Irregular behavior for SEMIGROUP ACTIONS

Paulo Varandas
Federal University of Bahia \& FCT - University of Porto

Dynamical Systems Seminar - University of Toronto

Plan of the talk

1. Ergodic theorems for (semi)group actions
('quenched and annealed averaging')
2. Irregular points
3. Main results and application to linear cocycles
4. Some ideas in the proofs

Ergodic theorem (\mathbb{N} and \mathbb{Z} actions)

- Birkhoff (1931)

If $f:(X, \mu) \rightarrow(X, \mu)$ is a measure preserving map and $\varphi \in L^{1}(\mu)$ then

$$
\tilde{\varphi}(x):=\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{j=0}^{n-1} \varphi\left(f^{j}(x)\right)
$$

exists for μ-a.e. x, and

$$
\int \tilde{\varphi} d \mu=\int \varphi d \mu
$$

If, in addition, μ is ergodic then the time averages converge a.e. to $\int \varphi d \mu$.

Ergodic theorem (N and \mathbb{Z} actions)

- Birkhoff (1931)

If $f:(X, \mu) \rightarrow(X, \mu)$ is a measure preserving map and $\varphi \in L^{1}(\mu)$ then

$$
\tilde{\varphi}(x):=\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{j=0}^{n-1} \varphi\left(f^{j}(x)\right)
$$

exists for μ-a.e. x, and

$$
\int \tilde{\varphi} d \mu=\int \varphi d \mu
$$

If, in addition, μ is ergodic then the time averages converge a.e. to $\int \varphi d \mu$.

- Assume f is continuous and X is a compact metric space. The basin of attraction of $\mu \in \mathcal{M}_{\text {erg }}(f)$

$$
B(\mu):=\left\{x \in X: \frac{1}{n} \sum_{j=0}^{n-1} \delta_{f j}(x) \rightarrow^{w^{*}} \mu\right\}
$$

is a full μ-measure set.

Ergodic theorem (\mathbb{N} and \mathbb{Z} actions)

- Birkhoff (1931)

If $f:(X, \mu) \rightarrow(X, \mu)$ is a measure preserving map and $\varphi \in L^{1}(\mu)$ then

$$
\tilde{\varphi}(x):=\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{j=0}^{n-1} \varphi\left(f^{j}(x)\right)
$$

exists for μ-a.e. x, and

$$
\int \tilde{\varphi} d \mu=\int \varphi d \mu
$$

If, in addition, μ is ergodic then the time averages converge a.e. to $\int \varphi d \mu$.

- Assume f is continuous and X is a compact metric space. The basin of attraction of $\mu \in \mathcal{M}_{\text {erg }}(f)$

$$
B(\mu):=\left\{x \in X: \frac{1}{n} \sum_{j=0}^{n-1} \delta_{f j}(x) \rightarrow^{w^{*}} \mu\right\}
$$

- RmK: The ergodic theorem holds non-stationary identically distributed dynamical systems:

Ergodic theorem (\mathbb{N} and \mathbb{Z} actions)

- Birkhoff (1931)

If $f:(X, \mu) \rightarrow(X, \mu)$ is a measure preserving map and $\varphi \in L^{1}(\mu)$ then

$$
\tilde{\varphi}(x):=\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{j=0}^{n-1} \varphi\left(f^{j}(x)\right)
$$

exists for μ-a.e. x, and

$$
\int \tilde{\varphi} d \mu=\int \varphi d \mu
$$

If, in addition, μ is ergodic then the time averages converge a.e. to $\int \varphi d \mu$.

- Assume f is continuous and X is a compact metric space. The basin of attraction of $\mu \in \mathcal{M}_{\text {erg }}(f)$

$$
B(\mu):=\left\{x \in X: \frac{1}{n} \sum_{j=0}^{n-1} \delta_{f j}(x) \rightarrow^{w^{*}} \mu\right\}
$$

- RmK: The ergodic theorem holds non-stationary identically distributed dynamical systems:
- if $\left(f_{t}\right)_{t \in T}$ preserve (X, μ) and $\varphi \in L^{1}(\mu)$ then

$$
\varphi_{n}^{\frac{t}{n}}:=\varphi\left(f_{t_{n}} \circ \cdots \circ f_{t_{2}} \circ f_{t_{1}}\right)
$$

are identically distributed r.v. (depending on $\underline{t}=\left(t_{1}, t_{2}, \ldots\right)$)

- if ν is a probability measure on T then, for $\nu^{\mathbb{N}}$ a.e. $\underline{t}=\left(t_{1}, t_{2}, \ldots\right)$

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{j=0}^{n-1} \varphi_{n}^{\frac{t}{n}}(x) \text { exists } \mu \text {-a.e. }
$$

is a full μ-measure set.

Ergodic theorems
RMK:

- The skew-product

$$
\begin{aligned}
& F: \quad T^{\mathbb{N}} \times X \quad \rightarrow \quad T^{\mathbb{N}} \times X \\
& \left(\left(t_{1}, t_{2}, \ldots\right), x\right) \mapsto\left(\sigma\left(t_{1}, t_{2}, \ldots\right), f_{t_{1}}(x)\right) \\
& \text { preserves } \nu^{\mathbb{N}} \times \mu
\end{aligned}
$$

- Take $\hat{\varphi}(\underline{t}, x)=\varphi(x)$. By the ergodic and Fubini theorems, for $\nu^{\mathbb{N}}$-a.e. \underline{t} there exists $X_{\underline{t}} \subset X$ of full μ-measure so that

$$
\frac{1}{n} \sum_{j=0}^{n-1} \varphi^{\frac{t}{n}}(x)=\frac{1}{n} \sum_{j=0}^{n-1} \hat{\varphi}\left(F^{j}(\underline{t}, x)\right)
$$

exists for every $x \in X_{\underline{t}}$.

Ergodic THEOREMS

skow-product

o shift

RMS:

- The skew-product

$$
\begin{aligned}
& \qquad \begin{array}{ccc}
F: & T^{\mathbb{N}} \times X & \rightarrow \\
\left(\left(t_{1}, t_{2}, \ldots\right), x\right) & \mapsto & T^{\mathbb{N}} \times X \\
\text { preserves } \nu^{\mathbb{N}} \times \mu & & \\
\text { (} \left.\sigma\left(t_{1}, t_{2}, \ldots\right), f_{t_{1}}(x)\right)
\end{array} \\
&
\end{aligned}
$$

- Take $\hat{\varphi}(\underline{t}, x)=\varphi(x)$. By the ergodic and Fubini theorems, for $\nu^{\mathbb{N}}$-a.e. \underline{t} there exists $X_{\underline{t}} \subset X$ of full μ-measure so that

$$
\frac{1}{n} \sum_{j=0}^{n-1} \varphi^{\frac{t}{n}}(x)=\frac{1}{n} \sum_{j=0}^{n-1} \hat{\varphi}\left(F^{j}(\underline{t}, x)\right)
$$

exists for every $x \in X_{\underline{t}}$.
RoK:

