Main results

Ideas in the proofs

IRREGULAR BEHAVIOR FOR SEMIGROUP ACTIONS

Paulo Varandas

Federal University of Bahia & FCT - University of Porto

Dynamical Systems Seminar - University of Toronto

Download this presentation at: https://sites.google.com/view/paulovarandas/

(日) (四) (日) (日) (日)

Main results 00000000000 Ideas in the proofs

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

PLAN OF THE TALK

1. Ergodic theorems for (semi)group actions

('quenched and annealed averaging')

- 2. Irregular points
- 3. Main results and application to linear cocycles
- 4. Some ideas in the proofs

Main results

Ideas in the proofs

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Ergodic Theorem (\mathbb{N} and \mathbb{Z} actions)

▶ Birkhoff (1931) If $f: (X, \mu) \to (X, \mu)$ is a measure preserving map and $\varphi \in L^1(\mu)$ then

$$ilde{\varphi}(x) := \lim_{n \to \infty} \frac{1}{n} \sum_{j=0}^{n-1} \varphi(f^j(x))$$

exists for μ -a.e. x, and

$$\int \tilde{\varphi} \, d\mu = \int \varphi \, d\mu.$$

If, in addition, μ is ergodic then the time averages converge a.e. to $\int \varphi \, d\mu$.

Main results 00000000000 Ideas in the proofs

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Ergodic Theorem (\mathbb{N} and \mathbb{Z} actions)

▶ Birkhoff (1931) If $f: (X, \mu) \to (X, \mu)$ is a measure preserving map and $\varphi \in L^1(\mu)$ then

$$ilde{\varphi}(x) := \lim_{n \to \infty} \frac{1}{n} \sum_{j=0}^{n-1} \varphi(f^j(x))$$

exists for μ -a.e. x, and

$$\int \tilde{\varphi} \, d\mu = \int \varphi \, d\mu$$

If, in addition, μ is ergodic then the time averages converge a.e. to $\int \varphi \, d\mu$.

► Assume f is continuous and X is a compact metric space. The basin of attraction of $\mu \in \mathcal{M}_{erg}(f)$

$$B(\mu) := \left\{ x \in X \colon \frac{1}{n} \sum_{j=0}^{n-1} \delta_{f^j(x)} \to^{w^*} \mu \right\}$$

is a full μ -measure set.

Main results

Ideas in the proofs

Ergodic Theorem (\mathbb{N} and \mathbb{Z} actions)

▶ Birkhoff (1931) If $f: (X, \mu) \to (X, \mu)$ is a measure preserving map and $\varphi \in L^1(\mu)$ then

$$\tilde{\varphi}(x) := \lim_{n \to \infty} \frac{1}{n} \sum_{j=0}^{n-1} \varphi(f^j(x))$$

exists for μ -a.e. x, and

$$\int \tilde{\varphi} \, d\mu = \int \varphi \, d\mu$$

If, in addition, μ is ergodic then the time averages converge a.e. to $\int \varphi \, d\mu.$

► Assume f is continuous and X is a compact metric space. The basin of attraction of $\mu \in \mathcal{M}_{erg}(f)$

$$B(\mu) := \left\{ x \in X \colon \frac{1}{n} \sum_{j=0}^{n-1} \delta_{f^j(x)} \to^{w^*} \mu \right\}$$

is a full μ -measure set.

▶ <u>RMK</u>: The ergodic theorem holds non-stationary identically distributed dynamical systems:

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Main results

Ideas in the proofs

Ergodic Theorem (\mathbb{N} and \mathbb{Z} actions)

▶ Birkhoff (1931) If $f: (X, \mu) \to (X, \mu)$ is a measure preserving map and $\varphi \in L^1(\mu)$ then

$$\tilde{\varphi}(x) := \lim_{n \to \infty} \frac{1}{n} \sum_{j=0}^{n-1} \varphi(f^j(x))$$

exists for μ -a.e. x, and

$$\int \tilde{\varphi} \, \mathrm{d} \mu = \int \varphi \, \mathrm{d} \mu$$

If, in addition, μ is ergodic then the time averages converge a.e. to $\int \varphi \, d\mu.$

► Assume f is continuous and X is a compact metric space. The basin of attraction of $\mu \in \mathcal{M}_{erg}(f)$

$$B(\mu) := \left\{ x \in X \colon rac{1}{n} \sum_{j=0}^{n-1} \delta_{f^j(x)}
ightarrow^{w^*} \mu
ight\}$$

is a full μ -measure set.

▶ <u>RMK</u>: The ergodic theorem holds non-stationary identically distributed dynamical systems:

• if $(f_t)_{t\in T}$ preserve (X, μ) and $\varphi \in L^1(\mu)$ then

 $\varphi_n^{\underline{t}} := \varphi(f_{t_n} \circ \cdots \circ f_{t_2} \circ f_{t_1})$

are identically distributed r.v. (depending on $\underline{t} = (t_1, t_2, ...)$)

• if ν is a probability measure on T then, for $\nu^{\mathbb{N}}$ a.e. $\underline{t} = (t_1, t_2, ...)$

$$\lim_{n\to\infty}\frac{1}{n}\sum_{j=0}^{n-1}\varphi_n^{\underline{t}}(x) \text{ exists } \mu\text{-a.e.}$$

◆□ ▶ ◆ ■ ▶ ◆ ■ ▶ ◆ ■ ● ● ● ●

Ergodic theorems

Main results 00000000000 Ideas in the proofs

<u> Rмк</u>:

- The skew-product
 - $F: \begin{array}{ccc} T^{\mathbb{N}} \times X & \to & T^{\mathbb{N}} \times X \\ ((t_1, t_2, \ldots), x) & \mapsto & (\sigma(t_1, t_2, \ldots), f_{t_1}(x)) \end{array}$

preserves $\nu^{\mathbb{N}}\times\mu$

• Take $\hat{\varphi}(\underline{t}, x) = \varphi(x)$. By the ergodic and Fubini theorems, for $\nu^{\mathbb{N}}$ -a.e. \underline{t} there exists $X_{\underline{t}} \subset X$ of full μ -measure so that

$$\frac{1}{n}\sum_{j=0}^{n-1}\varphi_n^{\underline{t}}(x) = \frac{1}{n}\sum_{j=0}^{n-1}\hat{\varphi}(F^j(\underline{t},x))$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

exists for every $x \in X_{\underline{t}}$.

t

Ergodic theorems $X_{t} \subseteq T^{N} X$

T,

o shift

SKew - 1

h

Main results

Ideas in the proofs

<u>Rмк</u>:

- The skew-product
 - $F: \begin{array}{ccc} T^{\mathbb{N}} \times X & \to & T^{\mathbb{N}} \times X \\ ((t_1, t_2, \dots), x) & \mapsto & (\sigma(t_1, t_2, \dots), f_{t_1}(x)) \end{array}$

preserves $\nu^{\mathbb{N}}\times\mu$

• Take $\hat{\varphi}(\underline{t}, x) = \varphi(x)$. By the ergodic and Fubini theorems, for $\nu^{\mathbb{N}}$ -a.e. \underline{t} there exists $X_{\underline{t}} \subset X$ of full μ -measure so that

$$\frac{1}{n}\sum_{j=0}^{n-1}\varphi_n^{\underline{t}}(x) = \frac{1}{n}\sum_{j=0}^{n-1}\hat{\varphi}(F^j(\underline{t},x))$$

exists for every $x \in X_{\underline{t}}$.

