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Plan of the talk

1. Ergodic theorems for (semi)group actions

(’quenched and annealed averaging’)

2. Irregular points

3. Main results and application to linear cocycles

4. Some ideas in the proofs



Ergodic theorems & Irregular points Main results Ideas in the proofs

Ergodic theorem (N and Z actions)

I Birkho↵ (1931)

If f : (X , µ) ! (X , µ) is a measure

preserving map and ' 2 L
1
(µ) then

'̃(x) := lim
n!1

1

n

n�1X

j=0

'(f j(x))

exists for µ-a.e. x , andZ
'̃ dµ =

Z
' dµ.

If, in addition, µ is ergodic then the time

averages converge a.e. to
R
' dµ.

I Assume f is continuous and X is a

compact metric space. The basin of

attraction of µ 2 Merg (f )

B(µ) :=
n
x 2 X :

1

n

n�1X

j=0

�f j (x) !
w⇤

µ
o

is a full µ-measure set.

I Rmk: The ergodic theorem

holds non-stationary identically

distributed dynamical systems:

• if (ft)t2T preserve (X , µ) and
' 2 L

1
(µ) then

't
n := '(ftn � · · · � ft2 � ft1)

are identically distributed r.v.

(depending on t = (t1, t2, . . . ))

• if ⌫ is a probability measure on T

then, for ⌫N a.e. t = (t1, t2, . . . )

lim
n!1

1

n

n�1X

j=0

't
n(x) exists µ-a.e.
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Ergodic theorems

Rmk:

• The skew-product

F : TN
⇥ X ! TN

⇥ X
((t1, t2, . . . ), x) 7! (�(t1, t2, . . . ), ft1 (x))

preserves ⌫N ⇥ µ

• Take '̂(t, x) = '(x). By the ergodic and

Fubini theorems, for ⌫N-a.e. t there exists

Xt ⇢ X of full µ-measure so that

1

n

n�1X

j=0

't
n(x) =

1

n

n�1X

j=0

'̂(F j
(t, x))

exists for every x 2 Xt .

Rmk:

• If ⇣ is F -invariant and '̂ 2 L1(⇣) then

lim
n!1

1

n

n�1X

j=0

'̂(F j
(t, x)) exists

for (⇡1)⇤⇣-a.e. t and for every x 2 Xt ,

where Xt ⇢ X is a full µt -measure set
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Ergodic theorems (more general group actions)

G finitely generated (semi)group

G1 = {g1, g2, . . . , g} generating set (or G1 = {g
±1

1
, g±1

2
, . . . , g±1

 })

Assume S : G ⇥ X ! X is a continuous group action:

(i) for every g 2 G , the map Sg := S(g , ·) : X ! X is continuous,

(ii) Shg = Sh � Sg for every g , h 2 G .

I Templeman (1967) Lindenstrauss

(2001)

If G is an amenable group acting by

measure preserving maps, ' 2 L
1
(µ)

and (Fn)n>1 is a tempered Følner

sequence then

lim
n!1

1

|Fn|

X

g2Fn

'(g(x))

exists for µ-a.e. x
A Følner sequence is tempered if 9C > 0 s.t.

���
[

16 k < n

F�1

k Fn
��� 6 C | Fn | 8 n 2 N.

I Guivarch (1969), Nevo & Stein

(1994), Bufetov (2002)

If the free group G = F acts by

measure preserving maps and

' 2 L
p
(µ) (p > 1) then

lim
n!1

1

2(2� 1)n

X

|g|=2n

'(g(x))

exists for µ-a.e. x .
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Irregular behavior (a.k.a. non-typical or historical behavior)

I x 2 X is '-irregular if

lim
n!1

1

n

n�1X

j=0

'(f j(x)) does not exist

I I'(f ) is the set of '-irregular points

II� is the set of �-irregular points, for

� = ('n)n>1 2 C(X )
N

Examples:

• I' may be empty

(e.g. ' = u � u � f )

• I' may be empty 8' 2 C(X )

(e.g. f uniquely ergodic)

• I' may contain open sets

Figure: Irregular behavior on Bowen’s eye

I A dichotomy (Takens 94’, 08’, Barreira,

Schmeling 00’, Chen, Küpper, Shu 05’, Li, Wu 13’,... )

If f : S1
! S1

is C
1+↵

-expanding map

and ' : S2
! R is continuous then

(a) I'(f ) = ;,

or

(b) I'(f ) is Baire generic, has full

topological entropy and full

Hausdor↵ dimension

Questions:

1. Are there simple criteria to detect

when I'(f ) is Baire generic?

