Statistical properties for coarse expanding dynamical systems

Giulio Tiozzo
University of Toronto

Quasiworld workshop
July 14th, 2020
Summary

1. Thurston maps, expanding or not
Summary

1. Thurston maps, expanding or not
2. Coarse expanding systems
Summary

1. Thurston maps, expanding or not
2. Coarse expanding systems
3. Examples of expanding systems
Summary

1. Thurston maps, expanding or not
2. Coarse expanding systems
3. Examples of expanding systems
4. Thermodynamic formalism
Summary

1. Thurston maps, expanding or not
2. Coarse expanding systems
3. Examples of expanding systems
4. Thermodynamic formalism
5. Statement of results
Summary

1. Thurston maps, expanding or not
2. Coarse expanding systems
3. Examples of expanding systems
4. Thermodynamic formalism
5. Statement of results
6. Question time
Summary

1. Thurston maps, expanding or not
2. Coarse expanding systems
3. Examples of expanding systems
4. Thermodynamic formalism
5. Statement of results
6. Question time
7. Proof: the case without periodic critical points
Summary

1. Thurston maps, expanding or not
2. Coarse expanding systems
3. Examples of expanding systems
4. Thermodynamic formalism
5. Statement of results
6. Question time
7. Proof: the case without periodic critical points
8. Proof: how to deal with periodic critical points
Summary

1. Thurston maps, expanding or not
2. Coarse expanding systems
3. Examples of expanding systems
4. Thermodynamic formalism
5. Statement of results
6. Question time
7. Proof: the case without periodic critical points
8. Proof: how to deal with periodic critical points

joint with T. Das, F. Przytycki, M. Urbański, A. Zdunik
Thurston maps
A Thurston map is a postcritically finite branched cover.
Thurston maps

A Thurston map is a postcritically finite branched cover $f : S^2 \to S^2$ of the 2-sphere.
Thurston maps

A Thurston map is a postcritically finite branched cover $f : S^2 \to S^2$ of the 2-sphere.

Recall

$$P(f) := \bigcup_{n \geq 1} f^n(\text{Crit } f)$$
Thurston maps

A Thurston map is a postcritically finite branched cover $f : S^2 \to S^2$ of the 2-sphere.

Recall

$$P(f) := \bigcup_{n \geq 1} f^n(\text{Crit } f)$$

and f is postcritically finite if $\#P(f) < +\infty$.
Thurston maps

A Thurston map is a postcritically finite branched cover \(f : S^2 \to S^2 \) of the 2-sphere.

Recall

\[
P(f) := \bigcup_{n \geq 1} f^n(\text{Crit } f)
\]

and \(f \) is postcritically finite if \(\# P(f) < +\infty \).

Thurston’s theorem: combinatorial characterization of Thurston maps which are “equivalent” to rational maps.
Thurston maps

A Thurston map is a postcritically finite branched cover $f : S^2 \to S^2$ of the 2-sphere.

Recall

$$P(f) := \bigcup_{n \geq 1} f^n(\text{Crit } f)$$

and f is postcritically finite if $\# P(f) < +\infty$.

Thurston’s theorem: combinatorial characterization of Thurston maps which are “equivalent” to rational maps.

Examples
Thurston maps

A Thurston map is a postcritically finite branched cover $f : S^2 \to S^2$ of the 2-sphere.

Recall

$$P(f) := \bigcup_{n \geq 1} f^n(\text{Crit } f)$$

and f is postcritically finite if $\# P(f) < +\infty$.

Thurston’s theorem: combinatorial characterization of Thurston maps which are “equivalent” to rational maps.

Examples

- $f(z) := \frac{p(z)}{q(z)}$ a postcritically finite rational map.
Thurston maps

A Thurston map is a postcritically finite branched cover $f : S^2 \rightarrow S^2$ of the 2-sphere.

Recall

$$P(f) := \bigcup_{n \geq 1} f^n(\text{Crit } f)$$

and f is postcritically finite if $\#P(f) < +\infty$.

Thurston's theorem: combinatorial characterization of Thurston maps which are “equivalent” to rational maps.

Examples

- $f(z) := \frac{p(z)}{q(z)}$ a postcritically finite rational map.
- A Lattés map
Thurston maps

A Thurston map is a postcritically finite branched cover \(f : S^2 \to S^2 \) of the 2-sphere.

Recall

\[
P(f) := \bigcup_{n \geq 1} f^n(\text{Crit } f)
\]

and \(f \) is postcritically finite if \(\#P(f) < +\infty \).

Thurston’s theorem: combinatorial characterization of Thurston maps which are “equivalent” to rational maps.

Examples

- \(f(z) := \frac{p(z)}{q(z)} \) a postcritically finite rational map.
- A Lattés map \(g(z) = 2z \) as \(g : \mathbb{C}/\mathbb{Z} \to \mathbb{C}/\mathbb{Z} \) and \(z \sim -z \)

\[
\begin{array}{ccc}
\mathbb{C}/\Lambda & \xrightarrow{g} & \mathbb{C}/\Lambda \\
\downarrow & & \downarrow \\
\hat{\mathbb{C}} & \xrightarrow{f} & \hat{\mathbb{C}}
\end{array}
\]
Lattés maps

\[g(z) = 4 \frac{z(1 - z^2)}{(1 + z^2)^2} \]
Pillow maps with flaps

Modification of Lattés maps: add a “flap”
Pillow maps with flaps

Modification of Lattés maps: add a “flap”
Pillows with flaps

Visual metric on the sphere:
Pillows with flaps

Visual metric on the sphere:

\[
\text{diam(\text{piece of depth } n)} \approx \lambda^{-n}
\]
History

- **Bonk-Meyer**: Expanding Thurston maps.
History

- **Bonk-Meyer**: Expanding Thurston maps. Rigidity for measure of maximal entropy.
History

- **Bonk-Meyer**: Expanding Thurston maps. Rigidity for measure of maximal entropy.
- **Haïssinsky-Pilgrim**: coarse expanding conformal (cxc) systems.
History

- **Bonk-Meyer**: Expanding Thurston maps. Rigidity for measure of maximal entropy.
- **Haïssinsky-Pilgrim**: coarse expanding conformal (cxc) systems. General axioms in metric space,
History

- **Bonk-Meyer**: Expanding Thurston maps. Rigidity for measure of maximal entropy.
- **Haïssinsky-Pilgrim**: coarse expanding conformal \((cxc)\) systems. General axioms in metric space, not postcritically finite.
- **Przytycki, Urbański**: ergodic theory of rational maps for hyperbolic potentials.
- **Z. Li**: ergodic theory of expanding Thurston maps. Existence and uniqueness of equilibrium measures. Note: he works directly on the sphere, estimating the PF operator.
History

- **Bonk-Meyer**: Expanding Thurston maps. Rigidity for measure of maximal entropy.
- **Haïssinsky-Pilgrim**: coarse expanding conformal (cxc) systems. General axioms in metric space, not postcritically finite. Existence and uniqueness of measure of maximal entropy.
History

- **Bonk-Meyer**: Expanding Thurston maps. Rigidity for measure of maximal entropy.

- **Haïssinsky-Pilgrim**: coarse expanding conformal (cxc) systems. General axioms in metric space, not postcritically finite. Existence and uniqueness of measure of maximal entropy.

- **Przytycki, Urbański**: ergodic theory of rational maps for hyperbolic potentials.
History

- **Bonk-Meyer**: Expanding Thurston maps. Rigidity for measure of maximal entropy.

- **Haïssinsky-Pilgrim**: coarse expanding conformal (cxc) systems. General axioms in metric space, not postcritically finite. Existence and uniqueness of measure of maximal entropy.

- **Przytycki, Urbański**: ergodic theory of rational maps for hyperbolic potentials

- **Rivera-Letelier, Inoquio-Renteria**: ergodic theory of Collet-Eckmann rational maps

- **Z. Li**: ergodic theory of expanding Thurston maps. Existence and uniqueness of equilibrium measures. Note: he works directly on the sphere, estimating the PF operator.
History

- **Bonk-Meyer**: Expanding Thurston maps. Rigidity for measure of maximal entropy.

- **Haïssinsky-Pilgrim**: coarse expanding conformal (cxc) systems. General axioms in metric space, not postcritically finite. Existence and uniqueness of measure of maximal entropy.

- **Przytycki, Urbański**: ergodic theory of rational maps for hyperbolic potentials

- **Rivera-Letelier, Inoquio-Renteria**: ergodic theory of Collet-Eckmann rational maps

- **Z. Li**: ergodic theory of expanding Thurston maps.
History

- **Bonk-Meyer**: Expanding Thurston maps. Rigidity for measure of maximal entropy.
- **Haïssinsky-Pilgrim**: coarse expanding conformal (cxc) systems. General axioms in metric space, not postcritically finite. Existence and uniqueness of measure of maximal entropy.
- **Przytycki, Urbański**: ergodic theory of rational maps for hyperbolic potentials
- **Rivera-Letelier, Inoquio-Renteria**: ergodic theory of Collet-Eckmann rational maps
- **Z. Li**: ergodic theory of expanding Thurston maps. Existence and uniqueness of equilibrium measures.
History

- **Bonk-Meyer**: Expanding Thurston maps. Rigidity for measure of maximal entropy.

- **Haïssinsky-Pilgrim**: coarse expanding conformal (cxc) systems. General axioms in metric space, not postcritically finite. Existence and uniqueness of measure of maximal entropy.