<u>RMK</u>: • If ζ is *F*-invariant and $\hat{\varphi} \in L^1(\zeta)$ then

$$\lim_{n \to \infty} \frac{1}{n} \sum_{j=0}^{n-1} \hat{\varphi}(F^j(\underline{t}, x)) \text{ exists}$$

for $(\pi_1)_*\zeta$ -a.e. \underline{t} and for every $x \in X_{\underline{t}}$, where $X_{\underline{t}} \subset X$ is a full $\mu_{\underline{t}}$ -measure set

200

Main results

Ideas in the proofs

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

ERGODIC THEOREMS (MORE GENERAL GROUP ACTIONS)

G finitely generated (semi)group

 $\textit{G}_1 = \{\textit{g}_1,\textit{g}_2,\ldots,\textit{g}_\kappa\} \text{ generating set } (\text{or }\textit{G}_1 = \{\textit{g}_1^{\pm 1},\textit{g}_2^{\pm 1},\ldots,\textit{g}_\kappa^{\pm 1}\})$

Main results

Ideas in the proofs

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

ERGODIC THEOREMS (MORE GENERAL GROUP ACTIONS)

 ${\it G}$ finitely generated (semi)group

 $\mathcal{G}_1 = \{g_1, g_2, \dots, g_\kappa\}$ generating set (or $\mathcal{G}_1 = \{g_1^{\pm 1}, g_2^{\pm 1}, \dots, g_\kappa^{\pm 1}\}$)

Assume $S : G \times X \to X$ is a continuous group action:

(i) for every
$$g \in G$$
, the map $S_g := S(g, \cdot) : X \to X$ is continuous,

(ii) $S_{hg} = S_h \circ S_g$ for every $g, h \in G$.

Main results

Ideas in the proofs

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

ERGODIC THEOREMS (MORE GENERAL GROUP ACTIONS)

 ${\it G}$ finitely generated (semi)group

 $\mathcal{G}_1 = \{g_1, g_2, \dots, g_\kappa\} \text{ generating set } (\text{or } \mathcal{G}_1 = \{g_1^{\pm 1}, g_2^{\pm 1}, \dots, g_\kappa^{\pm 1}\})$

Assume $S : G \times X \to X$ is a continuous group action:

(i) for every
$$g \in G$$
, the map $S_g := S(g, \cdot) : X o X$ is continuous,

(ii) $S_{hg} = S_h \circ S_g$ for every $g, h \in G$.

► Templeman (1967) Lindenstrauss (2001)

If G is an amenable group acting by measure preserving maps, $\varphi \in L^1(\mu)$ and $(F_n)_{n \ge 1}$ is a tempered Følner sequence then

$$\lim_{n\to\infty}\frac{1}{|F_n|}\sum_{g\in F_n}\varphi(g(x))$$

exists for μ -a.e. x

A Følner sequence is tempered if $\exists C > 0$ s.t.

$$\Big|\bigcup_{1\leqslant k< n}F_k^{-1}F_n\Big|\leqslant C|F_n|\qquad \forall n\in\mathbb{N}.$$

Main results

Ideas in the proofs

ERGODIC THEOREMS (MORE GENERAL GROUP ACTIONS)

 $\begin{array}{l} G \text{ finitely generated (semi)group} \\ G_1 = \{g_1, g_2, \ldots, g_\kappa\} \text{ generating set } (\text{or } G_1 = \{g_1^{\pm 1}, g_2^{\pm 1}, \ldots, g_\kappa^{\pm 1}\}) \\ \text{Assume } S : G \times X \to X \text{ is a continuous (semi)group action:} \\ (\text{i) for every } g \in G, \text{ the map } S_g := S(g, \cdot) : X \to X \text{ is continuous,} \\ (\text{ii) } S_{hg} = S_h \circ S_g \text{ for every } g, h \in G. \end{array}$

► Templeman (1967) Lindenstrauss (2001)

If G is an amenable group acting by measure preserving maps, $\varphi \in L^1(\mu)$ and $(F_n)_{n \ge 1}$ is a tempered Følner sequence then

$$\lim_{n\to\infty}\frac{1}{|F_n|}\sum_{g\in F_n}\varphi(g(x))$$

exists for μ -a.e. x

A Følner sequence is tempered if $\exists C > 0$ s.t.

$$\Big|\bigcup_{1\leqslant k< n}F_k^{-1}F_n\Big|\leqslant C|F_n|\qquad \forall n\in\mathbb{N}.$$

• Guivarch (1969), Nevo & Stein (1994), Bufetov (2002) If the free group $G = \mathbb{F}_{\kappa}$ acts by measure preserving maps and $\varphi \in L^{p}(\mu)$ (p > 1) then

$$\lim_{n\to\infty}\frac{1}{2\kappa(2\kappa-1)^n}\sum_{|g|=n}\varphi(g(x))$$

exists for μ -a.e. x

Main results

Ideas in the proofs

ERGODIC THEOREMS (MORE GENERAL GROUP ACTIONS)

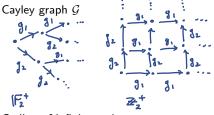
G finitely generated (semi)group $G_1 = \{g_1, g_2, \dots, g_\kappa\}$ generating set (or $G_1 = \{g_1^{\pm 1}, g_2^{\pm 1}, \dots, g_\kappa^{\pm 1}\}$)

Assume $S : G \times X \to X$ is a continuous group action:

(i) for every $g \in G$, the map $S_g := S(g, \cdot) : X \to X$ is continuous,

(ii)
$$S_{hg} = S_h \circ S_g$$
 for every $g, h \in G$.

Pathwise ergodic theorem



Coding of infinite paths:

 $\mathbb{F}_{\kappa} o \mathcal{G} \text{ (or } \{1, 2, \dots, \kappa\}^{\mathbb{Z}} o \mathcal{G})$

Main results

Ideas in the proofs

ERGODIC THEOREMS (MORE GENERAL GROUP ACTIONS)

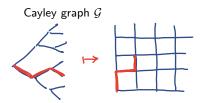
G finitely generated (semi)group $G_1 = \{g_1, g_2, \dots, g_\kappa\}$ generating set (or $G_1 = \{g_1^{\pm 1}, g_2^{\pm 1}, \dots, g_\kappa^{\pm 1}\}$)

Assume $S : G \times X \to X$ is a continuous group action:

(i) for every $g \in G$, the map $S_g := S(g, \cdot) : X \to X$ is continuous,

(ii)
$$S_{hg} = S_h \circ S_g$$
 for every $g, h \in G$.

Pathwise ergodic theorem



Coding of infinite paths:

 $\mathbb{F}_{\kappa} o \mathcal{G} \text{ (or } \{1, 2, \dots, \kappa\}^{\mathbb{Z}} o \mathcal{G})$

 $\mathbb{P} \text{ random walk on } \mathbb{F}_{\kappa}$

Main results

Ideas in the proofs

ERGODIC THEOREMS (MORE GENERAL GROUP ACTIONS)

 ${\it G}$ finitely generated (semi)group

 ${\mathcal G}_1=\{g_1,g_2,\ldots,g_\kappa\} \text{ generating set } (\text{or } {\mathcal G}_1=\{g_1^{\pm 1},g_2^{\pm 1},\ldots,g_\kappa^{\pm 1}\})$

Assume $S : G \times X \to X$ is a continuous group action:

(i) for every
$$g \in G$$
, the map $S_g := S(g, \cdot) : X \to X$ is continuous,

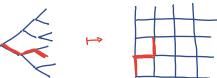
(ii) $S_{hg} = S_h \circ S_g$ for every $g, h \in G$.