- If ζ is F-invariant and $\hat{\varphi} \in L^{1}(\zeta)$ then

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{j=0}^{n-1} \hat{\varphi}\left(F^{j}(\underline{t}, x)\right) \text { exists }
$$

for $\left(\pi_{1}\right)_{*} \zeta$-a.e. \underline{t} and for every $x \in X_{\underline{t}}$, where $X_{\underline{t}} \subset X$ is a full $\mu_{\underline{t}}$-measure set

Ergodic theorems (more general group actions)
G finitely generated (semi)group

$$
\left.G_{1}=\left\{g_{1}, g_{2}, \ldots, g_{\kappa}\right\} \text { generating set (or } G_{1}=\left\{g_{1}^{ \pm 1}, g_{2}^{ \pm 1}, \ldots, g_{\kappa}^{ \pm 1}\right\}\right)
$$

Ergodic theorems (more general group actions)
G finitely generated (semi)group
$G_{1}=\left\{g_{1}, g_{2}, \ldots, g_{\kappa}\right\}$ generating set (or $G_{1}=\left\{g_{1}^{ \pm 1}, g_{2}^{ \pm 1}, \ldots, g_{\kappa}^{ \pm 1}\right\}$)
Assume $S: G \times X \rightarrow X$ is a continuous group action:
(i) for every $g \in G$, the map $S_{g}:=S(g, \cdot): X \rightarrow X$ is continuous,
(ii) $S_{h g}=S_{h} \circ S_{g}$ for every $g, h \in G$.
G finitely generated (semi)group
$G_{1}=\left\{g_{1}, g_{2}, \ldots, g_{\kappa}\right\}$ generating set (or $G_{1}=\left\{g_{1}^{ \pm 1}, g_{2}^{ \pm 1}, \ldots, g_{\kappa}^{ \pm 1}\right\}$)
Assume $S: G \times X \rightarrow X$ is a continuous group action:
(i) for every $g \in G$, the map $S_{g}:=S(g, \cdot): X \rightarrow X$ is continuous,
(ii) $S_{h g}=S_{h} \circ S_{g}$ for every $g, h \in G$.

- Templeman (1967) Lindenstrauss (2001)

If G is an amenable group acting by measure preserving maps, $\varphi \in L^{1}(\mu)$ and $\left(F_{n}\right)_{n \geqslant 1}$ is a tempered Følner sequence then

$$
\lim _{n \rightarrow \infty} \frac{1}{\left|F_{n}\right|} \sum_{g \in F_{n}} \varphi(g(x))
$$

exists for μ-a.e. x
A FøIner sequence is tempered if $\exists C>0$ s.t.

$$
\left|\bigcup_{1 \leqslant k<n} F_{k}^{-1} F_{n}\right| \leqslant C\left|F_{n}\right| \quad \forall n \in \mathbb{N} .
$$

G finitely generated (semi)group
$G_{1}=\left\{g_{1}, g_{2}, \ldots, g_{\kappa}\right\}$ generating set (or $G_{1}=\left\{g_{1}^{ \pm 1}, g_{2}^{ \pm 1}, \ldots, g_{\kappa}^{ \pm 1}\right\}$)
Assume $S: G \times X \rightarrow X$ is a continuous (semi)group action:
(i) for every $g \in G$, the map $S_{g}:=S(g, \cdot): X \rightarrow X$ is continuous,
(ii) $S_{h g}=S_{h} \circ S_{g}$ for every $g, h \in G$.

- Templeman (1967) Lindenstrauss (2001)

If G is an amenable group acting by measure preserving maps, $\varphi \in L^{1}(\mu)$ and $\left(F_{n}\right)_{n \geqslant 1}$ is a tempered Følner sequence then

$$
\lim _{n \rightarrow \infty} \frac{1}{\left|F_{n}\right|} \sum_{g \in F_{n}} \varphi(g(x))
$$

exists for μ-a.e. x
A FøIner sequence is tempered if $\exists C>0$ s.t.

$$
\left|\bigcup_{1 \leqslant k<n} F_{k}^{-1} F_{n}\right| \leqslant C\left|F_{n}\right| \quad \forall n \in \mathbb{N} .
$$

- Guivarch (1969), Nevo \& Stein (1994), Bufetov (2002)

If the free group $G=\mathbb{F}_{\kappa}$ acts by measure preserving maps and $\varphi \in L^{p}(\mu)(p>1)$ then

$$
\lim _{n \rightarrow \infty} \frac{1}{2 \kappa(2 \kappa-1)^{n}} \sum_{|g|=n} \varphi(g(x))
$$

exists for μ-a.e. x

Ergodic Theorems (more general group actions)

G finitely generated (semi)group
$G_{1}=\left\{g_{1}, g_{2}, \ldots, g_{\kappa}\right\}$ generating set (or $G_{1}=\left\{g_{1}^{ \pm 1}, g_{2}^{ \pm 1}, \ldots, g_{\kappa}^{ \pm 1}\right\}$)
Assume $S: G \times X \rightarrow X$ is a continuous group action:
(i) for every $g \in G$, the map $S_{g}:=S(g, \cdot): X \rightarrow X$ is continuous,
(ii) $S_{h g}=S_{h} \circ S_{g}$ for every $g, h \in G$.

- Pathwise ergodic theorem

Coding of infinite paths:

$$
\mathbb{F}_{\kappa} \rightarrow \mathcal{G}\left(\text { or }\{1,2, \ldots, \kappa\}^{\mathbb{Z}} \rightarrow \mathcal{G}\right)
$$

\mathbb{P} random walk on \mathbb{F}_{κ}

Ergodic theorems (more general group actions)

G finitely generated (semi)group
$G_{1}=\left\{g_{1}, g_{2}, \ldots, g_{\kappa}\right\}$ generating set (or $G_{1}=\left\{g_{1}^{ \pm 1}, g_{2}^{ \pm 1}, \ldots, g_{\kappa}^{ \pm 1}\right\}$)
Assume $S: G \times X \rightarrow X$ is a continuous group action:
(i) for every $g \in G$, the map $S_{g}:=S(g, \cdot): X \rightarrow X$ is continuous,
(ii) $S_{h g}=S_{h} \circ S_{g}$ for every $g, h \in G$.

- Pathwise ergodic theorem

Cayley graph \mathcal{G}

Coding of infinite paths:

$$
\mathbb{F}_{\kappa} \rightarrow \mathcal{G}\left(\text { or }\{1,2, \ldots, \kappa\}^{\mathbb{Z}} \rightarrow \mathcal{G}\right)
$$

\mathbb{P} random walk on \mathbb{F}_{κ}
G finitely generated (semi)group

$$
G_{1}=\left\{g_{1}, g_{2}, \ldots, g_{\kappa}\right\} \text { generating set (or } G_{1}=\left\{g_{1}^{ \pm 1}, g_{2}^{ \pm 1}, \ldots, g_{\kappa}^{ \pm 1}\right\} \text {) }
$$

Assume $S: G \times X \rightarrow X$ is a continuous group action:
(i) for every $g \in G$, the map $S_{g}:=S(g, \cdot): X \rightarrow X$ is continuous,
(ii) $S_{h g}=S_{h} \circ S_{g}$ for every $g, h \in G$.