- **Przytycki, Urbański**: ergodic theory of rational maps for hyperbolic potentials

- **Rivera-Letelier, Inoquio-Renteria**: ergodic theory of Collet-Eckmann rational maps

- **Z. Li**: ergodic theory of expanding Thurston maps. Existence and uniqueness of equilibrium measures. Note: he works directly on the sphere, estimating the PF operator.
Finite branched coverings

Let $f : Y \to Z$ be a continuous map of loc. connected spaces.
Finite branched coverings

Let $f : Y \to Z$ be a continuous map of loc. connected spaces. The degree of f is defined as

$$\text{deg}(f) := \sup\{\# f^{-1}(z) : z \in Z\}.$$
Finite branched coverings

Let $f : Y \to Z$ be a continuous map of loc. connected spaces. The degree of f is defined as

$$\text{deg}(f) := \sup \{ \#f^{-1}(z) : z \in Z \}.$$

Given a point $y \in Y$, the local degree of f at y is

$$\text{deg}(f; y) := \inf \sup \{ \#f^{-1}(z) \cap U : z \in f(U) \}$$
Finite branched coverings

Let $f : Y \to Z$ be a continuous map of loc. connected spaces. The degree of f is defined as

$$\text{deg}(f) := \sup \{ \# f^{-1}(z) : z \in Z \}.$$

Given a point $y \in Y$, the local degree of f at y is

$$\text{deg}(f; y) := \inf \sup_U \# \{ f^{-1}(z) \cap U : z \in f(U) \}$$

where U ranges over all open neighborhoods of y.
Let $f : Y \to Z$ be a continuous map of loc. connected spaces. The **degree** of f is defined as

$$\deg(f) := \sup\{\#f^{-1}(z) : z \in Z\}.$$

Given a point $y \in Y$, the **local degree** of f at y is

$$\deg(f; y) := \inf_{U} \sup \#\{f^{-1}(z) \cap U : z \in f(U)\}$$

where U ranges over all open neighborhoods of y. A point y is **critical** if $\deg(f; y) > 1$.

Finite branched coverings
Finite branched coverings

Definition
The map $f : Y \rightarrow Z$ is a finite branched cover of degree d
Finite branched coverings

Definition
The map $f : Y \to Z$ is a finite branched cover of degree d if
$\deg(f) = d < \infty$ and
Finite branched coverings

Definition

The map \(f : Y \rightarrow Z \) is a finite branched cover of degree \(d \) if \(\deg(f) = d < \infty \) and

1. for any \(z \in Z \),

\[
\sum_{y \in f^{-1}(z)} \deg(f; y) = \deg(f)
\]
Finite branched coverings

Definition
The map $f : Y \to Z$ is a finite branched cover of degree d if $\deg(f) = d < \infty$ and

1. for any $z \in Z$,

$$\sum_{y \in f^{-1}(z)} \deg(f ; y) = \deg(f)$$

2. for any $y_0 \in Y$ there are compact neighborhoods U, V of y_0 and $f(y_0)$
Finite branched coverings

Definition

The map \(f : Y \to Z \) is a \textit{finite branched cover} of degree \(d \) if \(\deg(f) = d < \infty \) and

1. for any \(z \in Z \),

\[
\sum_{y \in f^{-1}(z)} \deg(f; y) = \deg(f)
\]

2. for any \(y_0 \in Y \) there are compact neighborhoods \(U, V \) of \(y_0 \) and \(f(y_0) \) such that

\[
\sum_{y \in U, f(y) = z} \deg(f; y) = \deg(f; y_0)
\]

for all \(z \in V \).
Finite branched coverings

Definition

The map $f : Y \to Z$ is a **finite branched cover** of degree d if $\deg(f) = d < \infty$ and

1. for any $z \in Z$,
 \[
 \sum_{y \in f^{-1}(z)} \deg(f; y) = \deg(f)
 \]

2. for any $y_0 \in Y$ there are compact neighborhoods U, V of y_0 and $f(y_0)$ such that
 \[
 \sum_{y \in U, f(y) = z} \deg(f; y) = \deg(f; y_0)
 \]
 for all $z \in V$.

We define the **branch set** as $B_f := \{ y \in Y : \deg(f; y) > 1 \}$
The setting

Let \(f : \mathcal{W}_1 \rightarrow \mathcal{W}_0 \) be a finite branched covering.
The setting
Let $f : W_1 \to W_0$ be a finite branched covering.

Definition
The repellor is
The setting
Let $f : W_1 \rightarrow W_0$ be a finite branched covering.

Definition
The repellor is

$$X := \bigcap_{n \geq 0} f^{-n}(W_1)$$
The setting
Let \(f : W_1 \to W_0 \) be a finite branched covering.

Definition
The repellor is

\[
X := \bigcap_{n \geq 0} f^{-n}(W_1)
\]
The setting
Let $f : W_1 \to W_0$ be a finite branched covering.

Definition
The repellor is

$$X := \bigcap_{n \geq 0} f^{-n}(W_1)$$

If \mathcal{U} is a cover of W_1, then

$$\mathcal{U}_n := \{\text{connected components of } f^{-n}(\mathcal{U})\}$$
Coarse expanding conformal (cxc) systems

Haïssinsky-Pilgrim axioms
Coarse expanding conformal (cxc) systems

Haïssinsky-Pilgrim axioms

A finite branched cover \(f : \mathcal{W}_1 \to \mathcal{W}_0 \) which satisfies:

- **Expanding**: There exists a cover \(U \) of \(\mathcal{W}_1 \) such that
 \[
 \lim_{n \to \infty} \text{diam}(U^n) = 0
 \]

Formally: For any other cover \(V \) there exists \(N \) such that for any \(n \geq N \), every element of \(U^n \) is contained in some element of \(V \).
Coarse expanding conformal (cxc) systems

Haïssinsky-Pilgrim axioms

A finite branched cover $f : W_1 \to W_0$ which satisfies:

- **[Expanding]**: There exists a cover \mathcal{U} of W_1 such that

 \[\text{``diam}(\mathcal{U}_n) \to 0'' \]
Coarse expanding conformal (cxc) systems

Haïssinsky-Pilgrim axioms

A finite branched cover $f : \mathcal{W}_1 \to \mathcal{W}_0$ which satisfies:

- **[Expanding]**: There exists a cover \mathcal{U} of \mathcal{W}_1 such that

 \[\text{diam}(\mathcal{U}_n) \to 0 \]

 Formally: For any other cover \mathcal{V} there exists N such that for any $n \geq N$, every element of \mathcal{U}_n is contained in some element of \mathcal{V}.
Coarse expanding conformal (cxc) systems

Haïssinsky-Pilgrim axioms

A finite branched cover \(f : W_1 \to W_0 \) which satisfies:

- **[Expanding]**: There exists a cover \(\mathcal{U} \) of \(W_1 \) such that

 \[
 \text{“diam}(\mathcal{U}_n) \to 0\]

 Formally: For any other cover \(\mathcal{V} \) there exists \(N \) such that for any \(n \geq N \), every element of \(\mathcal{U}_n \) is contained in some element of \(\mathcal{V} \).
Coarse expanding conformal (cxc) systems

Haïssinsky-Pilgrim axioms

A finite branched cover \(f : \mathcal{W}_1 \rightarrow \mathcal{W}_0 \) which satisfies:

- [**Expanding**]: There exists a cover \(\mathcal{U} \) of \(\mathcal{W}_1 \) such that

 \[\text{“} \text{diam}(\mathcal{U}_n) \rightarrow 0 \text{“} \]

Formally: For any other cover \(\mathcal{V} \) there exists \(N \) such that for any \(n \geq N \), every element of \(\mathcal{U}_n \) is contained in some element of \(\mathcal{V} \).
Coarse expanding conformal (cxc) systems

Haïssinsky-Pilgrim axioms

A finite branched cover $f : \mathcal{W}_1 \rightarrow \mathcal{W}_0$ which satisfies:

- **[Expanding]**: There exists a cover \mathcal{U} of \mathcal{W}_1 such that

 \[
 \text{diam}(\mathcal{U}_n) \rightarrow 0
 \]

 Formally: For any other cover \mathcal{V} there exists N such that for any $n \geq N$, every element of \mathcal{U}_n is contained in some element of \mathcal{V}.

Coarse expanding conformal (cxc) systems

Haïssinsky-Pilgrim axioms
A finite branched cover \(f : W_1 \rightarrow W_0 \) which satisfies:

- **[Expanding]**: There exists a cover \(\mathcal{U} \) of \(W_1 \) such that

 \[
 \text{``diam}(\mathcal{U}_n) \rightarrow 0''
 \]

 Formally: For any other cover \(\mathcal{V} \) there exists \(N \) such that for any \(n \geq N \), every element of \(\mathcal{U}_n \) is contained in some element of \(\mathcal{V} \).

- **[Irreducibility]**: For any \(x \in X \) and any open set \(W \ni x \), there exists \(n \) such that \(f^n(W) \supseteq X \).
Coarse expanding conformal (cxc) systems

Haïssinsky-Pilgrim axioms

A finite branched cover \(f : W_1 \to W_0 \) which satisfies:

- **[Expanding]**: There exists a cover \(\mathcal{U} \) of \(W_1 \) such that

 \[
 \text{``diam}(\mathcal{U}_n) \to 0''
 \]

 Formally: For any other cover \(\mathcal{V} \) there exists \(N \) such that for any \(n \geq N \), every element of \(\mathcal{U}_n \) is contained in some element of \(\mathcal{V} \).