▶ Pathwise ergodic theorem If *G* acts by measure preserving maps and $\varphi \in L^1(\mu)$ then 'almost all' infinite paths in the Cayley graph \mathcal{G} are so that

$$\lim_{n\to\infty}\frac{1}{n}\sum_{j=0}^{n-1}\varphi(g_{i_n}\circ\cdots\circ g_{i_2\circ g_{i_1}}(x))$$

exists for μ -a.e. x

Cayley graph \mathcal{G}



Coding of infinite paths:

$$\mathbb{F}_\kappa o \mathcal{G} \; ({ ext{or}} \; \{1,2,\ldots,\kappa\}^\mathbb{Z} o \mathcal{G})$$

 \mathbb{P} random walk on \mathbb{F}_{κ}

Main results

Ideas in the proofs

ERGODIC THEOREMS (MORE GENERAL GROUP ACTIONS)

 $\begin{array}{l} G \mbox{ finitely generated (semi)group} \\ G_1 = \{g_1,g_2,\ldots,g_\kappa\} \mbox{ generating set } (\mbox{ or } G_1 = \{g_1^{\pm 1},g_2^{\pm 1},\ldots,g_\kappa^{\pm 1}\}) \\ \mbox{ Assume } S: \mbox{ } G \times X \to X \mbox{ is a continuous group action:} \\ (i) \mbox{ for every } g \in G, \mbox{ the map } S_g := S(g,\cdot) : X \to X \mbox{ is continuous,} \\ (ii) \mbox{ } S_{hg} = S_h \circ S_g \mbox{ for every } g, h \in G. \end{array}$

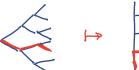
▶ Pathwise ergodic theorem If *G* acts by measure preserving maps and $\varphi \in L^1(\mu)$ then 'almost all' infinite paths in the Cayley graph \mathcal{G} are so that

$$\lim_{n\to\infty}\frac{1}{n}\sum_{j=0}^{n-1}\varphi(g_{i_n}\circ\cdots\circ g_{i_2\circ g_{i_1}}(x))$$

exists for μ -a.e. x

▶ <u>RMK:</u> Ghys (2001) proved that a Baire generic pair $(f, g) \in \text{Homeo}(M)$ generates a free group

Cayley graph \mathcal{G}



Coding of infinite paths:

$$\mathbb{F}_{\kappa}
ightarrow \mathcal{G} \ ({
m or} \ \{1,2,\ldots,\kappa\}^{\mathbb{Z}}
ightarrow \mathcal{G})$$

 \mathbb{P} random walk on \mathbb{F}_{κ}

Main results

Ideas in the proofs

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

$\ensuremath{\operatorname{IRREGULAR}}$ BEHAVIOR (a.k.a. non-typical or historical behavior)

► $x \in X$ is φ -irregular if

$$\lim_{n \to \infty} \frac{1}{n} \sum_{j=0}^{n-1} \varphi(f^j(x)) \text{ does not exist}$$

- ▶ $I_{\varphi}(f)$ is the set of φ -irregular points
- ▶ I_{Φ} is the set of Φ -irregular points, for $\Phi = (\varphi_n)_{n \ge 1} \in C(X)^{\mathbb{N}}$

Main results

Ideas in the proofs

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

$\operatorname{IRREGULAR}$ BEHAVIOR (a.k.a. non-typical or historical behavior)

► $x \in X$ is φ -irregular if

$$\lim_{n \to \infty} \frac{1}{n} \sum_{j=0}^{n-1} \varphi(f^j(x)) \text{ does not exist}$$

- ▶ $I_{\varphi}(f)$ is the set of φ -irregular points
- ▶ I_{Φ} is the set of Φ -irregular points, for $\Phi = (\varphi_n)_{n \ge 1} \in C(X)^{\mathbb{N}}$

Examples:

• I_{φ} may be empty (e.g. $\varphi = u - u \circ f$)

Main results 00000000000 Ideas in the proofs

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

$\operatorname{IRREGULAR}$ BEHAVIOR (a.k.a. non-typical or historical behavior)

► $x \in X$ is φ -irregular if

$$\lim_{n \to \infty} \frac{1}{n} \sum_{j=0}^{n-1} \varphi(f^j(x)) \text{ does not exist}$$

- ▶ $I_{\varphi}(f)$ is the set of φ -irregular points
- ▶ I_{Φ} is the set of Φ -irregular points, for $\Phi = (\varphi_n)_{n \ge 1} \in C(X)^{\mathbb{N}}$

Examples:

- I_{φ} may be empty (e.g. $\varphi = u - u \circ f$)
- *I*_φ may be empty ∀φ ∈ C(X) (e.g. *f* uniquely ergodic)

Main results

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

$\operatorname{IRREGULAR}$ BEHAVIOR (a.k.a. non-typical or historical behavior)

▶ $x \in X$ is φ -irregular if

$$\lim_{n \to \infty} \frac{1}{n} \sum_{j=0}^{n-1} \varphi(f^j(x)) \text{ does not exist}$$

▶ $I_{\varphi}(f)$ is the set of φ -irregular points

▶ I_{Φ} is the set of Φ -irregular points, for $\Phi = (\varphi_n)_{n \ge 1} \in C(X)^{\mathbb{N}}$

Examples:

- I_{φ} may be empty (e.g. $\varphi = u - u \circ f$)
- *I*_φ may be empty ∀φ ∈ C(X) (e.g. *f* uniquely ergodic)
- I_{φ} may contain open sets

Main results

Ideas in the proofs

IRREGULAR BEHAVIOR (a.k.a. non-typical or historical behavior)

• $x \in X$ is φ -irregular if

$$\lim_{n \to \infty} \frac{1}{n} \sum_{j=0}^{n-1} \varphi(f^j(x)) \text{ does not exist}$$

► $I_{\varphi}(f)$ is the set of φ -irregular points ► I_{Φ} is the set of Φ -irregular points, for $\Phi = (\varphi_n)_{n \ge 1} \in C(X)^{\mathbb{N}}$

Examples:

- I_{φ} may be empty (e.g. $\varphi = u - u \circ f$)
- *I*_φ may be empty ∀φ ∈ C(X) (e.g. *f* uniquely ergodic)
- I_{φ} may contain open sets

$$\begin{split} &\blacktriangleright \text{ A dichotomy (Takens 94', 08', Barreira,} \\ &\text{ Schmeling 00', Chen, Küpper, Shu 05', Li, Wu 13',...)} \\ &\text{ If } f: \mathbb{S}^1 \to \mathbb{S}^1 \text{ is } C^{1+\alpha}\text{-expanding map} \\ &\text{ and } \varphi: \mathbb{S}^1 \to \mathbb{R} \text{ is Hölder then} \end{split}$$

(a)
$$I_{\varphi}(f) = \emptyset$$
,

or

(b) $I_{\varphi}(f)$ is Baire generic, has full topological entropy and full Hausdorff dimension

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Main results

$\ensuremath{\operatorname{IRREGULAR}}$ BEHAVIOR (a.k.a. non-typical or historical behavior)

► $x \in X$ is φ -irregular if

$$\lim_{n \to \infty} \frac{1}{n} \sum_{j=0}^{n-1} \varphi(f^j(x)) \text{ does not exist}$$