- Pathwise ergodic theorem

If G acts by measure preserving maps and $\varphi \in L^{1}(\mu)$ then 'almost all' infinite paths in the Cayley graph \mathcal{G} are so that

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{j=0}^{n-1} \varphi\left(g_{i_{n}} \circ \cdots \circ g_{i_{2} \circ g_{i_{1}}}(x)\right)
$$

exists for μ-a.e. x

Cayley graph \mathcal{G}

Coding of infinite paths:

$$
\mathbb{F}_{\kappa} \rightarrow \mathcal{G}\left(\text { or }\{1,2, \ldots, \kappa\}^{\mathbb{Z}} \rightarrow \mathcal{G}\right)
$$

\mathbb{P} random walk on \mathbb{F}_{κ}
G finitely generated (semi)group
$G_{1}=\left\{g_{1}, g_{2}, \ldots, g_{\kappa}\right\}$ generating set (or $G_{1}=\left\{g_{1}^{ \pm 1}, g_{2}^{ \pm 1}, \ldots, g_{\kappa}^{ \pm 1}\right\}$)
Assume $S: G \times X \rightarrow X$ is a continuous group action:
(i) for every $g \in G$, the map $S_{g}:=S(g, \cdot): X \rightarrow X$ is continuous,
(ii) $S_{h g}=S_{h} \circ S_{g}$ for every $g, h \in G$.

- Pathwise ergodic theorem

If G acts by measure preserving maps and $\varphi \in L^{1}(\mu)$ then 'almost all' infinite paths in the Cayley graph \mathcal{G} are so that

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{j=0}^{n-1} \varphi\left(g_{i_{n}} \circ \cdots \circ g_{i_{2} \circ g_{i_{1}}}(x)\right)
$$

exists for μ-a.e. x

- RmK: Ghys (2001) proved that a Baire generic pair $(f, g) \in \operatorname{Homeo}(M)$ generates a free group

Cayley graph \mathcal{G}

Coding of infinite paths:
$\mathbb{F}_{\kappa} \rightarrow \mathcal{G}\left(\right.$ or $\left.\{1,2, \ldots, \kappa\}^{\mathbb{Z}} \rightarrow \mathcal{G}\right)$
\mathbb{P} random walk on \mathbb{F}_{κ}

IRREGULAR BEHAVIOR (a.k.a. non-typical or historical behavior)

- $x \in X$ is φ-irregular if
$\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{j=0}^{n-1} \varphi\left(f^{j}(x)\right)$ does not exist
- $I_{\varphi}(f)$ is the set of φ-irregular points
- $/_{\Phi}$ is the set of Φ-irregular points, for $\Phi=\left(\varphi_{n}\right)_{n \geqslant 1} \in C(X)^{\mathbb{N}}$

IRREGULAR BEHAVIOR (a.k.a. non-typical or historical behavior)

- $x \in X$ is φ-irregular if
$\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{j=0}^{n-1} \varphi\left(f^{j}(x)\right)$ does not exist
- $I_{\varphi}(f)$ is the set of φ-irregular points
- I_{Φ} is the set of Φ-irregular points, for $\Phi=\left(\varphi_{n}\right)_{n \geqslant 1} \in C(X)^{\mathbb{N}}$

Examples:

- I_{φ} may be empty
(e.g. $\varphi=u-u \circ f$)

IRREGULAR BEHAVIOR (a.k.a. non-typical or historical behavior)

- $x \in X$ is φ-irregular if
$\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{j=0}^{n-1} \varphi\left(f^{j}(x)\right)$ does not exist
- $I_{\varphi}(f)$ is the set of φ-irregular points
- I_{Φ} is the set of Φ-irregular points, for $\Phi=\left(\varphi_{n}\right)_{n \geqslant 1} \in C(X)^{\mathbb{N}}$

Examples:

- I_{φ} may be empty (e.g. $\varphi=u-u \circ f$)
- I_{φ} may be empty $\forall \varphi \in C(X)$
(e.g. f uniquely ergodic)

IRREGULAR BEHAVIOR (a.k.a. non-typical or historical behavior)

- $x \in X$ is φ-irregular if
$\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{j=0}^{n-1} \varphi\left(f^{j}(x)\right)$ does not exist
- $I_{\varphi}(f)$ is the set of φ-irregular points
- I_{Φ} is the set of Φ-irregular points, for $\Phi=\left(\varphi_{n}\right)_{n \geqslant 1} \in C(X)^{\mathbb{N}}$

Examples:

- I_{φ} may be empty
(e.g. $\varphi=u-u \circ f$)
- I_{φ} may be empty $\forall \varphi \in C(X)$
(e.g. f uniquely ergodic)
- I_{φ} may contain open sets

Figure: Irregular behavior on Bowen's eye

IRREGULAR BEHAVIOR (a.k.a. non-typical or historical behavior)

- $x \in X$ is φ-irregular if
$\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{j=0}^{n-1} \varphi\left(f^{j}(x)\right)$ does not exist
- $I_{\varphi}(f)$ is the set of φ-irregular points
I_{Φ} is the set of Φ-irregular points, for $\Phi=\left(\varphi_{n}\right)_{n \geqslant 1} \in C(X)^{\mathbb{N}}$

Examples:

- I_{φ} may be empty (e.g. $\varphi=u-u \circ f$)
- I_{φ} may be empty $\forall \varphi \in C(X)$
(e.g. f uniquely ergodic)
- I_{φ} may contain open sets

Figure: Irregular behavior on Bowen's eye

- A dichotomy (Takens 94', 08', Barreira,

Schmeling 00', Chen, Küpper, Shu 05', Li, Wu 13',...) If $f: \mathbb{S}^{1} \rightarrow \mathbb{S}^{1}$ is $C^{1+\alpha}$-expanding map and $\varphi: \mathbb{S}^{1} \rightarrow \mathbb{R}$ is Hölder then
(a) $I_{\varphi}(f)=\emptyset$,
or
(b) $I_{\varphi}(f)$ is Baire generic, has full topological entropy and full Hausdorff dimension

IRREGULAR BEHAVIOR (a.k.a. non-typical or historical behavior)

- $x \in X$ is φ-irregular if
$\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{j=0}^{n-1} \varphi\left(f^{j}(x)\right)$ does not exist
- $I_{\varphi}(f)$ is the set of φ-irregular points
- $/_{\Phi}$ is the set of Φ-irregular points, for $\Phi=\left(\varphi_{n}\right)_{n \geqslant 1} \in C(X)^{\mathbb{N}}$

Examples:

- I_{φ} may be empty (e.g. $\varphi=u-u \circ f$)
- I_{φ} may be empty $\forall \varphi \in C(X)$ (e.g. f uniquely ergodic)
- I_{φ} may contain open sets

Figure: Irregular behavior on Bowen's eye

- A dichotomy (Takens 94', 08', Barreira,

Schmeling 00', Chen, Küpper, Shu 05', Li, Wu 13',...) If $f: \mathbb{S}^{1} \rightarrow \mathbb{S}^{1}$ is $C^{1+\alpha}$-expanding map and $\varphi: \mathbb{S}^{1} \rightarrow \mathbb{R}$ is Hölder then
(a) $I_{\varphi}(f)=\emptyset$,
or
(b) $I_{\varphi}(f)$ is Baire generic, has full topological entropy and full Hausdorff dimension

Questions:

1. Are there simple criteria to detect when $I_{\varphi}(f)$ is Baire generic?
2. Can one expect such dichotomies in the context of group actions?
3. Can one describe the irregular sets of typical group actions (Birkhoff and group averaging)?