- **[Irreducibility]**: For any \(x \in X \) and any open set \(W \ni x \), there exists \(n \) such that \(f^n(W) \supseteq X \).

- **[Degree]**: \(\exists C > 0 \) s.t.

 \[
 \deg(f^k : U \to V) \leq C
 \]

 for any \(U \in \mathcal{U}_{n+k}, \ V \in \mathcal{U}_n \).
Weakly coarse expanding (wxc) systems

- **[Expanding]**: There exists a cover \mathcal{U} of W_1 such that

 \[\text{diam}(\mathcal{U}_n) \to 0 \]
Weakly coarse expanding (wxc) systems

[Expanding]: There exists a cover \mathcal{U} of W_1 such that

\[\text{``diam}(\mathcal{U}_n) \to 0'' \]

Formally: For any other cover \mathcal{V} there exists N such that for any $n \geq N$, every element of \mathcal{U}_n is contained in some element of \mathcal{V}.

[Irreducibility]: For any $x \in X$ and any open set $W \ni x$, there exists n such that $f^n(W) \supseteq X$.

[Finiteness]: B_f is finite

Note: If $W_1 \subseteq S_2$, then [Finiteness] is automatic (Whyburn).
Weakly coarse expanding (wxc) systems

- **[Expanding]**: There exists a cover \mathcal{U} of W_1 such that

 \[\text{"diam}(\mathcal{U}_n) \to 0" \]

 Formally: For any other cover \mathcal{V} there exists N such that for any $n \geq N$, every element of \mathcal{U}_n is contained in some element of \mathcal{V}.

- **[Irreducibility]**: For any $x \in X$ and any open set $W \ni x$, there exists n such that $f^n(W) \supseteq X$.

- **[Finiteness]**: Bf is finite

 Note: If $W_1 \subseteq S_2$, then [Finiteness] is automatic (Whyburn).
Weakly coarse expanding (wxc) systems

- **[Expanding]**: There exists a cover \mathcal{U} of W_1 such that

 \[\text{diam}(\mathcal{U}_n) \to 0 \]

 Formally: For any other cover \mathcal{V} there exists N such that for any $n \geq N$, every element of \mathcal{U}_n is contained in some element of \mathcal{V}.

- **[Irreducibility]**: For any $x \in X$ and any open set $W \ni x$, there exists n such that $f^n(W) \supseteq X$.

- **[Finiteness]**: B_f is finite
Weakly coarse expanding (wxc) systems

- **[Expanding]**: There exists a cover U of W_1 such that
 \[
 \text{``diam}(U_n) \rightarrow 0''
 \]
 Formally: For any other cover V there exists N such that for any $n \geq N$, every element of U_n is contained in some element of V.

- **[Irreducibility]**: For any $x \in X$ and any open set $W \ni x$, there exists n such that $f^n(W) \supseteq X$.

- **[Finiteness]**: B_f is finite

Note: If $W_1 \subseteq S^2$, then [Finiteness] is automatic (Whyburn).
Definition

A metric ρ on X is exponentially contracting if $\exists C, \alpha > 0$ such that

$$\text{diam}_{\rho}(U) \leq Ce^{-\alpha n}$$

for any $U \in \mathcal{U}_n$.

Lemma

For any weakly coarse expanding system $f: \mathcal{W}_1 \to \mathcal{W}_0$, there exists an exponentially contracting metric ρ on the repellor X.

Definition

A metric ρ on X is a visual metric if $\exists C_1, C_2, \alpha > 0$ such that

$$C_1 e^{-\alpha n} \leq \text{diam}_{\rho}(U) \leq C_2 e^{-\alpha n}$$

for any $U \in \mathcal{U}_n$.

From topological to metric

Definition
A metric ρ on X is exponentially contracting if $\exists C, \alpha > 0$ such that

$$\text{diam}_\rho(U) \leq Ce^{-\alpha n}$$

for any $U \in \mathcal{U}_n$.

Lemma
For any weakly coarse expanding system $f : W_1 \to W_0$, there exists an exponentially contracting metric ρ on the repellor X.
From topological to metric

Definition
A metric ρ on X is **exponentially contracting** if $\exists C, \alpha > 0$ such that

$$\text{diam}_{\rho}(U) \leq Ce^{-\alpha n}$$

for any $U \in \mathcal{U}_n$.

Lemma
*For any weakly coarse expanding system $f : W_1 \to W_0$, there exists an exponentially contracting metric ρ on the repellor X.***

Definition
A metric ρ on X is a **visual metric** if $\exists C_1, C_2, \alpha > 0$ such that

$$C_1e^{-\alpha n} \leq \text{diam}_{\rho}(U) \leq C_2e^{-\alpha n}$$

for any $U \in \mathcal{U}_n$.
Examples of weakly coarse expanding systems

- Expanding Thurston maps

Subhyperbolic rational maps: the critical points either converge to attracting cycles, or eventually map to a repelling periodic cycle. These are also cxc.

Collet-Eckmann rational maps:

\[|(f^n)'(f(c))| \geq C \lambda^n \]
for \(\lambda > 1 \) if \(c \) does not map to another critical point, and there are no parabolic cycles.

Topological Collet-Eckmann rational maps: there exist \(M \geq 0 \), \(P \geq 1 \), \(r > 0 \) such that for every \(x \in X \) there exists a sequence \(n_j \) with \(n_j \leq P \cdot j \) and for each \(j \neq \{0 \leq i < n_j: \text{Comp} f_i(x) f^{-n_j + i} B(f^{n_j}(x), r) \cap \text{Crit} f \neq \emptyset} \leq M \). These are wcx but not cxc.
Examples of weakly coarse expanding systems

- Expanding Thurston maps
- Subhyperbolic rational maps:

\[|(f^n)'(f^c)| \geq C \lambda^n \] for \(\lambda > 1 \) if \(c \) does not map to another critical point, and there are no parabolic cycles.

- Topological Collet-Eckmann rational maps: there exist \(M \geq 0, P \geq 1, r > 0 \) such that for every \(x \in X \) there exists a sequence \(n_j \) with \(n_j \leq P \cdot j \) and for each \(j \neq 0 \leq i < n_j : \text{Comp } f_i(x) \cap B(f^{n_j}(x), r) \cap \text{Crit } f \neq \emptyset \) \leq M \). These are wcx but not cxc.
Examples of weakly coarse expanding systems

- Expanding Thurston maps
- **Subhyperbolic** rational maps: the critical points either converge to attracting cycles, or eventually map to a repelling periodic cycle.

\[|(f^n)'(f(c))| \geq C \lambda^n \]

if \(c \) does not map to another critical point, and there are no parabolic cycles.

- Topological Collet-Eckmann rational maps: there exist \(M \geq 0 \), \(P \geq 1 \), \(r > 0 \) such that for every \(x \in X \) there exists a sequence \(n_j \) with \(n_j \leq P \cdot j \) and for each \(j \neq \{0 \leq i < n_j : \text{Comp} f_i(x) \cap B(f^{n_j}(x), r) \cap \text{Crit} f \neq \emptyset} \leq M \)

These are wcx but not cxc.
Examples of weakly coarse expanding systems

- Expanding Thurston maps
- Subhyperbolic rational maps: the critical points either converge to attracting cycles, or eventually map to a repelling periodic cycle. These are also \textit{cxc}.
Examples of weakly coarse expanding systems

- Expanding Thurston maps

- Subhyperbolic rational maps: the critical points either converge to attracting cycles, or eventually map to a repelling periodic cycle. These are also cxc.

- Collet-Eckmann rational maps:
Examples of weakly coarse expanding systems

- Expanding Thurston maps
- **Subhyperbolic** rational maps: the critical points either converge to attracting cycles, or eventually map to a repelling periodic cycle. These are also cxc.
- **Collet-Eckmann** rational maps:

\[|(f^n)'(f(c))| \geq C\lambda^n \]

for \(\lambda > 1 \)
Examples of weakly coarse expanding systems

- Expanding Thurston maps
- Subhyperbolic rational maps: the critical points either converge to attracting cycles, or eventually map to a repelling periodic cycle. These are also \(cxc\).
- Collet-Eckmann rational maps:

\[|(f^n)'(f(c))| \geq C\lambda^n \]

for \(\lambda > 1\) if \(c\) does not map to another critical point, and there are no parabolic cycles.
Examples of weakly coarse expanding systems

- Expanding Thurston maps
- **Subhyperbolic** rational maps: the critical points either converge to attracting cycles, or eventually map to a repelling periodic cycle. These are also **cxc**.
- **Collet-Eckmann** rational maps:
 \[|(f^n)'(f(c))| \geq C\lambda^n \]
 for \(\lambda > 1 \) if \(c \) does not map to another critical point, and there are no parabolic cycles
- **Topological Collet-Eckmann** rational maps:
Examples of weakly coarse expanding systems

- **Expanding Thurston maps**

- **Subhyperbolic** rational maps: the critical points either converge to attracting cycles, or eventually map to a repelling periodic cycle. These are also **cxc**.

- **Collet-Eckmann** rational maps:

 \[|(f^n)'(f(c))| \geq C\lambda^n \]

 for \(\lambda > 1 \) if \(c \) does not map to another critical point, and there are no parabolic cycles.

