- (1) Prove the following maps are submersions
 - (a) the map $f: \mathbb{R}^n \setminus \{0\} \to \mathbb{S}^{n-1}$ given by $f(x) = \frac{x}{|x|}$;
 - (b) the map $g: \mathbb{C}^{n+1} \setminus \{0\} \to \mathbb{CP}^n$ given by $g(z_0, \ldots, z_n) = [z_0 : \ldots :$ z_n ;
- (c) the map $h: \mathbb{S}^{2n+1} \to \mathbb{CP}^n$ given by $h(z_0, \dots, z_n) = [z_0 : \dots : z_n]$ where \mathbb{S}^{2n+1} is the unit sphere in \mathbb{C}^{n+1} . (2) Show that \mathbb{CP}^1 is diffeomorphic to \mathbb{S}^2 .
- (3) Let $\phi: \mathbb{R} \to S^1$ be given by $\phi(t) = (\cos t, \sin t)$.
 - (a) verify that $\phi|_{(a,b)}$: $(a,b) \to \mathbb{S}^1$ is a diffeomrophism onto its image whenever $b - a < 2\pi$
 - (b) Show that if $\phi(t_1) = \phi(t_2)$ then $d\phi_{t_1}(\frac{\partial}{\partial t}) = d\phi_{t_2}(\frac{\partial}{\partial t})$ and there-fore, for any $z \in \mathbb{S}^1$ we have a well defined vector $\frac{\partial}{\partial t}|_z \in T_z \mathbb{S}^1$. (c) Show that the map $F \colon \mathbb{S}^1 \times \mathbb{R} \to TS^1$ given by $F(z, \lambda) = (z, \lambda)$
 - $(z, \lambda \frac{\partial}{\partial t}|_z)$ is a diffeomorphism.