► $I_{\varphi}(f)$ is the set of φ -irregular points ► I_{Φ} is the set of Φ -irregular points, for $\Phi = (\varphi_n)_{n \ge 1} \in C(X)^{\mathbb{N}}$

Examples:

- I_{φ} may be empty (e.g. $\varphi = u - u \circ f$)
- I_{φ} may be empty $\forall \varphi \in C(X)$ (e.g. *f* uniquely ergodic)
- I_{φ} may contain open sets

Figure: Irregular behavior on Bowen's eye

► A dichotomy (Takens 94', 08', Barreira, Schmeling 00', Chen, Küpper, Shu 05', Li, Wu 13',...) If $f : \mathbb{S}^1 \to \mathbb{S}^1$ is $C^{1+\alpha}$ -expanding map

and
$$arphi:\mathbb{S}^1 o\mathbb{R}$$
 is Hölder then

(a)
$$I_{\varphi}(f) = \emptyset$$
,

or

(b) $I_{\varphi}(f)$ is Baire generic, has full topological entropy and full Hausdorff dimension

Questions:

- 1. Are there simple criteria to detect when $I_{\varphi}(f)$ is Baire generic?
- 2. Can one expect such dichotomies in the context of group actions?
- Can one describe the irregular sets of typical group actions (Birkhoff and group averaging)?

Main results •000000000

Ideas in the proofs

Main Results (\mathbb{N} and \mathbb{R}_+ continuous actions)

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ○ □ ○ ○ ○ ○

Main results •000000000 Ideas in the proofs

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

MAIN RESULTS (\mathbb{N} AND \mathbb{R}_+ CONTINUOUS ACTIONS)

Theorem 1 (Carvalho, V., 2021') Let f be a continuous map on a compact metric space X. Given $\varphi \in C(X)$, consider the first integral

$$L_{\varphi}(x) := \limsup_{n \to \infty} \frac{1}{n} \sum_{j=0}^{n-1} \varphi(f^{j}(x))$$

Assume there exist $\alpha, \beta \in \mathbb{R}$ and dense sets $X_{\alpha}, X_{\beta} \subset X$ so that $L_{\varphi}(x) = \alpha < \beta = L_{\varphi}(y)$ for every $x \in X_{\alpha}$ and $y \in X_{\beta}$. Then $I_{\varphi}(f)$ is a Baire generic subset of X.

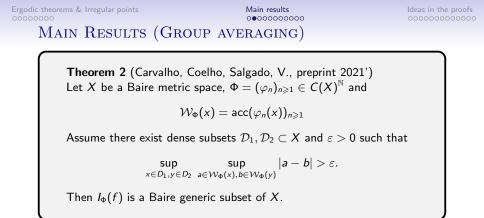
Main results •000000000 Ideas in the proofs

MAIN RESULTS (\mathbb{N} AND \mathbb{R}_+ CONTINUOUS ACTIONS)

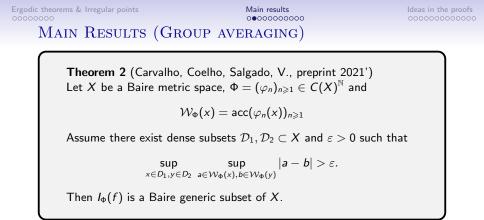
Theorem 1 (Carvalho, V., 2021') Let f be a continuous map on a compact metric space X. Given $\varphi \in C(X)$, consider the first integral $L_{\varphi}(x) := \limsup_{n \to \infty} \frac{1}{n} \sum_{j=0}^{n-1} \varphi(f^{j}(x))$ Assume there exist $\alpha, \beta \in \mathbb{R}$ and dense sets $X_{\alpha}, X_{\beta} \subset X$ so that $L_{\varphi}(x) = \alpha < \beta = L_{\varphi}(y)$ for every $x \in X_{\alpha}$ and $y \in X_{\beta}$. Then $I_{\varphi}(f)$ is a Baire generic subset of X.

<u>RMK</u>: The assumptions are verified whenever there exist two distinct ergodic measures whose basins are dense in X (even if these are not fully supported)

Examples: Hyperbolic sets, continuous maps with specification, homoclinic classes, minimal non-uniquely ergodic maps, Lorenz attractors, singular hyperbolic flows, ...



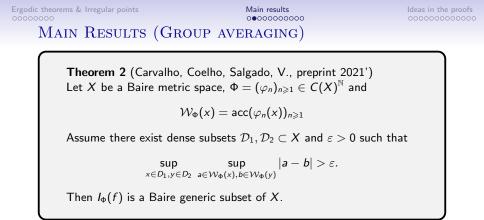
▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで



▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Example:

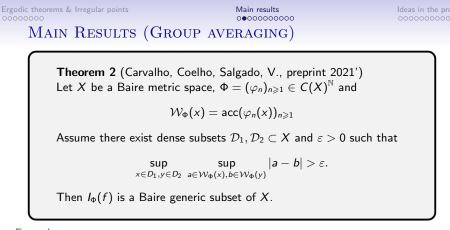
 $\begin{array}{l} g_1,g_2:\mathbb{S}^1\to\mathbb{S}^1\\ g_1(x)=2x\,({\rm mod}\,\,1)\\ g_2(x)=3x\,({\rm mod}\,\,1)\\ p,q\,\,{\rm common\,\,periodic\,\,points}\\ \varphi\in C(\mathbb{S}^1)\,\,{\rm s.t.}\,\,\int\varphi\,\,d\mu_p\neq\int\varphi\,\,d\mu_q\end{array}$



▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Example:

 $\begin{array}{l} g_1, g_2 : \mathbb{S}^1 \to \mathbb{S}^1 \\ g_1(x) = 2x \ (\text{mod } 1) \\ g_2(x) = 3x \ (\text{mod } 1) \\ p, q \ \text{common periodic points} \\ \varphi \in C(\mathbb{S}^1) \ \text{s.t.} \ \int \varphi \ d\mu_p \neq \int \varphi \ d\mu_q \\ \mathcal{O}^-(p) \ \text{and} \ \mathcal{O}^-(q) \ \text{are dense in } \mathbb{S}^1 \end{array}$



Example:

 $\begin{array}{l} g_1, g_2 : \mathbb{S}^1 \to \mathbb{S}^1 \\ g_1(x) = 2x \ (\text{mod } 1) \\ g_2(x) = 3x \ (\text{mod } 1) \\ p, q \ \text{common periodic points} \\ \varphi \in C(\mathbb{S}^1) \ \text{s.t.} \ \int \varphi \ d\mu_p \neq \int \varphi \ d\mu_q \\ \mathcal{O}^-(p) \ \text{and} \ \mathcal{O}^-(q) \ \text{are dense in } \mathbb{S}^1 \end{array}$

If $x \in \mathcal{O}^{-}(p)$ then

 $\frac{1}{n^2}\sum_{i,j=0}^n\varphi(g_1^ig_2^j(x))$

and

$$\frac{1}{2^n}\sum_{|g|=n}\varphi(g(x)) = \frac{1}{2^n}\sum_{i=0}^n \binom{n}{i}\varphi(g_1^i g_2^{n-i}(x))$$

converge to $\int \varphi \, d\mu_{\rho}$, $\Box \rightarrow A \equiv A \equiv A \equiv A \equiv A \equiv A = A$

Main results 00000000000

MAIN RESULTS (GROUP AVERAGING)

Theorem 2 (Carvalho, Coelho, Salgado, V., Preprint 2021') Let X be a Baire metric space, $\Phi = (\varphi_n)_{n \ge 1} \in C(X)^{\mathbb{N}}$ and

$$\mathcal{W}_{\Phi}(x) = \operatorname{acc}(\varphi_n(x))_{n \ge 1}$$

Assume there exist dense subsets $\mathcal{D}_1, \mathcal{D}_2 \subset X$ and $\varepsilon > 0$ such that

 $\sup_{x\in D_1, y\in D_2} \sup_{a\in \mathcal{W}_{\Phi}(x), b\in \mathcal{W}_{\Phi}(y)} |a-b| > \varepsilon.$

Then $I_{\Phi}(f)$ is a Baire generic subset of X.