- **Topological Collet-Eckmann** rational maps: there exist \(M \geq 0, P \geq 1, r > 0 \) such that
Examples of weakly coarse expanding systems

- Expanding Thurston maps
- Subhyperbolic rational maps: the critical points either converge to attracting cycles, or eventually map to a repelling periodic cycle. These are also cxc.
- Collet-Eckmann rational maps:

\[|(f^n)'(f(c))| \geq C\lambda^n \]

for \(\lambda > 1 \) if \(c \) does not map to another critical point, and there are no parabolic cycles

- Topological Collet-Eckmann rational maps: there exist \(M \geq 0, P \geq 1, r > 0 \) such that for every \(x \in X \) there exists a sequence \(n_j \)
Examples of weakly coarse expanding systems

- Expanding Thurston maps

- Subhyperbolic rational maps: the critical points either converge to attracting cycles, or eventually map to a repelling periodic cycle. These are also cxc.

- Collet-Eckmann rational maps:
 \[|(f^n)'(f(c))| \geq C\lambda^n\]
 for \(\lambda > 1\) if \(c\) does not map to another critical point, and there are no parabolic cycles

- Topological Collet-Eckmann rational maps: there exist \(M \geq 0, P \geq 1, r > 0\) such that for every \(x \in X\) there exists a sequence \(n_j\) with \(n_j \leq P \cdot j\) and for each \(j\)
Examples of weakly coarse expanding systems

- Expanding Thurston maps
- Subhyperbolic rational maps: the critical points either converge to attracting cycles, or eventually map to a repelling periodic cycle. These are also cxc.
- Collet-Eckmann rational maps:
 \[(f^n)'(f(c))| \geq C\lambda^n\]
 for \(\lambda > 1\) if \(c\) does not map to another critical point, and there are no parabolic cycles
- Topological Collet-Eckmann rational maps: there exist \(M \geq 0, P \geq 1, r > 0\) such that for every \(x \in X\) there exists a sequence \(n_j\) with \(n_j \leq P \cdot j\) and for each \(j\)

\[
\#\{0 \leq i < n_j : C_{\text{comp}} f_{i(x)} f^{-(n_j-i)} B(f^{n_j}(x), r) \cap \text{Crit } f \neq \emptyset\} \leq M
\]
Examples of weakly coarse expanding systems

- Expanding Thurston maps

- Subhyperbolic rational maps: the critical points either converge to attracting cycles, or eventually map to a repelling periodic cycle. These are also cxc.

- Collet-Eckmann rational maps:
 \[|(f^n)'(f(c))| \geq C\lambda^n \]
 for \(\lambda > 1 \) if \(c \) does not map to another critical point, and there are no parabolic cycles.

- Topological Collet-Eckmann rational maps: there exist \(M \geq 0, P \geq 1, r > 0 \) such that for every \(x \in X \) there exists a sequence \(n_j \) with \(n_j \leq P \cdot j \) and for each \(j \)

 \[\# \{ 0 \leq i < n_j : \text{Comp}_{f^i(x)} f^{-(n_j-i)} B(f^{n_j}(x), r) \cap \text{Crit } f \neq \emptyset \} \leq M \]

 These are wcx
Examples of weakly coarse expanding systems

- Expanding Thurston maps
- Subhyperbolic rational maps: the critical points either converge to attracting cycles, or eventually map to a repelling periodic cycle. These are also cxc.
- Collet-Eckmann rational maps:

 \[|(f^n)'(f(c))| \geq C\lambda^n \]

 for \(\lambda > 1 \) if \(c \) does not map to another critical point, and there are no parabolic cycles

- Topological Collet-Eckmann rational maps: there exist \(M \geq 0, P \geq 1, r > 0 \) such that for every \(x \in X \) there exists a sequence \(n_j \) with \(n_j \leq P \cdot j \) and for each \(j \)

 \[\# \{ 0 \leq i < n_j : \text{Comp}_{f^i(x)} f^{-(n_j-i)} B(f^{n_j}(x), r) \cap \text{Crit} f \neq \emptyset \} \leq M \]

 These are wcx but not cxc.
Examples of weakly coarse expanding systems

- Expanding Thurston maps
- Subhyperbolic rational maps: the critical points either converge to attracting cycles, or eventually map to a repelling periodic cycle. These are also \(\text{cxc} \).
- Collet-Eckmann rational maps:

\[
|(f^n)'(f(c))| \geq C\lambda^n
\]

for \(\lambda > 1 \) if \(c \) does not map to another critical point, and there are no parabolic cycles

- Topological Collet-Eckmann rational maps: there exist \(M \geq 0, P \geq 1, r > 0 \) such that for every \(x \in X \) there exists a sequence \(n_j \) with \(n_j \leq P \cdot j \) and for each \(j \)

\[
\#\{0 \leq i < n_j : \text{Comp}_{f^i(x)} f^{-(n_j-i)} B(f^{n_j}(x), r) \cap \text{Crit } f \neq \emptyset\} \leq M
\]

These are \(\text{wcx} \) but not \(\text{cxc} \).
Examples of weakly coarse expanding systems - II

- **Polymodials** (Blokh-Cleveland-Misiurewicz)

\[f(z) = \lambda \frac{z^2}{|z|} + 1 \]
Examples of weakly coarse expanding systems - II

- **Polymodials** (Blokh-Cleveland-Misiurewicz)

\[
f(z) = \lambda \frac{z^2}{|z|} + 1
\]

with \(|\lambda| > 1\).
Examples of weakly coarse expanding systems - II

- **Polymodials** (Blokh-Cleveland-Misiurewicz)

 \[f(z) = \lambda \frac{z^2}{|z|} + 1 \]

 with \(|\lambda| > 1\).

- **Semigroups of rational maps** (Atnip-Sumi-Urbański)
Examples of weakly coarse expanding systems - II

- **Polymodials** (Blokh-Cleveland-Misiurewicz)

 \[f(z) = \lambda \frac{z^2}{|z|} + 1 \]

 with \(|\lambda| > 1\).

- **Semigroups of rational maps** (Atnip-Sumi-Urbański)

 Let \(f_1, \ldots, f_d\) be rational maps.
Examples of weakly coarse expanding systems - II

- **Polymodials** (Blokh-Cleveland-Misiurewicz)

 \[f(z) = \lambda \frac{z^2}{|z|} + 1 \]

 with \(|\lambda| > 1 \).

- **Semigroups of rational maps** (Atnip-Sumi-Urbański)

 Let \(f_1, \ldots, f_d \) be rational maps.

 \[F : \{1, \ldots, d\}^\mathbb{N} \times \hat{\mathbb{C}} \to \{1, \ldots, d\}^\mathbb{N} \times \hat{\mathbb{C}} \]
Examples of weakly coarse expanding systems - II

- **Polymodials** (Blokh-Cleveland-Misiurewicz)

 \[f(z) = \lambda \frac{z^2}{|z|} + 1 \]

 with \(|\lambda| > 1\).

- **Semigroups of rational maps** (Atnip-Sumi-Urbański)

 Let \(f_1, \ldots, f_d\) be rational maps.

 \[F : \{1, \ldots, d\}^\mathbb{N} \times \hat{\mathbb{C}} \to \{1, \ldots, d\}^\mathbb{N} \times \hat{\mathbb{C}} \]

 \[F(\omega, z) := (\sigma(\omega), f_{\omega_0}(z)) \]
Examples of weakly coarse expanding systems - II

- **Polymodials** (Blokh-Cleveland-Misiurewicz)

\[f(z) = \lambda \frac{z^2}{|z|} + 1 \]

with \(|\lambda| > 1 \).

- **Semigroups of rational maps** (Atnip-Sumi-Urbański)

Let \(f_1, \ldots, f_d \) be rational maps.

\[F : \{1, \ldots, d\}^N \times \hat{\mathbb{C}} \to \{1, \ldots, d\}^N \times \hat{\mathbb{C}} \]

\[F(\omega, z) := (\sigma(\omega), f_{\omega_0}(z)) \]

Finiteness holds under certain conditions: e.g. if

\[f_1(z) = z^2 + 2, \quad f_2(z) = z^2 - 2 \]
Thermodynamic formalism

Let $f : X \to X$ the dynamics, and $\varphi : (X, \rho) \to \mathbb{R}$ be Hölder function.
Thermodynamic formalism

Let $f : X \to X$ the dynamics, and $\varphi : (X, \rho) \to \mathbb{R}$ be Hölder function called a potential.
Thermodynamic formalism

Let $f : X \to X$ the dynamics, and $\varphi : (X, \rho) \to \mathbb{R}$ be Hölder function called a potential.

If μ is an f-invariant measure on X,

$P_\mu(\varphi) := h_\mu(f) + \int \varphi \, d\mu$

and the topological pressure is

$P_{\text{top}}(\varphi) = \sup_{\mu \in \mathcal{M}(f)} P_\mu(\varphi)$

Definition

A measure μ which achieves the sup is called an equilibrium state.

$\varphi = 0$: $P_{\text{top}}(\varphi)$ is top. entropy, μ is measure of maximal entropy

$\varphi = -s \log |f'|$: μ is a conformal measure of dimension s ⇒ compute Hausdorff dimension of X.
Thermodynamic formalism

Let \(f : X \to X \) the dynamics, and \(\varphi : (X, \rho) \to \mathbb{R} \) be Hölder function called a **potential**.