Main Results (\mathbb{N} and \mathbb{R}_{+}Continuous actions)

Main Results (\mathbb{N} and \mathbb{R}_{+}Continuous actions)

Theorem 1 (Carvalho, V., 2021')
Let f be a continuous map on a compact metric space X. Given $\varphi \in C(X)$, consider the first integral

$$
L_{\varphi}(x):=\limsup _{n \rightarrow \infty} \frac{1}{n} \sum_{j=0}^{n-1} \varphi\left(f^{j}(x)\right)
$$

Assume there exist $\alpha, \beta \in \mathbb{R}$ and dense sets $X_{\alpha}, X_{\beta} \subset X$ so that $L_{\varphi}(x)=\alpha<\beta=L_{\varphi}(y)$ for every $x \in X_{\alpha}$ and $y \in X_{\beta}$. Then $I_{\varphi}(f)$ is a Baire generic subset of X.

Main Results (\mathbb{N} and \mathbb{R}_{+}Continuous actions)

Theorem 1 (Carvalho, V., 2021')
Let f be a continuous map on a compact metric space X. Given $\varphi \in C(X)$, consider the first integral

$$
L_{\varphi}(x):=\limsup _{n \rightarrow \infty} \frac{1}{n} \sum_{j=0}^{n-1} \varphi\left(f^{j}(x)\right)
$$

Assume there exist $\alpha, \beta \in \mathbb{R}$ and dense sets $X_{\alpha}, X_{\beta} \subset X$ so that $L_{\varphi}(x)=\alpha<\beta=L_{\varphi}(y)$ for every $x \in X_{\alpha}$ and $y \in X_{\beta}$. Then $I_{\varphi}(f)$ is a Baire generic subset of X.

RMK: The assumptions are verified whenever there exist two distinct ergodic measures whose basins are dense in X (even if these are not fully supported)

Examples: Hyperbolic sets, continuous maps with specification, homoclinic classes, minimal non-uniquely ergodic maps, Lorenz attractors, singular hyperbolic flows, ...

Theorem 2 (Carvalho, Coelho, Salgado, V., preprint 2021')
Let X be a Baire metric space, $\Phi=\left(\varphi_{n}\right)_{n \geqslant 1} \in C(X)^{\mathbb{N}}$ and

$$
\mathcal{W}_{\Phi}(x)=\operatorname{acc}\left(\varphi_{n}(x)\right)_{n \geqslant 1}
$$

Assume there exist dense subsets $\mathcal{D}_{1}, \mathcal{D}_{2} \subset X$ and $\varepsilon>0$ such that

$$
\sup _{x \in D_{1}, y \in D_{2}} \sup _{a \in \mathcal{W}_{\Phi}(x), b \in \mathcal{W}_{\Phi}(y)}|a-b|>\varepsilon
$$

Then $I_{\Phi}(f)$ is a Baire generic subset of X.

Main Results (Group averaging)

Theorem 2 (Carvalho, Coelho, Salgado, V., preprint 2021')
Let X be a Baire metric space, $\Phi=\left(\varphi_{n}\right)_{n \geqslant 1} \in C(X)^{\mathbb{N}}$ and

$$
\mathcal{W}_{\Phi}(x)=\operatorname{acc}\left(\varphi_{n}(x)\right)_{n \geqslant 1}
$$

Assume there exist dense subsets $\mathcal{D}_{1}, \mathcal{D}_{2} \subset X$ and $\varepsilon>0$ such that

$$
\sup _{x \in D_{1}, y \in D_{2}} \sup _{a \in \mathcal{W}_{\Phi}(x), b \in \mathcal{W}_{\Phi}(y)}|a-b|>\varepsilon .
$$

Then $I_{\Phi}(f)$ is a Baire generic subset of X.

Example:
$g_{1}, g_{2}: \mathbb{S}^{1} \rightarrow \mathbb{S}^{1}$
$g_{1}(x)=2 x(\bmod 1)$
$g_{2}(x)=3 x(\bmod 1)$
p, q common periodic points
$\varphi \in C\left(\mathbb{S}^{1}\right)$ s.t. $\int \varphi d \mu_{p} \neq \int \varphi d \mu_{q}$

Main Results (Group averaging)

Theorem 2 (Carvalho, Coelho, Salgado, V., preprint 2021')
Let X be a Baire metric space, $\Phi=\left(\varphi_{n}\right)_{n \geqslant 1} \in C(X)^{\mathbb{N}}$ and

$$
\mathcal{W}_{\Phi}(x)=\operatorname{acc}\left(\varphi_{n}(x)\right)_{n \geqslant 1}
$$

Assume there exist dense subsets $\mathcal{D}_{1}, \mathcal{D}_{2} \subset X$ and $\varepsilon>0$ such that

$$
\sup _{x \in D_{1}, y \in D_{2}} \sup _{a \in \mathcal{W}_{\Phi}(x), b \in \mathcal{W}_{\Phi}(y)}|a-b|>\varepsilon .
$$

Then $I_{\Phi}(f)$ is a Baire generic subset of X.

Example:
$g_{1}, g_{2}: \mathbb{S}^{1} \rightarrow \mathbb{S}^{1}$
$g_{1}(x)=2 x(\bmod 1)$
$g_{2}(x)=3 x(\bmod 1)$
p, q common periodic points
$\varphi \in C\left(\mathbb{S}^{1}\right)$ s.t. $\int \varphi d \mu_{p} \neq \int \varphi d \mu_{q}$
$\mathcal{O}^{-}(p)$ and $\mathcal{O}^{-}(q)$ are dense in \mathbb{S}^{1}

Theorem 2 (Carvalho, Coelho, Salgado, V., preprint 2021')
Let X be a Baire metric space, $\Phi=\left(\varphi_{n}\right)_{n \geqslant 1} \in C(X)^{\mathbb{N}}$ and

$$
\mathcal{W}_{\Phi}(x)=\operatorname{acc}\left(\varphi_{n}(x)\right)_{n \geqslant 1}
$$

Assume there exist dense subsets $\mathcal{D}_{1}, \mathcal{D}_{2} \subset X$ and $\varepsilon>0$ such that

$$
\sup _{x \in D_{1}, y \in D_{2}} \sup _{a \in \mathcal{W}_{\Phi}(x), b \in \mathcal{W}_{\Phi}(y)}|a-b|>\varepsilon
$$

Then $I_{\Phi}(f)$ is a Baire generic subset of X.