Example:

 $g_1, g_2 : \mathbb{S}^1 \to \mathbb{S}^1$ $g_1(x) = 2x \pmod{1}$ $g_2(x) = 3x \pmod{1}$ p, q common periodic points $\varphi \in C(\mathbb{S}^1)$ s.t. $\int \varphi \, d\mu_p \neq \int \varphi \, d\mu_q$

Forollary: The sets

$$\left\{x \in \mathbb{S}^{1} : \frac{1}{n^{2}} \sum_{i,j=0}^{n} \varphi(g_{1}^{i}g_{2}^{j}(x)) \text{ diverges}\right\}$$

$$\left\{x \in \mathbb{S}^{1} : \frac{1}{2^{n}} \sum_{|g|=n} \varphi(g(x)) \text{ diverges}\right\}$$
are Baire residual subsets of \mathbb{S}^{1} .

Main results

Ideas in the proofs

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

MAIN RESULTS (AVERAGING ALONG PATHS)

Main results

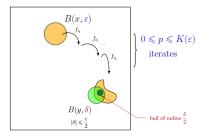
Ideas in the proofs

MAIN RESULTS (AVERAGING ALONG PATHS)

X compact metric space $G_1 = \{id, f_1, f_2, \dots, f_\kappa\}$ generators G (semi)group generated by G_1 $S : G \times X \to X$ continuous semigroup action

S has frequent hitting times if $\forall \varepsilon > 0 \ \exists K(\varepsilon) > 0$ so that the following holds:

given $B_1, B_2 \subset X$ balls of radius ε and $0 < \delta \leq \frac{\varepsilon}{2}$, respectively, there exists $0 \leq p \leq K(\varepsilon), \ \underline{\omega} \in \Sigma_{\kappa} := \{1, 2, \dots, \kappa\}^{\mathbb{N}}$ and a ball $B'_2 \subset B_2$ of radius $\delta/2$ so that $f^{\mathcal{P}}_{\omega}(B_1) \supset B'_2$.



▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Main results

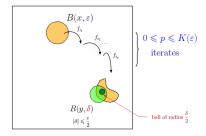
Ideas in the proofs

MAIN RESULTS (AVERAGING ALONG PATHS)

X compact metric space $G_1 = \{id, f_1, f_2, \dots, f_\kappa\}$ generators G (semi)group generated by G_1 $S : G \times X \to X$ continuous semigroup action

S has frequent hitting times if $\forall \varepsilon > 0 \ \exists K(\varepsilon) > 0$ so that the following holds:

given $B_1, B_2 \subset X$ balls of radius ε and $0 < \delta \leq \frac{\varepsilon}{2}$, respectively, there exists $0 \leq p \leq K(\varepsilon), \ \underline{\omega} \in \Sigma_{\kappa} := \{1, 2, \dots, \kappa\}^{\mathbb{N}}$ and a ball $B'_2 \subset B_2$ of radius $\delta/2$ so that $f^{\rho}_{\omega}(B_1) \supset B'_2$.



▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

RMKS:

Every minimal action by isometries has frequent hitting times

The frequent hitting times condition implies that the sequence of return times to balls of radius ε are syndetic (with uniform constant)

Main results

Ideas in the proofs

MAIN RESULTS (AVERAGING ALONG PATHS)

Theorem 3 (Ferreira, V., 2021') Let X be a compact metric space and $S: G \times X \to X$ be a semigroup action generated by bi-Lipschitz homeomorphisms $G_1 = \{f_1, f_2, \ldots, f_\kappa\}$. If S has frequent hitting times and $\varphi \in C(X)$ is not a coboundary for some f_i then the set $I_{\varphi}(\mathbb{S}) := \Big\{ x \in X : \frac{1}{n} \sum_{i=1}^{n-1} \varphi(g_{\omega}^{j}(x)) \text{ diverges }$ along some infinite path in Gis Baire generic in X. Moreover: (i) $h^{GLW}(\mathbb{S}, I_{\mathbb{S}}(\varphi)) \ge H^{\text{Pinsker}}(\varphi)$ (ii) $h^{\mathcal{B}}(\mathbb{S}, I_{\mathbb{S}}(\varphi)) \ge h_{*}(\varphi) - \log \kappa$ $h_*(\varphi) = c$ if $\forall \varepsilon > 0$ $h^{GLW}(\mathbb{S}, \cdot) =$ Ghys-Langevin-Walczak's entropy (1988) $\exists \mu_1, \mu_2 \in \mathcal{M}_{erg}(F)$ that $h^B(\mathbb{S}, \cdot) =$ Bufetov's entropy (1999) distinguish φ and $H^{\text{Pinsker}}(\varphi) = c \text{ if } \forall \varepsilon > 0 \exists \mu_1, \mu_2 \in \mathcal{M}_{erg}(F) \text{ that}$ $h_{\mu_i}(F) > c - \varepsilon$ distinguish φ and $h_{\mu_i}(F \mid \sigma) > c - \varepsilon$ ◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ・ つくぐ

Main results

Ideas in the proofs

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Some Notions of Entropy:

X compact metric space

 ${\it G}_1=\{{\it id},{\it g}_1,{\it g}_2,\ldots,{\it g}_\kappa\}$ continuous, ${\it G}=igcup_{n\geqslant 1}{\it G}_n$ semigroup

- x, y ∈ X are (n, ε)-separated along the path g_{ω_n} · · · g_{ω₂} g_{ω₁} if there exists 1 ≤ j ≤ n s.t. d(g^j_ω(x), g^j_ω(y)) > ε
- Entropy of infinite path $\mathcal{F}_{\omega} = (g_{\omega}^j)_j$ in G (Kolyada-Snoha 96'):

$$h(\mathcal{F}_{\omega}) = \lim_{\varepsilon \to 0} \limsup_{n \to \infty} \frac{1}{n} \log s(\omega, n, \varepsilon)$$

where $s(\omega,n,arepsilon)=$ max. card. of (n,arepsilon)-separated points along path

• GLW-entropy of semigroup action (Ghys-Langevin-Walczak 88'):

$$h^{GLW}(\mathbb{S}) = \lim_{\varepsilon \to 0} \limsup_{n \to \infty} \frac{1}{n} \log s(G, n, \varepsilon)$$

where $s(G, n, \varepsilon) = \max$. card. of points separated by G_n elements

• B-entropy of free semigroup action (Bufetov 99'):

$$h^{\mathcal{B}}(\mathbb{S}) = \lim_{\varepsilon \to 0} \limsup_{n \to \infty} \frac{1}{n} \log \left(\frac{1}{\kappa^n} \sum_{g \in G_n} s(\omega, n, \varepsilon) \right)$$