If \(\mu \) is an \(f \)-invariant measure on \(X \), its **pressure** is

\[
P_\mu(\varphi) := h_\mu(f) + \int \varphi \, d\mu
\]
Thermodynamic formalism

Let $f : X \to X$ the dynamics, and $\varphi : (X, \rho) \to \mathbb{R}$ be Hölder function called a potential.

If μ is an f-invariant measure on X, its pressure is

$$P_\mu(\varphi) := h_\mu(f) + \int \varphi \, d\mu$$

and the topological pressure is

$$P_{\text{top}}(\varphi) = \sup_{\mu \in \mathcal{M}(f)} P_\mu(\varphi)$$
Thermodynamic formalism

Let $f : X \to X$ the dynamics, and $\varphi : (X, \rho) \to \mathbb{R}$ be Hölder function called a potential.
If μ is an f-invariant measure on X, its pressure is

$$P_\mu(\varphi) := h_\mu(f) + \int \varphi \, d\mu$$

and the topological pressure is

$$P_{\text{top}}(\varphi) = \sup_{\mu \in \mathcal{M}(f)} P_\mu(\varphi)$$

Definition

A measure μ which achieves the sup is called an equilibrium state.
Thermodynamic formalism

Let $f : X \to X$ the dynamics, and $\varphi : (X, \rho) \to \mathbb{R}$ be Hölder function called a potential.

If μ is an f-invariant measure on X, its pressure is

$$P_\mu(\varphi) := h_\mu(f) + \int \varphi \, d\mu$$

and the topological pressure is

$$P_{\text{top}}(\varphi) = \sup_{\mu \in \mathcal{M}(f)} P_\mu(\varphi)$$

Definition

A measure μ which achieves the sup is called an equilibrium state.

$\varphi = 0$:
Thermodynamic formalism

Let $f : X \to X$ the dynamics, and $\varphi : (X, \rho) \to \mathbb{R}$ be Hölder function called a potential.

If μ is an f-invariant measure on X, its pressure is

$$P_\mu(\varphi) := h_\mu(f) + \int \varphi \, d\mu$$

and the topological pressure is

$$P_{\text{top}}(\varphi) = \sup_{\mu \in \mathcal{M}(f)} P_\mu(\varphi)$$

Definition

A measure μ which achieves the sup is called an equilibrium state.

$\varphi = 0$: $P_{\text{top}}(\varphi)$ is top. entropy,
Thermodynamic formalism

Let $f : X \to X$ the dynamics, and $\varphi : (X, \rho) \to \mathbb{R}$ be Hölder function called a potential.

If μ is an f-invariant measure on X, its pressure is

$$P_{\mu}(\varphi) := h_{\mu}(f) + \int \varphi \, d\mu$$

and the topological pressure is

$$P_{\text{top}}(\varphi) = \sup_{\mu \in M(f)} P_{\mu}(\varphi)$$

Definition

A measure μ which achieves the sup is called an equilibrium state.

- $\varphi = 0$: $P_{\text{top}}(\varphi)$ is top. entropy, μ is measure of maximal entropy
Thermodynamic formalism

Let $f : X \to X$ the dynamics, and $\varphi : (X, \rho) \to \mathbb{R}$ be Hölder function called a **potential**.

If μ is an f-invariant measure on X, its **pressure** is

$$P_\mu(\varphi) := h_\mu(f) + \int \varphi \, d\mu$$

and the **topological pressure** is

$$P_{\text{top}}(\varphi) = \sup_{\mu \in \mathcal{M}(f)} P_\mu(\varphi)$$

Definition

A measure μ which achieves the sup is called an **equilibrium state**.

- $\varphi = 0$: $P_{\text{top}}(\varphi)$ is top. **entropy**, μ is measure of maximal entropy
- $\varphi = -s \log |f'|$:
Thermodynamic formalism

Let \(f : X \rightarrow X \) the dynamics, and \(\varphi : (X, \rho) \rightarrow \mathbb{R} \) be Hölder function called a \textbf{potential}.

If \(\mu \) is an \(f \)-invariant measure on \(X \), its \textbf{pressure} is

\[
P_\mu(\varphi) := h_\mu(f) + \int \varphi \, d\mu
\]

and the \textbf{topological pressure} is

\[
P_{\text{top}}(\varphi) = \sup_{\mu \in M(f)} P_\mu(\varphi)
\]

\textbf{Definition}

A measure \(\mu \) which achieves the sup is called an \textbf{equilibrium state}.

- \(\varphi = 0 \): \(P_{\text{top}}(\varphi) \) is top. \textbf{entropy}, \(\mu \) is measure of maximal entropy
- \(\varphi = -s \log |f'| \): \(\mu \) is a conformal measure of dimension \(s \)
Thermodynamic formalism

Let $f : X \to X$ the dynamics, and $\varphi : (X, \rho) \to \mathbb{R}$ be Hölder function called a potential.
If μ is an f-invariant measure on X, its pressure is

$$P_{\mu}(\varphi) := h_{\mu}(f) + \int \varphi \, d\mu$$

and the topological pressure is

$$P_{\text{top}}(\varphi) = \sup_{\mu \in \mathcal{M}(f)} P_{\mu}(\varphi)$$

Definition
A measure μ which achieves the sup is called an equilibrium state.

- $\varphi = 0$: $P_{\text{top}}(\varphi)$ is top. entropy, μ is measure of maximal entropy
- $\varphi = -s \log |f'|$: μ is a conformal measure of dimension $s \Rightarrow$ compute Hausdorff dimension of X
Statement of results

Theorem

Let $f : W_1 \to W_0$ be a wcx system with $W_1 \subseteq S^2$,

\[
\text{there exists a unique equilibrium state } \mu_{\psi} \text{ for } \psi \text{ on } X.
\]

Let $\psi : (X, \rho) \to \mathbb{R}$ be H"older continuous observable, and denote $S^n \psi(x) := \sum_{k=0}^{n-1} \psi(f^k(x))$. Then there exists the finite limit

\[
\sigma_2 := \lim_{n \to \infty} \frac{1}{n} \int_X (S_n \psi(x) - n \int \psi \, d\mu_{\psi})^2 \, d\mu_{\psi} \geq 0
\]

such that the following statistical laws hold:
Statement of results

Theorem

Let $f : W_1 \to W_0$ be a wcx system with $W_1 \subseteq S^2$, let X be its repellor, ρ an exp. contr. metric on X, $\psi : (X, \rho) \to \mathbb{R}$ be H"older, then:

1. there exists a unique equilibrium state μ_{ψ} for ψ on X.

Let $\psi : (X, \rho) \to \mathbb{R}$ be a H"older continuous observable, and denote $S_n \psi(x) := \sum_{k=0}^{n-1} \psi(f^k(x))$.

Then there exists the finite limit $\sigma_2 := \lim_{n \to \infty} \frac{1}{n} \int_X (S_n \psi(x) - n \int \psi \, d\mu_{\psi})^2 \, d\mu_{\psi} \geq 0$ such that the following statistical laws hold:
Statement of results

Theorem
Let $f : W_1 \rightarrow W_0$ be a wcx system with $W_1 \subseteq S^2$, let X be its repellor, ρ an exp. contr. metric on X, and let $\varphi : (X, \rho) \rightarrow \mathbb{R}$ be Hölder.
Statement of results

Theorem
Let $f : W_1 \to W_0$ be a wcx system with $W_1 \subseteq S^2$, let X be its repellor, ρ an exp. contr. metric on X, and let $\varphi : (X, \rho) \to \mathbb{R}$ be Hölder. Then:

1. there exists a unique equilibrium state μ_φ for φ on X.

Statement of results

Theorem
Let $f : W_1 \to W_0$ be a wcx system with $W_1 \subseteq S^2$, let X be its repellor, ρ an exp. contr. metric on X, and let $\varphi : (X, \rho) \to \mathbb{R}$ be Hölder. Then:

1. there exists a unique equilibrium state μ_φ for φ on X.

Let $\psi : (X, \rho) \to \mathbb{R}$ be a Hölder continuous observable, and denote

$$S_n \psi(x) := \sum_{k=0}^{n-1} \psi(f^k(x)).$$
Theorem

Let $f : W_1 \to W_0$ be a wcx system with $W_1 \subseteq S^2$, let X be its repellor, ρ an exp. contr. metric on X, and let $\varphi : (X, \rho) \to \mathbb{R}$ be Hölder. Then:

1. there exists a unique equilibrium state μ_{φ} for φ on X.