Example:
$g_{1}, g_{2}: \mathbb{S}^{1} \rightarrow \mathbb{S}^{1}$
$g_{1}(x)=2 x(\bmod 1)$
$g_{2}(x)=3 x(\bmod 1)$
p, q common periodic points
$\varphi \in C\left(\mathbb{S}^{1}\right)$ s.t. $\int \varphi d \mu_{p} \neq \int \varphi d \mu_{q}$
$\mathcal{O}^{-}(p)$ and $\mathcal{O}^{-}(q)$ are dense in \mathbb{S}^{1}

If $x \in \mathcal{O}^{-}(p)$ then

$$
\frac{1}{n^{2}} \sum_{i, j=0}^{n} \varphi\left(g_{1}^{i} g_{2}^{j}(x)\right)
$$

and

$$
\frac{1}{2^{n}} \sum_{|g|=n} \varphi(g(x))=\frac{1}{2^{n}} \sum_{i=0}^{n}\binom{n}{i} \varphi\left(g_{1}^{i} g_{2}^{n-i}(x)\right)
$$

converge to $\int \varphi d \mu_{p}$

Main Results (Group averaging)

Theorem 2 (Carvalho, Coelho, Salgado, V., Preprint 2021')
Let X be a Baire metric space, $\Phi=\left(\varphi_{n}\right)_{n \geqslant 1} \in C(X)^{\mathbb{N}}$ and

$$
\mathcal{W}_{\Phi}(x)=\operatorname{acc}\left(\varphi_{n}(x)\right)_{n \geqslant 1}
$$

Assume there exist dense subsets $\mathcal{D}_{1}, \mathcal{D}_{2} \subset X$ and $\varepsilon>0$ such that

$$
\sup _{x \in D_{1}, y \in D_{2}} \sup _{a \in \mathcal{W}_{\Phi}(x), b \in \mathcal{W}_{\Phi}(y)}|a-b|>\varepsilon .
$$

Then $I_{\Phi}(f)$ is a Baire generic subset of X.

Example:

$g_{1}, g_{2}: \mathbb{S}^{1} \rightarrow \mathbb{S}^{1}$
$g_{1}(x)=2 x(\bmod 1)$
$g_{2}(x)=3 x(\bmod 1)$
p, q common periodic points
$\varphi \in C\left(\mathbb{S}^{1}\right)$ s.t. $\int \varphi d \mu_{p} \neq \int \varphi d \mu_{q}$

Corollary: The sets

$$
\begin{gathered}
\left\{x \in \mathbb{S}^{1}: \frac{1}{n^{2}} \sum_{i, j=0}^{n} \varphi\left(g_{1}^{i} g_{2}^{j}(x)\right) \text { diverges }\right\} \\
\left\{x \in \mathbb{S}^{1}: \frac{1}{2^{n}} \sum_{|g|=n} \varphi(g(x)) \text { diverges }\right\} \\
\text { are Baire residual subsets of } \mathbb{S}^{1}
\end{gathered}
$$

Main Results (Averaging along paths)

Main Results (Averaging along paths)

X compact metric space
$G_{1}=\left\{i d, f_{1}, f_{2}, \ldots, f_{k}\right\}$ generators
G (semi)group generated by G_{1}
$S: G \times X \rightarrow X$ continuous semigroup action
S has frequent hitting times if $\forall \varepsilon>0 \exists K(\varepsilon)>0$ so that the following holds:
given $B_{1}, B_{2} \subset X$ balls of radius ε and $0<\delta \leqslant \frac{\varepsilon}{2}$, respectively, there exists $0 \leqslant p \leqslant K(\varepsilon), \underline{\omega} \in \Sigma_{\kappa}:=\{1,2, \ldots, \kappa\}^{\mathbb{N}}$ and a ball $B_{2}^{\prime} \subset B_{2}$ of radius $\delta / 2$ so that ${\underset{\underline{\omega}}{p}}_{p}\left(B_{1}\right) \supset B_{2}^{\prime}$.

Main Results (Averaging along paths)

X compact metric space
$G_{1}=\left\{i d, f_{1}, f_{2}, \ldots, f_{k}\right\}$ generators
G (semi)group generated by G_{1}
$S: G \times X \rightarrow X$ continuous semigroup action
S has frequent hitting times if $\forall \varepsilon>0 \exists K(\varepsilon)>0$ so that the following holds:
given $B_{1}, B_{2} \subset X$ balls of radius ε and $0<\delta \leqslant \frac{\varepsilon}{2}$, respectively, there exists $0 \leqslant p \leqslant K(\varepsilon), \underline{\omega} \in \Sigma_{\kappa}:=\{1,2, \ldots, \kappa\}^{\mathbb{N}}$ and a ball $B_{2}^{\prime} \subset B_{2}$ of radius $\delta / 2$ so that $f_{\underline{e}}^{p}\left(B_{1}\right) \supset B_{2}^{\prime}$.

RMKS:

- Every minimal action by isometries has frequent hitting times
- The frequent hitting times condition implies that the sequence of return times to balls of radius ε are syndetic (with uniform constant)

Main Results (Averaging along paths)

Theorem 3 (Ferreira, V., 2021')
Let X be a compact metric space and $S: G \times X \rightarrow X$ be a semigroup action generated by bi-Lipschitz homeomorphisms $G_{1}=\left\{f_{1}, f_{2}, \ldots, f_{k}\right\}$. If S has frequent hitting times and $\varphi \in C(X)$ is not a coboundary for some f_{i} then the set
$I_{\varphi}(\mathbb{S}):=\left\{x \in X: \frac{1}{n} \sum_{j=0}^{n-1} \varphi\left(g_{\omega}^{j}(x)\right)\right.$ diverges along some infinite path in G $\}$
is Baire generic in X. Moreover:
(i) $h^{G L W}\left(\mathbb{S}, I_{\mathbf{S}}(\varphi)\right) \geqslant H^{\text {Pinsker }}(\varphi)$
(ii) $h^{B}\left(\mathbb{S}, I_{\mathbb{S}}(\varphi)\right) \geqslant h_{*}(\varphi)-\log \kappa$
$h^{G L W}(\mathbb{S}, \cdot)=$ Ghys-Langevin-Walczak's entropy (1988)
$h^{B}(\mathbb{S}, \cdot)=$ Bufetov's entropy (1999)
$H^{\text {Pinsker }}(\varphi)=c$ if $\forall \varepsilon>0 \exists \mu_{1}, \mu_{2} \in \mathcal{M}_{\text {erg }}(F)$ that distinguish φ and $h_{\mu_{i}}(F \mid \sigma)>c-\varepsilon$

$$
\begin{aligned}
& h_{*}(\varphi)=c \text { if } \forall \varepsilon>0 \\
& \exists \mu_{1}, \mu_{2} \in \mathcal{M}_{\text {erg }}(F) \text { that } \\
& \text { distinguish } \varphi \text { and } \\
& h_{\mu_{i}}(F)>c-\varepsilon
\end{aligned}
$$

Some Notions of Entropy:
X compact metric space
$G_{1}=\left\{i d, g_{1}, g_{2}, \ldots, g_{\kappa}\right\}$ continuous, $G=\bigcup_{n \geqslant 1} G_{n}$ semigroup

- $x, y \in X$ are (n, ε)-separated along the path $g_{\omega_{n}} \circ \cdots \circ g_{\omega_{2}} \circ g_{\omega_{1}}$ if there exists $1 \leqslant j \leqslant n$ s.t. $d\left(g_{\omega}^{j}(x), g_{\omega}^{j}(y)\right)>\varepsilon$
- Entropy of infinite path $\mathcal{F}_{\omega}=\left(g_{\omega}^{j}\right)_{j}$ in G (Kolyada-Snoha 96'):

$$
h\left(\mathcal{F}_{\omega}\right)=\lim _{\varepsilon \rightarrow 0} \limsup _{n \rightarrow \infty} \frac{1}{n} \log s(\omega, n, \varepsilon)
$$

where $s(\omega, n, \varepsilon)=$ max. card. of (n, ε)-separated points along path