Main results

Ideas in the proofs

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

MAIN RESULTS (AVERAGING ALONG PATHS)

Theorem 4 (Ferreira, V., 2021') Let X be a compact metric space and $S: G \times X \to X$ be a semigroup action generated by bi-Lipschitz homeomorphisms $G_1 = \{f_1, f_2, \ldots, f_\kappa\}$. If S has frequent hitting times, some f_i is minimal and $\varphi \in C(X)$ is not a coboundary for some f_i then

$$I_{\omega}(arphi) := \left\{ x \in X : rac{1}{n} \sum_{j=0}^{n-1} arphi(g_{\omega}^j(x)) ext{ diverges}
ight\}$$

satisfies:

(i) { $\omega \in \Sigma_{\kappa} : I_{\omega}(\varphi)$ Baire generic in X} is Baire generic in Σ_{κ} (ii) $\sup_{\omega \in \Sigma_{\kappa}} h_{l_{\omega}(\psi)}(\mathcal{F}_{\omega}) \ge H^{\text{Pinsker}}(\psi)$ (iii) { $\omega \in \Sigma_{\kappa} : h_{l_{\omega}(\psi)}(\mathcal{F}_{\omega}) \ge H^{\text{Pinsker}}(\psi)$ } has entropy $\ge H_{\sigma}^{\text{Pinsker}}(\psi)$

 $\begin{aligned} \mathsf{H}^{\sigma}(\psi) &= c \text{ if } \forall \varepsilon > 0 \, \exists \mu_1, \mu_2 \in \mathcal{M}_{erg}(F) \text{ that} \\ & \text{ distinguish } \psi \text{ and } h_{\pi_*\mu_i}(\sigma) > c - \varepsilon \end{aligned}$

Main results

Ideas in the proofs

MAIN RESULTS (AVERAGING ALONG PATHS)

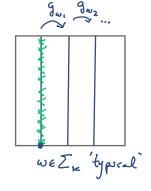
Theorem 4 (Ferreira, V., 2021') Let X be a compact metric space and $S: G \times X \to X$ be a semigroup action generated by bi-Lipschitz homeomorphisms $G_1 = \{f_1, f_2, \ldots, f_\kappa\}$. If S has frequent hitting times, some f_i is minimal and $\varphi \in C(X)$ is not a coboundary for some f_i then

$$I_{\omega}(arphi):=\Big\{x\in X:rac{1}{n}\sum_{j=0}^{n-1}arphi(m{g}^j_{\omega}(x)) ext{ diverges}\Big\}$$

satisfies:

(i) { $\omega \in \Sigma_{\kappa} : I_{\omega}(\varphi)$ Baire generic in X} is Baire generic in Σ_{κ} (*ii*) $\sup_{\omega \in \Sigma_{\kappa}} h_{l_{\omega}(\psi)}(\mathcal{F}_{\omega}) \ge H^{\text{Pinsker}}(\psi)$ (*iii*) { $\omega \in \Sigma_{\kappa} : h_{l_{\omega}(\psi)}(\mathcal{F}_{\omega}) \ge H^{\text{Pinsker}}(\psi)$ } has entropy $\ge H_{\sigma}^{\text{Pinsker}}(\psi)$

$$\mathcal{H}^{\sigma}(\psi) = c ext{ if } orall c > 0 \exists \mu_1, \mu_2 \in \mathcal{M}_{erg}(F) ext{ that} \ ext{ distinguish } \psi ext{ and } h_{\pi_*\mu_i}(\sigma) > c - w$$



 $\label{eq:RMK: ltem (i) still holds without the minimality assumption. Previous results by Nakano (2017) on random circle expanding maps.$

・ロト ・ 戸 ・ ・ ヨ ・ ・ ヨ ・ ・ つ へ ()

Main results

Ideas in the proofs

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

APPLICATION: LYAPUNOV IRREGULAR BEHAVIOR

Given $A_1, A_2, \ldots, A_{\kappa} \in SL(d, \mathbb{R})$ and $\omega \in \Sigma_{\kappa} \text{ set } A^{(n)}(\omega) := A_{\omega_n} \ldots A_{\omega_2} A_{\omega_1}$

Furstenberg-Kesten (1960) if $\mu = \nu^{\mathbb{Z}}$ the top Lyapunov exponent is (μ -a.e.)

$$\lambda_+(A,\nu) = \lim_{n\to\infty} \frac{1}{n} \log \|A^{(n)}(\omega)\|$$

► Furstenberg (1963) if $\mu = \nu^{\mathbb{Z}}$, the semigroup generated by matrices is *non-compact* and *strongly irreducible* on supp ν then $\lambda_+(A, \nu) > 0$.

Main results

Ideas in the proofs

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

APPLICATION: LYAPUNOV IRREGULAR BEHAVIOR

Given $A_1, A_2, \ldots, A_{\kappa} \in SL(d, \mathbb{R})$ and $\omega \in \Sigma_{\kappa} \text{ set } A^{(n)}(\omega) := A_{\omega_n} \ldots A_{\omega_2} A_{\omega_1}$

Furstenberg-Kesten (1960) if $\mu = \nu^{\mathbb{Z}}$ the top Lyapunov exponent is (μ -a.e.)

$$\lambda_+(A,\nu) = \lim_{n\to\infty} \frac{1}{n} \log \|A^{(n)}(\omega)\|$$

► Furstenberg (1963) if $\mu = \nu^{\mathbb{Z}}$, the semigroup generated by matrices is *non-compact* and *strongly irreducible* on supp ν then $\lambda_+(A, \nu) > 0$.

Skew-product

$$egin{array}{rcl} \mathcal{F}_{\mathcal{A}}\colon & \Sigma_\kappa imes\mathbb{R}^d&\longrightarrow&\Sigma_\kappa imes\mathbb{R}^d\ & (x,v)&\mapsto&(f(x),\mathcal{A}(x)\cdot v) \end{array}$$

Projective cocycle

$$\begin{array}{cccc} P_{\mathcal{A}} \colon & \boldsymbol{\Sigma}_{\kappa} \times \mathbf{P} \mathbb{R}^{d} & \longrightarrow & \boldsymbol{\Sigma}_{\kappa} \times \mathbf{P} \mathbb{R}^{d} \\ & (\omega, v) & \mapsto & (\sigma(\omega), \frac{A(\omega) \cdot v}{\|A(\omega) \cdot v\|}) \end{array}$$

Main results

Ideas in the proofs

Application: Lyapunov irregular behavior

Given $A_1, A_2, \ldots, A_{\kappa} \in SL(d, \mathbb{R})$ and $\omega \in \Sigma_{\kappa} \text{ set } A^{(n)}(\omega) := A_{\omega_n} \ldots A_{\omega_2} A_{\omega_1}$

Furstenberg-Kesten (1960) if $\mu = \nu^{\mathbb{Z}}$ the top Lyapunov exponent is (μ -a.e.)

$$\lambda_+(A,\nu) = \lim_{n\to\infty} \frac{1}{n} \log \|A^{(n)}(\omega)\|$$

► Furstenberg (1963) if $\mu = \nu^{\mathbb{Z}}$, the semigroup generated by matrices is *non-compact* and *strongly irreducible* on supp ν then $\lambda_+(A, \nu) > 0$.