Let $\psi : (X, \rho) \to \mathbb{R}$ be a Hölder continuous observable, and denote

$$S_n\psi(x) := \sum_{k=0}^{n-1} \psi(f^k(x)).$$

Then there exists the finite limit

$$\sigma^2 := \lim_{n \to \infty} \frac{1}{n} \int_X \left(S_n\psi(x) - n \int \psi \ d\mu_{\varphi} \right)^2 \ d\mu_{\varphi} \geq 0$$

such that the following statistical laws hold:
Statement of results - II

Theorem

1. (Central Limit Theorem, CLT) For any $a < b$,

$$
\mu_\varphi \left(\left\{ x \in X : \frac{S_n\psi(x) - n \int_X \psi \ d\mu_\varphi}{\sqrt{n}} \in [a, b] \right\} \right) \rightarrow \int_a^b \frac{e^{-t^2/2\sigma^2}}{\sqrt{2\pi\sigma^2}} \ dt
$$
Statement of results - II

Theorem

1. (Central Limit Theorem, CLT) For any \(a < b \),

\[
\mu_\varphi \left(\left\{ x \in X : \frac{S_n\psi(x) - n \int_X \psi \ d\mu_\varphi}{\sqrt{n}} \in [a, b] \right\} \right) \rightarrow \int_a^b \frac{e^{-t^2/2\sigma^2}}{\sqrt{2\pi\sigma^2}} \ dt
\]

If \(\sigma = 0 \), it converges to a \(\delta \)-mass at 0.
Statement of results - II

Theorem

1. *(Central Limit Theorem, CLT)* For any \(a < b \),

\[
\mu_\varphi \left(\left\{ x \in X : \frac{S_n\psi(x) - n \int_X \psi \, d\mu_\varphi}{\sqrt{n}} \in [a, b] \right\} \right) \to \int_a^b e^{-t^2/2\sigma^2} \, dt
\]

If \(\sigma = 0 \), it converges to a \(\delta \)-mass at 0.

2. *(Law of Iterated Logarithm, LIL)* For \(\mu_\varphi \)-a.e. \(x \in X \),

\[
\limsup_{n \to \infty} \frac{S_n\psi(x) - n \int_X \psi \, d\mu_\varphi}{\sqrt{n \log \log n}} = \sqrt{2\sigma^2}.
\]
Statement of results - II

Theorem

1. (Central Limit Theorem, CLT) For any $a < b$,

$$
\mu_\varphi \left(\left\{ x \in X : \frac{S_n\psi(x) - n\int_X \psi \ d\mu_\varphi}{\sqrt{n}} \in [a, b] \right\} \right) \rightarrow \int_a^b \frac{e^{-t^2/2\sigma^2}}{\sqrt{2\pi\sigma^2}} dt
$$

If $\sigma = 0$, it converges to a δ-mass at 0.

2. (Law of Iterated Logarithm, LIL) For μ_φ-a.e. $x \in X$,

$$
\limsup_{n \to \infty} \frac{S_n\psi(x) - n\int_X \psi \ d\mu_\varphi}{\sqrt{n \log \log n}} = \sqrt{2\sigma^2}.
$$

3. (Exponential Decay of Correlations, EDC) For any $\chi \in L^1(X, \mu_\varphi)$ there exist $\alpha > 0$, $C \geq 0$ such that

$$
\left| \int_X \psi \cdot (\chi \circ f^n) \ d\mu_\varphi - \int_X \psi \ d\mu_\varphi \cdot \int_X \chi \ d\mu_\varphi \right| \leq Ce^{-n\alpha}.
$$
Statement of results - II

Theorem

1. (Central Limit Theorem, CLT) For any \(a < b \),

\[
\mu_\varphi \left(\left\{ x \in X : \frac{S_n \psi(x) - n \int_X \psi \, d\mu_\varphi}{\sqrt{n}} \in [a, b] \right\} \right) \rightarrow \frac{\int_a^b e^{-t^2/2\sigma^2} \, dt}{\sqrt{2\pi\sigma^2}}
\]

If \(\sigma = 0 \), it converges to a \(\delta \)-mass at 0.

2. (Law of Iterated Logarithm, LIL) For \(\mu_\varphi \)-a.e. \(x \in X \),

\[
\limsup_{n \to \infty} \frac{S_n \psi(x) - n \int_X \psi \, d\mu_\varphi}{\sqrt{n \log \log n}} = \sqrt{2\sigma^2}.
\]

3. (Exponential Decay of Correlations, EDC) For any \(\chi \in L^1(X, \mu_\varphi) \) there exist \(\alpha > 0, C \geq 0 \) such that

\[
\left| \int_X \psi \cdot (\chi \circ f^n) \, d\mu_\varphi - \int_X \psi \, d\mu_\varphi \cdot \int_X \chi \, d\mu_\varphi \right| \leq Ce^{-n\alpha}.
\]
Statement of results - III

Theorem

1. *(Large Deviations, LD)*

2. \(\sigma = 0 \) if and only if there exists a continuous \(u : X \to \mathbb{R} \) such that \(\psi - \int_X \psi \, d\mu = u \circ f - u \).

3. \(\mu_1 = \mu_2 \) if and only if there exists \(K \in \mathbb{R} \) and a continuous \(u : X \to \mathbb{R} \) such that \(\phi_1 - \phi_2 = u \circ f - u + K \).

In (2) and (3), \(u \) is Hölder continuous w.r.t. the visual metric.
Statement of results - III

Theorem

1. (Large Deviations, LD) For every $t \in \mathbb{R}$,

$$
\lim_{n \to \infty} \frac{1}{n} \log \mu_\varphi \left\{ x \in X : \text{sgn}(t) S_n \psi(x) \geq \text{sgn}(t) n \int_X \psi \, d\mu_{\varphi+t\psi} \right\} =
$$

2. $\sigma = 0$ if and only if there exists a continuous $u : X \to \mathbb{R}$ such that

$$
\psi - \int_X \psi \, d\mu_{\varphi} = u \circ f - u.
$$

3. $\mu_{\varphi_1} = \mu_{\varphi_2}$ if and only if there exists $K \in \mathbb{R}$ and a continuous $u : X \to \mathbb{R}$ such that

$$
\varphi_1 - \varphi_2 = u \circ f - u + K.
$$

In (2) and (3), u is H"older continuous w.r.t. the visual metric.
Statement of results - III

Theorem

1. *(Large Deviations, LD)* For every $t \in \mathbb{R}$,

$$\lim_{n \to \infty} \frac{1}{n} \log \mu_\varphi \left\{ x \in X : \text{sgn}(t) S_n \psi(x) \geq \text{sgn}(t) n \int_X \psi \, d\mu_{\varphi + t\psi} \right\} =$$

$$= -t \int_X \psi \, d\mu_{\varphi + t\psi} + P_{\text{top}}(\varphi + t \psi) - P_{\text{top}}(\varphi).$$
Statement of results - III

Theorem

1. \((\text{Large Deviations, LD})\) For every \(t \in \mathbb{R}\),

\[
\lim_{n \to \infty} \frac{1}{n} \log \mu_\varphi \\{ x \in X : \text{sgn}(t) S_n \psi(x) \geq \text{sgn}(t) n \int_X \psi \, d\mu_{\varphi + t \psi} \} = \\
= -t \int_X \psi \, d\mu_{\varphi + t \psi} + P_{\text{top}}(\varphi + t \psi) - P_{\text{top}}(\varphi).
\]

2. \(\sigma = 0\) if and only if there exists a continuous \(u : X \to \mathbb{R}\) such that

\[
\psi - \int_X \psi \, d\mu_\varphi = u \circ f - u.
\]
Statement of results - III

Theorem

1. (Large Deviations, LD) For every $t \in \mathbb{R}$,

$$
\lim_{n \to \infty} \frac{1}{n} \log \mu_\varphi \left\{ x \in X : \text{sgn}(t) S_n \psi(x) \geq \text{sgn}(t) n \int_X \psi \, d\mu_{\varphi + t \psi} \right\} = \\
= -t \int_X \psi \, d\mu_{\varphi + t \psi} + P_{\text{top}}(\varphi + t \psi) - P_{\text{top}}(\varphi).
$$

2. $\sigma = 0$ if and only if there exists a continuous $u : X \to \mathbb{R}$ such that

$$
\psi - \int_X \psi \, d\mu_\varphi = u \circ f - u.
$$

3. $\mu_{\varphi_1} = \mu_{\varphi_2}$ if and only if there exists $K \in \mathbb{R}$ and a continuous $u : X \to \mathbb{R}$ such that

$$
\varphi_1 - \varphi_2 = u \circ f - u + K.
$$
Statement of results - III

Theorem

1. *(Large Deviations, LD)* For every \(t \in \mathbb{R} \),

\[
\lim_{n \to \infty} \frac{1}{n} \log \mu_{\varphi} \left\{ x \in X : \text{sgn}(t) S_n \psi(x) \geq \text{sgn}(t) n \int_X \psi \, d\mu_{\varphi + t\psi} \right\} = \\
= -t \int_X \psi \, d\mu_{\varphi + t\psi} + P_{\text{top}} (\varphi + t\psi) - P_{\text{top}} (\varphi).
\]

2. \(\sigma = 0 \) if and only if there exists a continuous \(u : X \to \mathbb{R} \) such that

\[
\psi - \int_X \psi \, d\mu_{\varphi} = u \circ f - u.
\]

3. \(\mu_{\varphi_1} = \mu_{\varphi_2} \) if and only if there exists \(K \in \mathbb{R} \) and a continuous \(u : X \to \mathbb{R} \) such that

\[
\varphi_1 - \varphi_2 = u \circ f - u + K.
\]

In (2) and (3), \(u \) is Hölder continuous w.r.t. the visual metric.
Theorem

Let $f : W_1 \to W_0$ be a wcx system with no periodic critical points,
Theorem

Let $f : W_1 \rightarrow W_0$ be a wcx system with no periodic critical points, let X be its repellor, ρ an exp. contr. metric on X,

1. there exists a unique equilibrium state μ_{φ} for φ on X.
2. Central limit theorem
3. Law of Iterated Logarithm
4. Exponential Decay of Correlations
5. Large Deviations
Theorem

Let $f : W_1 \to W_0$ be a wcx system with no periodic critical points, let X be its repellor, ρ an exp. contr. metric on X, and let $\varphi : (X, \rho) \to \mathbb{R}$ be Hölder.
Theorem

Let \(f : W_1 \to W_0 \) be a wcx system with no periodic critical points, let \(X \) be its repellor, \(\rho \) an exp. contr. metric on \(X \), and let \(\varphi : (X, \rho) \to \mathbb{R} \) be Hölder. Then we have:

1. there exists a unique equilibrium state \(\mu_{\varphi} \) for \(\varphi \) on \(X \).
2. Central limit theorem
3. Law of Iterated Logarithm
4. Exponential Decay of Correlations
5. Large Deviations
Statement of results - IV

Theorem
Let $f : W_1 \to W_0$ be a wcx system with no periodic critical points, let X be its repellor, ρ an exp. contr. metric on X, and let $\varphi : (X, \rho) \to \mathbb{R}$ be Hölder. Then we have:

1. there exists a unique equilibrium state μ_φ for φ on X.