- GLW-entropy of semigroup action (Ghys-Langevin-Walczak 88'):

$$
h^{G L W}(\mathbb{S})=\lim _{\varepsilon \rightarrow 0} \limsup _{n \rightarrow \infty} \frac{1}{n} \log s(G, n, \varepsilon)
$$

where $s(G, n, \varepsilon)=$ max. card. of points separated by G_{n} elements

- B-entropy of free semigroup action (Bufetov 99'):

$$
h^{B}(\mathbb{S})=\lim _{\varepsilon \rightarrow 0} \limsup _{n \rightarrow \infty} \frac{1}{n} \log \left(\frac{1}{\kappa^{n}} \sum_{g \in G_{n}} s(\omega, n, \varepsilon)\right)
$$

Main Results (Averaging along paths)

Theorem 4 (Ferreira, V., 2021')
Let X be a compact metric space and $S: G \times X \rightarrow X$ be a semigroup action generated by bi-Lipschitz homeomorphisms $G_{1}=\left\{f_{1}, f_{2}, \ldots, f_{k}\right\}$. If S has frequent hitting times, some f_{i} is minimal and $\varphi \in C(X)$ is not a coboundary for some f_{i} then

$$
I_{\omega}(\varphi):=\left\{x \in X: \frac{1}{n} \sum_{j=0}^{n-1} \varphi\left(g_{\omega}^{j}(x)\right) \text { diverges }\right\}
$$

satisfies:
(i) $\left\{\omega \in \Sigma_{\kappa}: I_{\omega}(\varphi)\right.$ Baire generic in $\left.X\right\}$
is Baire generic in Σ_{κ}
(ii) $\sup _{\omega \in \Sigma_{\kappa}} h_{l_{\omega}(\psi)}\left(\mathcal{F}_{\omega}\right) \geqslant H^{\text {Pinsker }}(\psi)$
(iii) $\left\{\omega \in \Sigma_{\kappa}: h_{I_{\omega}(\psi)}\left(\mathcal{F}_{\omega}\right) \geqslant H^{\text {Pinsker }}(\psi)\right\}$ has entropy $\geqslant H_{\sigma}^{\text {pinsker }}(\psi)$
$H^{\sigma}(\psi)=c$ if $\forall \varepsilon>0 \exists \mu_{1}, \mu_{2} \in \mathcal{M}_{\text {erg }}(F)$ that distinguish ψ and $h_{\pi_{*} \mu_{i}}(\sigma)>c-\varepsilon$

Main Results (Averaging along paths)

Theorem 4 (Ferreira, V., 2021')
Let X be a compact metric space and $S: G \times X \rightarrow X$ be a semigroup action generated by bi-Lipschitz homeomorphisms $G_{1}=\left\{f_{1}, f_{2}, \ldots, f_{\kappa}\right\}$. If S has frequent hitting times, some f_{i} is minimal and $\varphi \in C(X)$ is not a coboundary for some f_{i} then

$$
I_{\omega}(\varphi):=\left\{x \in X: \frac{1}{n} \sum_{j=0}^{n-1} \varphi\left(g_{\omega}^{j}(x)\right) \text { diverges }\right\}
$$

satisfies:
(i) $\left\{\omega \in \Sigma_{\kappa}: I_{\omega}(\varphi)\right.$ Baire generic in $\left.X\right\}$
is Baire generic in Σ_{κ}
(ii) $\sup _{\omega \in \Sigma_{\kappa}} h_{\omega(\psi)}\left(\mathcal{F}_{\omega}\right) \geqslant H^{\text {Pinsker }}(\psi)$
(iii) $\left\{\omega \in \Sigma_{\kappa}: h_{l_{\omega(}(\psi)}\left(\mathcal{F}_{\omega}\right) \geqslant H^{\text {Pinsker }}(\psi)\right\}$ has entropy $\geqslant H_{\sigma}^{\text {Pinsker }}(\psi)$

$$
H^{\sigma}(\psi)=c \text { if } \forall \varepsilon>0 \exists \mu_{1}, \mu_{2} \in \mathcal{M}_{\operatorname{erg}}(F) \text { that }
$$

$$
\text { distinguish } \psi \text { and } h_{\pi_{*} \mu_{i}}(\sigma)>c-\varepsilon
$$

RMK: Item (i) still holds without the minimality assumption. Previous results by Nakano (2017) on random circle expanding maps.

Application: Lyapunov irregular behavior Given $A_{1}, A_{2}, \ldots, A_{\kappa} \in S L(d, \mathbb{R})$ and $\omega \in \Sigma_{\kappa}$ set $A^{(n)}(\omega):=A_{\omega_{n}} \ldots A_{\omega_{2}} A_{\omega_{1}}$

- Furstenberg-Kesten (1960) if $\mu=\nu^{\mathbb{Z}}$ the top Lyapunov exponent is (μ-a.e.)

$$
\lambda_{+}(A, \nu)=\lim _{n \rightarrow \infty} \frac{1}{n} \log \left\|A^{(n)}(\omega)\right\|
$$

- Furstenberg (1963) if $\mu=\nu^{\mathbb{Z}}$, the semigroup generated by matrices is non-compact and strongly irreducible on supp ν then $\lambda_{+}(A, \nu)>0$.

Application: Lyapunov irregular behavior
Given $A_{1}, A_{2}, \ldots, A_{\kappa} \in S L(d, \mathbb{R})$ and $\omega \in \Sigma_{\kappa}$ set $A^{(n)}(\omega):=A_{\omega_{n}} \ldots A_{\omega_{2}} A_{\omega_{1}}$

- Furstenberg-Kesten (1960) if $\mu=\nu^{\mathbb{Z}}$ the top Lyapunov exponent is (μ-a.e.)

$$
\lambda_{+}(A, \nu)=\lim _{n \rightarrow \infty} \frac{1}{n} \log \left\|A^{(n)}(\omega)\right\|
$$

- Furstenberg (1963) if $\mu=\nu^{\mathbb{Z}}$, the semigroup generated by matrices is non-compact and strongly irreducible on supp ν then $\lambda_{+}(A, \nu)>0$.
- Skew-product

$$
\begin{array}{cccc}
F_{A}: & \Sigma_{\kappa} \times \mathbb{R}^{d} & \longrightarrow & \Sigma_{\kappa} \times \mathbb{R}^{d} \\
& (x, v) & \mapsto & (f(x), A(x) \cdot v)
\end{array}
$$

- Projective cocycle

$$
\begin{array}{clc}
P_{A}: \quad \Sigma_{\kappa} \times \mathbf{P}_{\mathbb{R}^{d}} & \longrightarrow & \Sigma_{\kappa} \times \mathbf{P R}^{d} \\
(\omega, v) & \mapsto & \left(\sigma(\omega), \frac{A(\omega) \cdot v}{\|A(\omega) \cdot v\|}\right)
\end{array}
$$