Skew-product

$$egin{array}{rcl} \mathcal{F}_{\mathcal{A}}\colon & \Sigma_\kappa imes\mathbb{R}^d&\longrightarrow&\Sigma_\kappa imes\mathbb{R}^d\ & (x,v)&\mapsto&(f(x),\mathcal{A}(x)\cdot v) \end{array}$$

Projective cocycle

$$\begin{array}{cccc} P_{\mathcal{A}} \colon & \boldsymbol{\Sigma}_{\kappa} \times \mathbf{P} \mathbb{R}^{d} & \longrightarrow & \boldsymbol{\Sigma}_{\kappa} \times \mathbf{P} \mathbb{R}^{d} \\ & (\omega, v) & \mapsto & (\sigma(\omega), \frac{A(\omega) \cdot v}{\|A(\omega) \cdot v\|}) \end{array}$$

► Sumi- V.-Yamamoto (2016)

these skew-products do not satisfy the specification property

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Main results

Ideas in the proofs

Application: Lyapunov irregular behavior

Given $A_1, A_2, \ldots, A_{\kappa} \in SL(d, \mathbb{R})$ and $\omega \in \Sigma_{\kappa} \text{ set } A^{(n)}(\omega) := A_{\omega_n} \ldots A_{\omega_2} A_{\omega_1}$

Furstenberg-Kesten (1960) if $\mu = \nu^{\mathbb{Z}}$ the top Lyapunov exponent is (μ -a.e.)

$$\lambda_+(A,\nu) = \lim_{n\to\infty} \frac{1}{n} \log \|A^{(n)}(\omega)\|$$

► Furstenberg (1963) if $\mu = \nu^{\mathbb{Z}}$, the semigroup generated by matrices is *non-compact* and *strongly irreducible* on supp ν then $\lambda_+(A, \nu) > 0$.

Skew-product

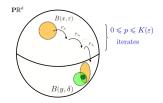
Projective cocycle

$$egin{array}{rcl} \mathcal{F}_{\mathcal{A}}\colon & \Sigma_\kappa imes\mathbb{R}^d&\longrightarrow&\Sigma_\kappa imes\mathbb{R}^d\ & (x,v)&\mapsto&(f(x),\mathcal{A}(x)\cdot v) \end{array}$$

► Sumi- V.-Yamamoto (2016) these skew-products do not satisfy the specification property

► In low dimension the linear cocycle is 'often' strongly projectively accessible

(i.e. the projective semigroup action on $X = \mathbf{P}\mathbb{R}^d$ has frequent hitting times)



Example: $SO(3, \mathbb{R})$ matrices $(\alpha, \beta \notin \mathbb{Q})$

 $P_{A}: \quad \Sigma_{\kappa} \times \mathbf{P}\mathbb{R}^{d} \longrightarrow \Sigma_{\kappa} \times \mathbf{P}\mathbb{R}^{d} \\ (\omega, v) \mapsto (\sigma(\omega), \frac{A(\omega) \cdot v}{\|A(\omega) \cdot v\|}) \begin{pmatrix} \cos \alpha & -\sin \alpha & 0\\ \sin \alpha & \cos \alpha & 0\\ 0 & 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 & 0\\ 0 & \cos \beta & -\sin \beta\\ 0 & \sin \beta & \cos \beta \end{pmatrix}$

Main results

Ideas in the proofs

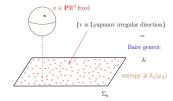
APPLICATION (LYAPUNOV IRREGULAR BEHAVIOR)

Theorem 5 (Ferreira, V., 2021') If $A_1, A_2, \ldots, A_{\kappa} \in SL(d, \mathbb{R})$ generate a noncompact and strongly projectively accessible semigroup then:

• for each $v \in \mathbf{P}\mathbb{R}^d$ there exists $\mathcal{R}_v \subset \Sigma_{\kappa}$ Baire generic, with entropy at least $h_*(\varphi_A)$ s.t. for every $\omega \in \mathcal{R}_v$,

$$\liminf_{n \to \infty} \frac{1}{n} \log \|A^n(\omega)v\| < \limsup_{n \to \infty} \frac{1}{n} \log \|A^n(\omega)v\|$$
(*)

• there exists a Baire residual subset $\mathcal{R} \subset \Sigma_{\kappa}$ and a dense subset $\mathcal{D} \subset \mathbf{P}\mathbb{R}^d$ so that (*) holds for every $\omega \in \mathcal{R}$ and every $v \in \mathcal{D}$.



▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Main results

Ideas in the proofs

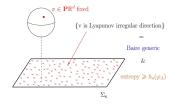
APPLICATION (LYAPUNOV IRREGULAR BEHAVIOR)

Theorem 5 (Ferreira, V., 2021') If $A_1, A_2, \ldots, A_{\kappa} \in SL(d, \mathbb{R})$ generate a noncompact and strongly projectively accessible semigroup then:

• for each $v \in \mathbf{P}\mathbb{R}^d$ there exists $\mathcal{R}_v \subset \Sigma_{\kappa}$ Baire generic, with entropy at least $h_*(\varphi_A)$ s.t. for every $\omega \in \mathcal{R}_v$,

$$\liminf_{n \to \infty} \frac{1}{n} \log \|A^n(\omega)v\| < \limsup_{n \to \infty} \frac{1}{n} \log \|A^n(\omega)v\|$$
(*)

• there exists a Baire residual subset $\mathcal{R} \subset \Sigma_{\kappa}$ and a dense subset $\mathcal{D} \subset \mathbf{P}\mathbb{R}^d$ so that (*) holds for every $\omega \in \mathcal{R}$ and every $v \in \mathcal{D}$.



<u>RMK:</u> Previous results on irregular behavior for the *top Lyapunov exponent* of Hölder continuous cocycles: Herman (1981), Furman (1997), Tian (2015, 2017) These rely on very different techniques: (i) u.s.c. of $\mu \mapsto \lambda_+(A, f, \mu)$, (ii) bounded distortion for linear cocycles by Kalinin (2011)

Main results 000000000 Ideas in the proofs

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

APPLICATION (LYAPUNOV IRREGULAR BEHAVIOR)

Corollary (Ferreira, V., 2021') Let $\mathcal{H} \subset C^0_{\text{loc}}(\Sigma_{\kappa}, SL(3, \mathbb{R}))$ be the set of hyperbolic cocycles. There exist C^0 -open sets \mathcal{U}_1 and \mathcal{U}_2 so that $\mathcal{U}_1 \cup \mathcal{U}_2$ is dense in \mathcal{H} and:

- 1. if $B \in \mathcal{U}_1$ then the set of Lyapunov irregular points in Σ_{κ} is Baire generic and has full entropy
- 2. there exists $\mathcal{R} \subset \mathcal{U}_2 \ C^0$ -Baire residual and full Haar measure s.t. if $B \in \mathcal{R}$ then $\liminf_{n \to \infty} \frac{1}{n} \log \|B^n(\omega)v\| < \limsup_{n \to \infty} \frac{1}{n} \log \|B^n(\omega)v\|.$ for generic $\omega \in \Sigma_{\kappa}$ and a dense set of vectors $\mathcal{D}_{\omega} \subset E_{\omega}^{\varsigma}$.

