I am presently a research associate at Princeton. My research interests are in problems related to mathematical general relativity.
This year I am on leave from the University of Toronto where I am a postdoctoral fellow in the group of Spyros Alexakis. I have completed my Ph.D. in 2012 as a student of Mihalis Dafermos in Cambridge. Most recently, I spent a semester at MSRI in Berkeley.
Curriculum Vitae: CV.
Published version: [pdf] (screen) [pdf] (printing)
In this paper I prove several decay statements for solutions to the wave equation on Schwarzschild black hole spacetimes in all dimensions. While the quantitative decay rates had been established in the 3+1-dimensional case, c.f. Luk (2009), the main interest in this paper lies in its method of proof, which uses and extends the "new physical-space approach to decay" of Dafermos and Rodnianski (2009).
To appear in Communications in Mathematical Physics
In this paper I develop the global study of linear waves on Kerr de Sitter spacetimes. I am particularly interested here in the so-called cosmological region that is bounded in the past by the cosmological horizons and to the future by a spacelike hypersurface at infinity. It is shown that the expansion of that region provides a stability mechanism that manifests itself in a global redshift effect; moreover this effect persists in a large class of expanding cosmologies near the Schwarzschild de Sitter geometry. Global boundedness and decay results are obtained when our estimates are combined with earlier work concerning the stationary region by Dafermos and Rodnianski (2007) and Dyatlov (2010).
Videos: Banff, Geometry and Inverse problems workshop (Spyros Alexakis).
We explore in this paper the question if solutions to wave equations are completely determined from their radiation towards infinity. We are led to show that if the radiation fields of two solutions to a wave equation with suitably fast decaying coefficients conincide to all orders on suitable parts of null infinity, then these solutions indeed coincide in a neighborhood of infinity. The size of this neighborhood depends strongly on the geometry of the asymptotically flat background spacetime; in particular we find that a positive mass of the spacetime works strongly in our favor.
www.flickr.com |