q \notin B_i$. then $\varphi_i(p) = 1$ but $\varphi_i(q) < 1$ and we can again conclude that $f(p) \neq f(q)$.

Claim 2: f is an immersion.

Let $p \in M, v \in T_p M, v \neq 0$. Then $p \in B_i$ for some i. B_i is open in M and $\varphi_i = 1$ on B_i. Therefore $d(\varphi_i \circ x_i)|_p(v) = d(x_i)|_p(v) \neq 0$ since x_i is an immersion on B_i. Therefore $df_p(v) \neq 0$ and hence F is an immersion. This finishes the proof of Claim 2 and hence of Lemma 1.0.2.

Lemma 1.0.3. Let $S \subset \mathbb{R}^N$ be a submanifold of dimension n where $N > 2n+1$. For any nonzero $v \in \mathbb{R}^N$ let $\pi_v: \mathbb{R}^N \to v^{\perp} \cong \mathbb{R}^{N-1}$ be the orthogonal projection. Then there exists $v \neq 0$ such that $\pi_v|_S: S \to \mathbb{R}^{N-1}$ is a 1-1 immersion.

Proof of Lemma 1.0.3. Note that $\ker \pi_v = \mathbb{R}v$ for any $v \neq 0$.

Observe that if $\pi_v(p) = \pi_v(q)$ for some distinct $p, q \in S$ then $p - q = \lambda v$ for some nonzero λ i.e. $[p - q] = [v] \in \mathbb{R}^{P^{N-1}}$. Also, since π_v is linear, $d(\pi_v)|_p = \pi_v$ for any $p \in \mathbb{R}^n$. Therefore, if $(p, u) \in T_p S, u \neq 0$ and $d(\pi_u)|_p(u) = 0$ then $u = \lambda v$ and $[u] = [v] \in \mathbb{R}^{P^{N-1}}$.

Let $h: S \times S \setminus \Delta S \to \mathbb{R}P^{N-1}$ be given by $h(p, q) = [p - q]$ and $g: TS \setminus 0(S) \to \mathbb{R}P^{N-1}$ be given by $g(p, u) = [u]$. Since $N - 1 > 2n = \dim S \times S = \dim TS$, the only way $[v] \in \mathbb{R}P^{N-1}$ can be a regular value of $h \ (g)$ is if $[v] \notin$ image of $h \ (g)$.

By Sard’s theorem the set of singular values of $h \ (g)$ has measure 0 and since the union of two sets of measure zero has measure zero we can find $[v] \in \mathbb{R}P^{N-1}$ which is a regular value for both g and h. By above that means that $[v]$ is not in the image of either h or g. Again, by above that means that

\[\pi_v|S: S \to \mathbb{R}^{N-1} \text{ is a 1-1 immersion.} \]

To finish the proof of Whitney’s theorem we repeatedly apply Lemma 1.0.3 to $S = f(M)$ provided by Lemma 1.0.2.

2. Transversality

Definition 2.0.1. Let S_1, S_2 be submanifolds in a smooth manifold M^n. We say that S_1 is transverse to S_2 (denoted by $S_1 \pitchfork S_2$) if for any $p \in S_1 \cap S_2$ it holds that $T_p S_1 + T_p S_2 = T_p M$.

Definition 2.0.2. Let S be a submanifold in a smooth manifold N^n. Let $f: M \to N$ be a smooth map. We say that f is transverse to S (denoted by $f \pitchfork S$) if for any $p \in f^{-1}(S)$ it holds that $T_{f(p)} S + df_p(T_p M) = T_p N$.

- Let S_1, S_2 be submanifolds in M. Then $S_1 \pitchfork S_2$ iff $i_1 \pitchfork S_2$ where $i_1: S_1 \to M$ is the canonical inclusion.
- Let $f: M \to N$ be smooth and let $S = c \in N$ be a point which we view as a zero-dimensional submanifold. Then $f \pitchfork S$ iff c is a regular value of f.
- Let S_1, S_2 be submanifolds in M such that $\dim S_1 + \dim S_2 < \dim M$. Then $S_1 \pitchfork S_2$ iff $S_1 \cap S_2 = \emptyset$.
- If $f: M \to N$ is a submersion then $f \pitchfork S$ for any submanifold S in N.

Example 2.0.3.

- Let $M = \mathbb{R}^n$, $S_1 = \mathbb{R}^k \times 0$, $S_2 = 0 \times \mathbb{R}^l$. Then $S_1 \pitchfork S_2$ iff $k + l \geq n$.
- Let $M = \mathbb{R}^2$, $S_1 = \mathbb{R} \times 0$, $S_2 = \{(x, y): y = x^2\}$. Then S_1 is not transverse to S_2.
- Let $M = \mathbb{R}^n$, $S_1 = S^{n-1}$ - the unit sphere centered at 0 and let $S_2 = V$ be a vector subspace of \mathbb{R}^n. Then $S_1 \pitchfork V$.

Theorem 2.0.4. Let $f: M \to N$ be smooth and transverse to a submanifold S in N. Then $P = f^{-1}(S)$ is a submanifold of M if the same codimension as S, i.e. $\dim N - \dim S = \dim M - \dim P$.

Moreover, if M has a boundary and $f|\partial M$ is still transverse to S then $P = f^{-1}(S)$ is a submanifold with boundary in M.

Definition 2.0.5. Two maps $f_0, f_1 : X \to Y$ are called homotopic ($f_0 \sim f_1$) if there exists a continuous map $F : X \times [0, 1] \to Y$ such that $F(x, 0) = f_0(x)$ and $F(x, 1) = f_1(x)$ for any $x \in X$.

Theorem 2.0.6. Let M, N be smooth manifolds and let $f_0, f_1 : M \to N$ be smooth maps. Then f_0 is continuously homotopic to f_1 iff f_0 is smoothly homotopic to f_1 i.e. iff there is a smooth map $F : M \times [0, 1] \to N$ such that $F(x, 0) = f_0(x)$ and $F(x, 1) = f_1(x)$ for any $x \in M$.

Theorem 2.0.7 (Whitney approximation theorem). Let M, N be smooth manifolds and let $f : M \to N$ be a continuous map. Then f is homotopic to a smooth map $g : M \to N$. Moreover, if f is smooth on a closed subset $A \subset M$ then g can be chosen so that $g|_A = f|_A$.

Theorem 2.0.8 (Transversality Approximation theorem). Let M, N be smooth manifolds and let $S \subset N$ be a submanifold. Let $f : M \to N$ be a smooth map. Then f is homotopic to a smooth map $g : M \to N$ such that $g \pitchfork S$.

Moreover if $T \subset M$ is a submanifold and $f|_T$ is transverse to S then g can be chosen so that $g|_T = f|_T$.