Main results

Ideas in the proofs

A BASIC STRATEGY (= quantitative control on recurrence)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Main results

Ideas in the proofs

A BASIC STRATEGY (= quantitative control on recurrence)

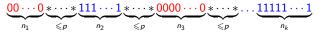
- take μ_1, μ_2 ergodic so that $\int \psi \, d\mu_1 \neq \int \psi \, d\mu_2$
- pick x_1, x_2 so that $\frac{1}{n} \sum_{j=0}^{n-1} \psi(f^j(x_i)) \rightarrow \int \psi \, d\mu_i \ (i=1,2)$
- $n_1 \ll n_2 \ll n_3 \ll n_4 \ll \dots$ (arbitrary choice)
- uniform continuity + specification ⇒ there exists z_k which approximates well the finite orbits of x₁ and x₂ alternatively

Main results

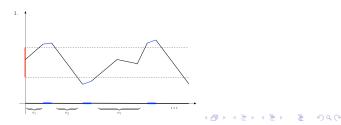
Ideas in the proofs

A BASIC STRATEGY (= quantitative control on recurrence)

- take μ_1, μ_2 ergodic so that $\int \psi \, d\mu_1 \neq \int \psi \, d\mu_2$
- pick x_1, x_2 so that $\frac{1}{n} \sum_{j=0}^{n-1} \psi(f^j(x_i)) \to \int \psi \, d\mu_i \ (i=1,2)$
- $n_1 \ll n_2 \ll n_3 \ll n_4 \ll \dots$ (arbitrary choice)
- uniform continuity + specification ⇒ there exists z_k which approximates well the finite orbits of x₁ and x₂ alternatively



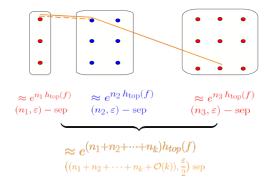
 z_{k+1} is a point that $1/2^k$ -shadows z_k and the next finite piece of orbit. • $z = \lim_{k \to \infty} z_k$ is φ -irregular



▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

A BASIC STRATEGY (= quantitative control on recurrence)

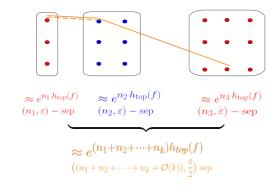
- if μ_1, μ_2 ergodic large entropy s.t. $\int \psi \, d\mu_1 \neq \int \psi \, d\mu_2$
- find many points x_i so that $\frac{1}{n} \sum_{j=0}^{n-1} \psi(f^j(x_i)) \to \int \psi \, d\mu_i$
- uniform continuity + specification \Rightarrow there exist many irregular points $z = \lim_{n \to \infty} z_n$ as before



3

A BASIC STRATEGY (= quantitative control on recurrence)

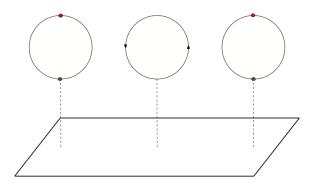
- if μ_1, μ_2 ergodic large entropy s.t. $\int \psi \, d\mu_1 \neq \int \psi \, d\mu_2$
- find many points x_i so that $\frac{1}{n} \sum_{j=0}^{n-1} \psi(f^j(x_i)) \to \int \psi \, d\mu_i$
- uniform continuity + specification \Rightarrow there exist many irregular points $z = \lim_{n} z_n$ as before



Main results

Ideas in the proofs

TOY MODEL

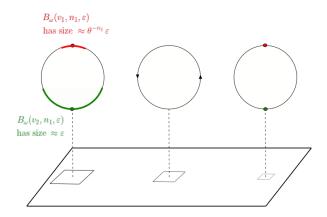


◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Main results

Ideas in the proofs

TOY MODEL

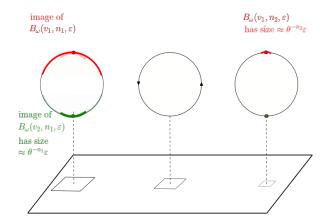


◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Main results

Ideas in the proofs

TOY MODEL

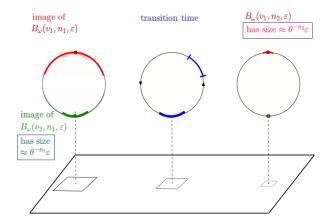


◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Main results

Ideas in the proofs

TOY MODEL

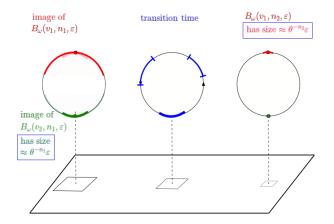


◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ○ □ ○ ○ ○ ○

Main results

Ideas in the proofs

TOY MODEL

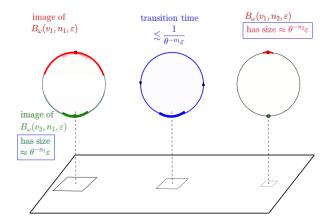


◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ○ □ ○ ○ ○ ○

Main results

Ideas in the proofs

TOY MODEL

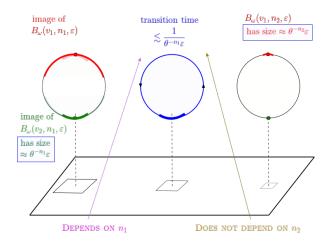


◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ○ □ ○ ○ ○ ○

Main results

Ideas in the proofs

TOY MODEL



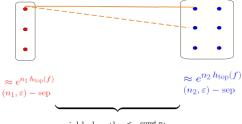
▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Main results 00000000000 Ideas in the proofs

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

A DIFFERENT APPROACH

- if μ_1, μ_2 ergodic large entropy s.t. $\int \psi \, d\mu_1 \neq \int \psi \, d\mu_2$
- find many points x_i so that $\frac{1}{n} \sum_{j=0}^{n-1} \psi(f^j(x_i)) \to \int \psi \, d\mu_i$



variable length $\leq e^{\operatorname{const} n_1}$

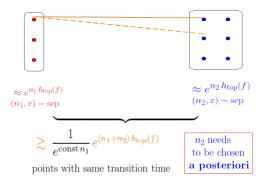
Main results

Ideas in the proofs

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

A DIFFERENT APPROACH

- if μ_1, μ_2 ergodic large entropy s.t. $\int \psi \, d\mu_1 \neq \int \psi \, d\mu_2$
- find many points x_i so that $\frac{1}{n} \sum_{j=0}^{n-1} \psi(f^j(x_i)) \to \int \psi \, d\mu_i$

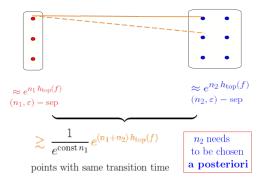


Main results

Ideas in the proofs

A DIFFERENT APPROACH

- if μ_1, μ_2 ergodic large entropy s.t. $\int \psi \, d\mu_1 \neq \int \psi \, d\mu_2$
- find many points x_i so that $\frac{1}{n} \sum_{j=0}^{n-1} \psi(f^j(x_i)) \to \int \psi \, d\mu_i$



- $n_1 \ll n_2 \ll n_3 \ll n_4 \ll \dots$ (properly chosen)
- bridge between linear cocycles and projective dynamics, build Moran sets with large entropy, ...

Main results

Ideas in the proofs

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

References

M. Carvalho and P. Varandas,

Genericity of historic behavior for maps and flows, *Nonlinearity* 34:10 (2021) 7030–7044.

M. Carvalho, V. Coelho, L. Salgado and P. Varandas, Sensitivity and historic behavior for continuous maps on Baire spaces, in preparation.

G. Ferreira and P. Varandas,

Lyapunov "non-typical" behavior for linear cocycles through the lens of semigroup actions

Preprint arXiv:2106.15676.

Main results 00000000000 Ideas in the proofs

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Thank you