Theorem

Let $f : W_1 \to W_0$ be a wcx system with no periodic critical points, let X be its repellor, ρ an exp. contr. metric on X, and let $\varphi : (X, \rho) \to \mathbb{R}$ be Hölder. Then we have:

1. there exists a unique equilibrium state μ_φ for φ on X.

2. Central limit theorem
Statement of results - IV

Theorem
Let \(f : W_1 \rightarrow W_0 \) be a wcx system with no periodic critical points, let \(X \) be its repellor, \(\rho \) an exp. contr. metric on \(X \), and let \(\varphi : (X, \rho) \rightarrow \mathbb{R} \) be Hölder. Then we have:

1. there exists a unique equilibrium state \(\mu_\varphi \) for \(\varphi \) on \(X \).
2. Central limit theorem
3. Law of Iterated Logarithm
Theorem
Let $f : W_1 \to W_0$ be a wcx system with no periodic critical points, let X be its repellor, ρ an exp. contr. metric on X, and let $\varphi : (X, \rho) \to \mathbb{R}$ be Hölder. Then we have:

1. there exists a unique equilibrium state μ_φ for φ on X.
2. Central limit theorem
3. Law of Iterated Logarithm
4. Exponential Decay of Correlations
Theorem
Let \(f : W_1 \rightarrow W_0 \) be a wcx system with no periodic critical points, let \(X \) be its repellor, \(\rho \) an exp. contr. metric on \(X \), and let \(\varphi : (X, \rho) \rightarrow \mathbb{R} \) be Hölder. Then we have:

1. there exists a unique equilibrium state \(\mu_\varphi \) for \(\varphi \) on \(X \).
2. Central limit theorem
3. Law of Iterated Logarithm
4. Exponential Decay of Correlations
5. Large Deviations
Proof: the geometric coding

Let $f : W_1 \rightarrow W_0$ be wcx of degree d.
Proof: the geometric coding

Let \(f : \mathcal{W}_1 \to \mathcal{W}_0 \) be wcx of degree \(d \). Let \(\Sigma = \{1, \ldots, d\}^\mathbb{N} \) and \(\sigma : \Sigma \to \Sigma \) the shift.
Proof: the geometric coding

Let \(f : W_1 \rightarrow W_0 \) be wcx of degree \(d \). Let \(\Sigma = \{1, \ldots, d\}^\mathbb{N} \) and \(\sigma : \Sigma \rightarrow \Sigma \) the shift. Then there exists a semiconjugacy
Proof: the geometric coding

Let $f : W_1 \to W_0$ be wcx of degree d. Let $\Sigma = \{1, \ldots, d\}^\mathbb{N}$ and $\sigma : \Sigma \to \Sigma$ the shift. Then there exists a semiconjugacy

$$\pi : \Sigma \to X$$
Proof: the geometric coding

Let $f : W_1 \to W_0$ be wcx of degree d. Let $\Sigma = \{1, \ldots, d\}^\mathbb{N}$ and $\sigma : \Sigma \to \Sigma$ the shift. Then there exists a semiconjugacy

$$\pi : \Sigma \to X$$

such that

$$\pi \circ \sigma = f \circ \pi$$
Proof: the geometric coding

Let \(f : W_1 \to W_0 \) be wcx of degree \(d \). Let \(\Sigma = \{1, \ldots, d\}^\mathbb{N} \) and \(\sigma : \Sigma \to \Sigma \) the shift. Then there exists a semiconjugacy

\[
\pi : \Sigma \to X
\]

such that

\[
\pi \circ \sigma = f \circ \pi
\]

Idea: geometric coding
Proof: the geometric coding

Let \(f : W_1 \rightarrow W_0 \) be wcx of degree \(d \). Let \(\Sigma = \{1, \ldots, d\}^\mathbb{N} \) and \(\sigma : \Sigma \rightarrow \Sigma \) the shift. Then there exists a semiconjugacy

\[
\pi : \Sigma \rightarrow X
\]

such that

\[
\pi \circ \sigma = f \circ \pi
\]

Idea: geometric coding
Proof: the geometric coding

Let $f : W_1 \rightarrow W_0$ be wcx of degree d. Let $\Sigma = \{1, \ldots, d\}^\mathbb{N}$ and $\sigma : \Sigma \rightarrow \Sigma$ the shift. Then there exists a semiconjugacy

$$\pi : \Sigma \rightarrow X$$

such that

$$\pi \circ \sigma = f \circ \pi$$

Idea: geometric coding
Proof: the geometric coding

Let $f : W_1 \to W_0$ be wcx of degree d. Let $\Sigma = \{1, \ldots, d\}^\mathbb{N}$ and $\sigma : \Sigma \to \Sigma$ the shift. Then there exists a semiconjugacy

$$\pi : \Sigma \to \mathcal{X}$$

such that

$$\pi \circ \sigma = f \circ \pi$$

Idea: geometric coding
Proof: no periodic critical points \rightarrow no entropy drop

Lemma (No entropy drop)

For any invariant measure μ, we have

$$h_{\mu}(\sigma) = h_{\sigma_*\mu}(f)$$
Proof: no periodic critical points \rightarrow no entropy drop

Lemma (No entropy drop)

For any invariant measure μ, we have

$$h_\mu(\sigma) = h_{\sigma^*\mu}(f)$$

For a finite orbit (x_i), we call an ϵ-singular time an index i s.t. exists y with $f(x_i) = f(y)$ and $d(x_i, y) < \epsilon$.
Proof: no periodic critical points \(\rightarrow\) no entropy drop

Lemma (No entropy drop)

For any invariant measure \(\mu\), we have

\[
h_\mu(\sigma) = h_{\sigma\ast\mu}(f)
\]

For a finite orbit \((x_i)\), we call an \(\epsilon\)-singular time an index \(i\) s.t. exists \(y\) with \(f(x_i) = f(y)\) and \(d(x_i, y) < \epsilon\).

Lemma

For any \(0 < \zeta < 1\) there exists \(\epsilon\) s.t.

\[
\#\{i \leq n : x_i \text{ is } \epsilon - \text{singular} \} \leq \zeta n
\]
Proof: no periodic critical points \Rightarrow no entropy drop

Lemma (No entropy drop)

For any invariant measure μ, we have

$$h_\mu(\sigma) = h_{\sigma_*\mu}(f)$$

For a finite orbit (x_i), we call an ϵ-singular time an index i s.t. exists y with $f(x_i) = f(y)$ and $d(x_i, y) < \epsilon$.

Lemma

For any $0 < \zeta < 1$ there exists ϵ s.t.

$$\# \{ i \leq n : x_i \text{ is } \epsilon - \text{singular} \} \leq \zeta n$$

Lemma \Rightarrow
Proof: no periodic critical points \rightarrow no entropy drop

Lemma (No entropy drop)

For any invariant measure μ, we have

$$h_\mu(\sigma) = h_{\sigma \ast \mu}(f)$$

For a finite orbit (x_i), we call an ϵ-singular time an index i s.t. there exists y with $f(x_i) = f(y)$ and $d(x_i, y) < \epsilon$.

Lemma

For any $0 < \zeta < 1$ there exists ϵ s.t.

$$\#\{i \leq n : x_i \text{ is } \epsilon - \text{singular} \} \leq \zeta n$$

Lemma $\Rightarrow S_{n,x} := \#\{n\text{-cylinders intersecting } \pi^{-1}(x)\}$
Proof: no periodic critical points \rightarrow no entropy drop

Lemma (No entropy drop)

For any invariant measure μ, we have

$$h_\mu(\sigma) = h_{\sigma^* \mu}(f)$$

For a finite orbit (x_i), we call an ϵ-singular time an index i s.t. exists y with $f(x_i) = f(y)$ and $d(x_i, y) < \epsilon$.

Lemma

For any $0 < \zeta < 1$ there exists ϵ s.t.

$$\#\{i \leq n : x_i \text{ is } \epsilon - \text{singular}\} \leq \zeta n$$

Lemma $\Rightarrow S_{n,x} := \#\{n\text{-cylinders intersecting } \pi^{-1}(x)\}$

$$\lim_{n \to \infty} \frac{1}{n} \log S_{n,x} = 0$$
Proof: no periodic critical points \rightarrow no entropy drop

Lemma (No entropy drop)

For any invariant measure μ, we have

$$h_\mu(\sigma) = h_{\sigma_* \mu}(f)$$

For a finite orbit (x_i), we call an ϵ-singular time an index i s.t. exists y with $f(x_i) = f(y)$ and $d(x_i, y) < \epsilon$.