Application: Lyapunov irregular behavior
Given $A_{1}, A_{2}, \ldots, A_{\kappa} \in S L(d, \mathbb{R})$ and $\omega \in \Sigma_{\kappa}$ set $A^{(n)}(\omega):=A_{\omega_{n}} \ldots A_{\omega_{2}} A_{\omega_{1}}$

- Furstenberg-Kesten (1960) if $\mu=\nu^{\mathbb{Z}}$ the top Lyapunov exponent is (μ-a.e.)
- Sumi- V.-Yamamoto (2016) these skew-products do not satisfy the specification property

$$
\lambda_{+}(A, \nu)=\lim _{n \rightarrow \infty} \frac{1}{n} \log \left\|A^{(n)}(\omega)\right\|
$$

- Furstenberg (1963) if $\mu=\nu^{\mathbb{Z}}$, the semigroup generated by matrices is non-compact and strongly irreducible on supp ν then $\lambda_{+}(A, \nu)>0$.
- Skew-product

$$
\begin{array}{cccc}
F_{A}: & \Sigma_{\kappa} \times \mathbb{R}^{d} & \longrightarrow & \Sigma_{\kappa} \times \mathbb{R}^{d} \\
& (x, v) & \mapsto & (f(x), A(x) \cdot v)
\end{array}
$$

- Projective cocycle

$$
\begin{array}{clc}
P_{A}: \quad \Sigma_{\kappa} \times \mathbf{P}_{\mathbb{R}^{d}} & \longrightarrow & \Sigma_{\kappa} \times \mathbf{P R}^{d} \\
(\omega, v) & \mapsto & \left(\sigma(\omega), \frac{A(\omega) \cdot v}{\|A(\omega) \cdot v\|}\right)
\end{array}
$$

Application: Lyapunov irregular behavior

Given $A_{1}, A_{2}, \ldots, A_{\kappa} \in S L(d, \mathbb{R})$ and $\omega \in \Sigma_{\kappa}$ set $A^{(n)}(\omega):=A_{\omega_{n}} \ldots A_{\omega_{2}} A_{\omega_{1}}$

- Furstenberg-Kesten (1960) if $\mu=\nu^{\mathbb{Z}}$ the top Lyapunov exponent is (μ-a.e.)

$$
\lambda_{+}(A, \nu)=\lim _{n \rightarrow \infty} \frac{1}{n} \log \left\|A^{(n)}(\omega)\right\|
$$

- Furstenberg (1963) if $\mu=\nu^{\mathbb{Z}}$, the semigroup generated by matrices is non-compact and strongly irreducible on supp ν then $\lambda_{+}(A, \nu)>0$.
- Skew-product

$$
\begin{array}{cccc}
F_{A}: & \Sigma_{\kappa} \times \mathbb{R}^{d} & \longrightarrow & \Sigma_{\kappa} \times \mathbb{R}^{d} \\
& (x, v) & \mapsto & (f(x), A(x) \cdot v)
\end{array}
$$

- Sumi- V.-Yamamoto (2016) these skew-products do not satisfy the specification property
- In low dimension the linear cocycle is 'often' strongly projectively accessible (i.e. the projective semigroup action on $X=\mathbf{P} \mathbb{R}^{d}$ has frequent hitting times)

- Projective cocycle

$$
\begin{array}{cccc}
P_{A}: & \Sigma_{\kappa} \times \mathbf{P R}^{d} & \longrightarrow & \Sigma_{\kappa} \times \mathbf{P R}^{d} \\
& (\omega, v) & \mapsto & \left(\sigma(\omega), \frac{A(\omega) \cdot v}{\|A(\omega) \cdot v\|}\right)
\end{array} \quad\left(\begin{array}{ccc}
\cos \alpha & -\sin \alpha & 0 \\
\sin \alpha & \cos \alpha & 0 \\
0 & 0 & 1
\end{array}\right),\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \beta & -\sin \beta \\
0 & \sin \beta & \cos \beta
\end{array}\right)
$$

Example: $\operatorname{SO}(3, \mathbb{R})$ matrices $(\alpha, \beta \notin \mathbb{Q})$

Application (Lyapunov irregular Behavior)

Theorem 5 (Ferreira, V., 2021')
If $A_{1}, A_{2}, \ldots, A_{\kappa} \in S L(d, \mathbb{R})$ generate a noncompact and strongly projectively accessible semigroup then:

- for each $v \in \mathbf{P} \mathbb{R}^{d}$ there exists $\mathcal{R}_{v} \subset \Sigma_{\kappa}$
 Baire generic, with entropy at least $h_{*}\left(\varphi_{A}\right)$ s.t. for every $\omega \in \mathcal{R}_{v}$,
$\liminf _{n \rightarrow \infty} \frac{1}{n} \log \left\|A^{n}(\omega) v\right\|<\limsup _{n \rightarrow \infty} \frac{1}{n} \log \left\|A^{n}(\omega) v\right\|$
- there exists a Baire residual subset $\mathcal{R} \subset \Sigma_{\kappa}^{(\star)}$ and a dense subset $\mathcal{D} \subset \mathbf{P} \mathbb{R}^{d}$ so that (\star) holds for every $\omega \in \mathcal{R}$ and every $v \in \mathcal{D}$.

Application (Lyapunov irregular Behavior)

Theorem 5 (Ferreira, V., 2021')
If $A_{1}, A_{2}, \ldots, A_{\kappa} \in S L(d, \mathbb{R})$ generate a noncompact and strongly projectively accessible semigroup then:

- for each $v \in \mathbf{P} \mathbb{R}^{d}$ there exists $\mathcal{R}_{v} \subset \Sigma_{\kappa}$ Baire generic, with entropy at least $h_{*}\left(\varphi_{A}\right)$ s.t. for every $\omega \in \mathcal{R}_{v}$,
$\liminf _{n \rightarrow \infty} \frac{1}{n} \log \left\|A^{n}(\omega) v\right\|<\limsup _{n \rightarrow \infty} \frac{1}{n} \log \left\|A^{n}(\omega) v\right\|$
- there exists a Baire residual subset $\mathcal{R} \subset \Sigma_{\kappa}$ and a dense subset $\mathcal{D} \subset \mathbf{P} \mathbb{R}^{d}$ so that (\star) holds for every $\omega \in \mathcal{R}$ and every $v \in \mathcal{D}$.

RMK: Previous results on irregular behavior for the top Lyapunov exponent of Hölder continuous cocycles: Herman (1981), Furman (1997), Tian (2015, 2017) These rely on very different techniques: (i) u.s.c. of $\mu \mapsto \lambda_{+}(A, f, \mu)$, (ii) bounded distortion for linear cocycles by Kalinin (2011)

Application (Lyapunov irregular Behavior)

Corollary (Ferreira, V., 2021')
Let $\mathcal{H} \subset C_{\text {loc }}^{0}\left(\Sigma_{\kappa}, S L(3, \mathbb{R})\right)$ be the set of hyperbolic cocycles. There exist C^{0}-open sets \mathcal{U}_{1} and \mathcal{U}_{2} so that $\mathcal{U}_{1} \cup \mathcal{U}_{2}$ is dense in \mathcal{H} and:

1. if $B \in \mathcal{U}_{1}$ then the set of Lyapunov irregular points in Σ_{κ} is Baire generic and has full entropy
2. there exists $\mathcal{R} \subset \mathcal{U}_{2} C^{0}$-Baire residual and full Haar measure s.t. if $B \in \mathcal{R}$ then $\liminf _{n \rightarrow \infty} \frac{1}{n} \log \left\|B^{n}(\omega) v\right\|<\limsup _{n \rightarrow \infty} \frac{1}{n} \log \left\|B^{n}(\omega) v\right\|$.
for generic $\omega \in \Sigma_{\kappa}$ and a dense set of vectors $\mathcal{D}_{\omega} \subset E_{\omega}^{s}$.