Lemma

For any $0 < \zeta < 1$ there exists ϵ s.t.

$$\#\{ i \leq n : x_i \text{ is } \epsilon - \text{singular} \} \leq \zeta n$$

Lemma $\Rightarrow S_{n,x} := \#\{n\text{-cylinders intersecting } \pi^{-1}(x)\}$

$$\lim_{n \to \infty} \frac{1}{n} \log S_{n,x} = 0$$

“fiber is subexponentially small”
Proof: no periodic critical points \rightarrow no entropy drop

Lemma (No entropy drop)

For any invariant measure μ, we have

$$h_\mu(\sigma) = h_{\sigma^* \mu}(f)$$

For a finite orbit (x_i), we call an ϵ-singular time an index i s.t. there exists y with $f(x_i) = f(y)$ and $d(x_i, y) < \epsilon$.

Lemma

For any $0 < \zeta < 1$ there exists ϵ s.t.

$$\#\{i \leq n : x_i \text{ is } \epsilon \text{- singular} \} \leq \zeta n$$

Lemma $\Rightarrow S_{n,x} := \#\{n\text{-cylinders intersecting } \pi^{-1}(x)\}$

$$\lim_{n \to \infty} \frac{1}{n} \log S_{n,x} = 0$$

“fiber is subexponentially small” \rightarrow no entropy drop
Periodic critical points

Warning: for periodic critical points entropy may drop for some measure μ.
The blowup procedure

Suppose $f(p) = p$ is a critical point.
The blowup procedure

Suppose \(f(p) = p \) is a critical point.
Construct \(\pi : Y \to X \)
The blowup procedure

Suppose $f(p) = p$ is a critical point. Construct $\pi : Y \to X$ by blowing up critical point to a circle.
The blowup procedure

Suppose $f(p) = p$ is a critical point. Construct $\pi: Y \to X$ by blowing up critical point to a circle.
The blowup procedure

Suppose $f(p) = p$ is a critical point.
Construct $\pi : Y \rightarrow X$ by blowing up critical point to a circle
Define $g : Y \rightarrow Y$
The blowup procedure

Suppose $f(p) = p$ is a critical point.
Construct $\pi : Y \to X$ by blowing up critical point to a circle
Define $g : Y \to Y$ as $g(\theta) := d\theta$ on $\pi^{-1}(p)$.
Suppose $f(p) = p$ is a critical point. Construct $\pi : Y \to X$ by blowing up critical point to a circle. Define $g : Y \to Y$ as $g(\theta) := d\theta$ on $\pi^{-1}(p)$.

The blowup procedure
The blowup procedure

Suppose $f(p) = p$ is a critical point. Construct $\pi: Y \to X$ by blowing up critical point to a circle. Define $g: Y \to Y$ as $g(\theta) := d\theta$ on $\pi^{-1}(p)$.

$Y \cong$ Siérpinski carpet $\to X \cong$ sphere
The blowup procedure

Suppose \(f(p) = p \) is a critical point.
Construct \(\pi : Y \rightarrow X \) by blowing up critical point to a circle
Define \(g : Y \rightarrow Y \) as \(g(\theta) := d\theta \) on \(\pi^{-1}(p) \).
Extend the dynamics on the preimage of the critical orbit.

\[Y \cong \text{Siépinski carpet} \quad \rightarrow \quad X \cong \text{sphere} \]
The blowup procedure

Suppose \(f(p) = p \) is a critical point.

Construct \(\pi : Y \to X \) by blowing up critical point to a circle

Define \(g : Y \to Y \) as \(g(\theta) := d\theta \) on \(\pi^{-1}(p) \).

Extend the dynamics on the preimage of the critical orbit.

\[Y \cong \text{Siérpinski carpet} \quad \to \quad X \cong \text{sphere} \]
The blowup procedure

Hard part: define a metric $\tilde{\rho}$ on Y which is exponentially contracting for g.
The blowup procedure

Hard part: define a metric $\tilde{\rho}$ on Y which is exponentially contracting for g.
The blowup procedure

- Since \((Y, \tilde{\rho})\) is weakly coarse expanding,
The blowup procedure

- Since \((Y, \bar{\rho})\) is weakly coarse expanding, one constructs semiconjugacies:

\[\Sigma \rightarrow Y \rightarrow X\]
The blowup procedure

- Since \((Y, \tilde{\rho})\) is weakly coarse expanding, one constructs semiconjugacies:

\[\Sigma \to Y \to X \]

- Then \(g : Y \to Y\) is wcx without periodic critical points
The blowup procedure

- Since \((Y, \widetilde{\rho})\) is weakly coarse expanding, one constructs semiconjugacies:

\[\Sigma \rightarrow Y \rightarrow X\]

- Then \(g : Y \rightarrow Y\) is wcx without periodic critical points hence it satisfies the hypotheses of the first version of the theorem.
The blowup procedure

- Since \((Y, \tilde{\rho})\) is weakly coarse expanding, one constructs semiconjugacies:
 \[\Sigma \rightarrow Y \rightarrow X \]

- Then \(g : Y \rightarrow Y\) is wcx without periodic critical points hence it satisfies the hypotheses of the first version of the theorem.

- Then: for any equilibrium measure \(\mu\) on \(\Sigma\), there is no entropy drop.
The blowup procedure

- Since \((Y, \tilde{\rho})\) is weakly coarse expanding, one constructs semiconjugacies:
 \[\Sigma \rightarrow Y \rightarrow X \]

- Then \(g : Y \rightarrow Y\) is wcx without periodic critical points hence it satisfies the hypotheses of the first version of the theorem.

- Then: for any equilibrium measure \(\mu\) on \(\Sigma\), there is no entropy drop.

- The general theorem follows.
Further directions

- Do you have \textit{equidistribution} of preimages?
Further directions

- Do you have equidistribution of preimages? (Z. Li)
Further directions

- Do you have equidistribution of preimages? (Z. Li)

\[\frac{1}{\# f^{-n}(x)} \sum_{y \in f^{-n}(x)} \delta_y \to \mu \]
Further directions

- Do you have equidistribution of preimages? (Z. Li)
 \[
 \frac{1}{\#f^{-n}(x)} \sum_{y \in f^{-n}(x)} \delta_y \rightarrow \mu
 \]

- Can you extract geometric information on the repeller \(X \)
Further directions

- Do you have equidistribution of preimages? (Z. Li)
 \[
 \frac{1}{\#f^{-n}(x)} \sum_{y \in f^{-n}(x)} \delta_y \to \mu
 \]

- Can you extract geometric information on the repeller X (i.e., its Hausdorff dimension)?
Further directions

- Do you have equidistribution of preimages? (Z. Li)

\[
\frac{1}{\#f^{-n}(x)} \sum_{y \in f^{-n}(x)} \delta_y \to \mu
\]

- Can you extract geometric information on the repeller X (i.e., its Hausdorff dimension)? Then you need to consider the geometric potential $\log |f'|$ which is not Hölder
Further directions

- Do you have **equidistribution** of preimages? (Z. Li)

\[
\frac{1}{\#f^{-n}(x)} \sum_{y \in f^{-n}(x)} \delta_y \to \mu
\]

- Can you extract geometric information on the repeller \(X\) (i.e., its **Hausdorff dimension**)? Then you need to consider the geometric potential \(\log |f'|\) which is not Hölder (for rational maps: F. Przytycki, J. Rivera Letelier, . . .)
Further directions

- Do you have equidistribution of preimages? (Z. Li)
 \[\frac{1}{\# f^{-n}(x)} \sum_{y \in f^{-n}(x)} \delta_y \to \mu \]

- Can you extract geometric information on the repeller \(X \) (i.e., its Hausdorff dimension)? Then you need to consider the geometric potential \(\log |f'| \) which is not Hölder (for rational maps: F. Przytycki, J. Rivera Letelier, . . .)

- Do you have a prime number theorem, i.e. counting periodic points according to period and/or multiplier?
Further directions

▶ Do you have equidistribution of preimages? (Z. Li)

\[
\frac{1}{\#f^{-n}(x)} \sum_{y \in f^{-n}(x)} \delta_y \rightarrow \mu
\]

▶ Can you extract geometric information on the repeller X (i.e., its Hausdorff dimension)? Then you need to consider the geometric potential $\log |f'|$ which is not Hölder (for rational maps: F. Przytycki, J. Rivera Letelier, . . .)

▶ Do you have a prime number theorem, i.e. counting periodic points according to period and/or multiplier? (Z. Li-T. Zheng)
Further directions

- Do you have equidistribution of preimages? (Z. Li)

\[
\frac{1}{\#f^{-n}(x)} \sum_{y \in f^{-n}(x)} \delta_y \to \mu
\]

- Can you extract geometric information on the repeller X (i.e., its Hausdorff dimension)? Then you need to consider the geometric potential \(\log |f'|\) which is not Hölder (for rational maps: F. Przytycki, J. Rivera Letelier, . . .)

- Do you have a prime number theorem, i.e. counting periodic points according to period and/or multiplier? (Z. Li-T. Zheng)

- (D. Meyer) Can you identify the Lebesgue measure from the thermodynamics?
The end

Thank you!