A BASIC STRATEGY (= quantitative control on recurrence)

A BASIC STRATEGY ($=$ quantitative control on recurrence)

- take μ_{1}, μ_{2} ergodic so that $\int \psi d \mu_{1} \neq \int \psi d \mu_{2}$
- pick x_{1}, x_{2} so that $\frac{1}{n} \sum_{j=0}^{n-1} \psi\left(f^{j}\left(x_{i}\right)\right) \rightarrow \int \psi d \mu_{i}(i=1,2)$
- $n_{1} \ll n_{2} \ll n_{3} \ll n_{4} \ll \ldots \quad$ (arbitrary choice)
- uniform continuity + specification \Rightarrow there exists z_{k} which approximates well the finite orbits of x_{1} and x_{2} alternatively

A BASIC STRATEGY ($=$ quantitative control on recurrence)

- take μ_{1}, μ_{2} ergodic so that $\int \psi d \mu_{1} \neq \int \psi d \mu_{2}$
- pick x_{1}, x_{2} so that $\frac{1}{n} \sum_{j=0}^{n-1} \psi\left(f^{j}\left(x_{i}\right)\right) \rightarrow \int \psi d \mu_{i}(i=1,2)$
- $n_{1} \ll n_{2} \ll n_{3} \ll n_{4} \ll \ldots \quad$ (arbitrary choice)
- uniform continuity + specification \Rightarrow there exists z_{k} which approximates well the finite orbits of x_{1} and x_{2} alternatively

$$
\underbrace{00 \cdots 0}_{n_{1}} \underbrace{* \cdots *}_{\leqslant p} \underbrace{111 \cdots 1}_{n_{2}} \underbrace{* \cdots *}_{\leqslant p} \underbrace{0000 \cdots 0}_{n_{3}} \underbrace{* \cdots *}_{\leqslant p} \cdots \underbrace{11111 \cdots 1}_{n_{k}}
$$

z_{k+1} is a point that $1 / 2^{k}$-shadows z_{k} and the next finite piece of orbit.

- $z=\lim _{k \rightarrow \infty} z_{k}$ is φ-irregular

A BASIC STRATEGY (= quantitative control on recurrence)

- if μ_{1}, μ_{2} ergodic large entropy s.t. $\int \psi d \mu_{1} \neq \int \psi d \mu_{2}$
- find many points x_{i} so that $\frac{1}{n} \sum_{j=0}^{n-1} \psi\left(f^{j}\left(x_{i}\right)\right) \rightarrow \int \psi d \mu_{i}$
- uniform continuity + specification \Rightarrow there exist many irregular points $z=\lim _{n} z_{n}$ as before

$$
\begin{aligned}
& \approx e^{\left(n_{1}+n_{2}+\cdots+n_{k}\right) h_{\text {top }}(f)} \\
& \left(\left(n_{1}+n_{2}+\cdots+n_{k}+\mathcal{O}(k)\right), \frac{\varepsilon}{2}\right) \text { sep }
\end{aligned}
$$

A BASIC STRATEGY (= quantitative control on recurrence)

- if μ_{1}, μ_{2} ergodic large entropy s.t. $\int \psi d \mu_{1} \neq \int \psi d \mu_{2}$
- find many points x_{i} so that $\frac{1}{n} \sum_{j=0}^{n-1} \psi\left(f^{j}\left(x_{i}\right)\right) \rightarrow \int \psi d \mu_{i}$
- uniform continuity + specification \Rightarrow there exist many irregular points $z=\lim _{n} z_{n}$ as before

- Similar reasoning yields a Baire generic set

However: This argument requires bounded transitions!

TOY MODEL

Toy model

Toy model

Toy model

$$
\begin{aligned}
& \text { image of } \\
& B_{\omega}\left(v_{1}, n_{1}, \varepsilon\right)
\end{aligned}
$$

Toy model

$$
\begin{aligned}
& \text { image of } \\
& B_{\omega}\left(v_{1}, n_{1}, \varepsilon\right)
\end{aligned}
$$

Toy model

$$
\begin{aligned}
& \text { image of } \\
& B_{\omega}\left(v_{1}, n_{1}, \varepsilon\right)
\end{aligned}
$$

transition time

$$
\lesssim \frac{1}{\theta^{-n_{1} \varepsilon}}
$$

$$
\begin{aligned}
& B_{\omega}\left(v_{1}, n_{2}, \varepsilon\right) \\
& \text { has size } \approx \theta^{-n_{2}} \varepsilon
\end{aligned}
$$

Toy model

image of	transition time	$B_{\omega}\left(v_{1}, n_{2}, \varepsilon\right)$
$B_{\omega}\left(v_{1}, n_{1}, \varepsilon\right)$	$\lesssim \frac{1}{\theta^{-n_{1}} \varepsilon}$	has size $\approx \theta^{-n_{2}} \varepsilon$

A Different Approach

- if μ_{1}, μ_{2} ergodic large entropy s.t. $\int \psi d \mu_{1} \neq \int \psi d \mu_{2}$
- find many points x_{i} so that $\frac{1}{n} \sum_{j=0}^{n-1} \psi\left(f^{j}\left(x_{i}\right)\right) \rightarrow \int \psi d \mu_{i}$

A Different Approach

- if μ_{1}, μ_{2} ergodic large entropy s.t. $\int \psi d \mu_{1} \neq \int \psi d \mu_{2}$
- find many points x_{i} so that $\frac{1}{n} \sum_{j=0}^{n-1} \psi\left(f^{j}\left(x_{i}\right)\right) \rightarrow \int \psi d \mu_{i}$

A Different Approach

- if μ_{1}, μ_{2} ergodic large entropy s.t. $\int \psi d \mu_{1} \neq \int \psi d \mu_{2}$
- find many points x_{i} so that $\frac{1}{n} \sum_{j=0}^{n-1} \psi\left(f^{j}\left(x_{i}\right)\right) \rightarrow \int \psi d \mu_{i}$

- $n_{1} \ll n_{2} \ll n_{3} \ll n_{4} \ll \ldots \quad$ (properly chosen)
- bridge between linear cocycles and projective dynamics, build Moran sets with large entropy, ...

References

國 M. Carvalho and P. Varandas,
Genericity of historic behavior for maps and flows,
Nonlinearity 34:10 (2021) 7030-7044.
R M. Carvalho, V. Coelho, L. Salgado and P. Varandas, Sensitivity and historic behavior for continuous maps on Baire spaces, in preparation.

- G. Ferreira and P. Varandas, Lyapunov "non-typical" behavior for linear cocycles through the lens of semigroup actions
Preprint arXiv:2106.15676.

Thank you