2. Can one expect such dichotomies

in the context of group actions?

3. Can one describe the irregular

sets of typical group actions

(Birkho↵ and group averaging)?
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Main Results (N and R+ continuous actions)

Theorem 1 (Carvalho, V., 2021’)

Let f be a continuous map on a compact metric space X . Given

' 2 C(X ), consider the first integral

L'(x) := lim sup
n!1

1

n

n�1X

j=0

'(f j(x))

Assume there exist ↵,� 2 R and dense sets X↵,X� ⇢ X so that

L'(x) = ↵ < � = L'(y) for every x 2 X↵ and y 2 X� . Then I'(f )

is a Baire generic subset of X .

Rmk: The assumptions are verified whenever there exist two distinct ergodic

measures whose basins are dense in X (even if these are not fully supported)

Examples: Hyperbolic sets, continuous maps with specification, homoclinic

classes, minimal non-uniquely ergodic maps, Lorenz attractors, singular

hyperbolic flows, ...
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Main Results (Group averaging)

Theorem 2 (Carvalho, Coelho, Salgado, V., preprint 2021’)

Let X be a Baire metric space, � = ('n)n>1 2 C(X )
N
and

W�(x) = acc('n(x))n>1

Assume there exist dense subsets D1,D2 ⇢ X and " > 0 such that

sup
x2D1,y2D2

sup
a2W�(x),b2W�(y)

|a� b| > ".

Then I�(f ) is a Baire generic subset of X .

Example:

g1, g2 : S1 ! S1
g1(x) = 2x (mod 1)

g2(x) = 3x (mod 1)

p, q common periodic points

' 2 C(S1) s.t.
R
' dµp 6=

R
' dµq

O
�
(p) and O

�
(q) are dense in S1

.

If x 2 O
�
(p) then

1

n2

nX

i,j=0

'(g i
1g

j
2
(x))

and

1

2n

X

|g|=n

'(g(x)) =
1

2n

nX

i=0

⇣n
i

⌘
'(g i

1g
n�i
2

(x))

converge to
R
' dµp
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Main Results (Group averaging)

Theorem 2 (Carvalho, Coelho, Salgado, V., Preprint 2021’)

Let X be a Baire metric space, � = ('n)n>1 2 C(X )
N
and

W�(x) = acc('n(x))n>1

Assume there exist dense subsets D1,D2 ⇢ X and " > 0 such that

sup
x2D1,y2D2

sup
a2W�(x),b2W�(y)

|a� b| > ".
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g2(x) = 3x (mod 1)

p, q common periodic points

' 2 C(S1) s.t.
R
' dµp 6=

R
' dµq

.

Corollary: The sets

n
x 2 S1 : 1

n2

nX

i,j=0

'(g i
1g

j
2
(x)) diverges

o

n
x 2 S1 :

1

2n

X

|g|=n

'(g(x)) diverges
o

are Baire residual subsets of S1.

pcvarand@gmail.com
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Main Results (Averaging along paths)

X compact metric space

G1 = {id , f1, f2, . . . , f} generators

G (semi)group generated by G1

S : G ⇥ X ! X continuous semigroup action

S has frequent hitting times if 8" > 0 9K(")>0

so that the following holds:

given B1,B2 ⇢ X balls of radius " and

0 < � 6 "
2
, respectively, there exists

0 6 p 6 K("), ! 2 ⌃ := {1, 2, . . . ,}N and a

ball B
0
2 ⇢ B2 of radius �/2 so that f

p
! (B1) � B

0
2.

Rmks:

I Every minimal action by isometries has frequent hitting times

I The frequent hitting times condition implies that the sequence of return times to balls of radius " are syndetic

(with uniform constant)
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Main Results (Averaging along paths)

Theorem 3 (Ferreira, V., 2021’)

Let X be a compact metric space and

S : G⇥X ! X be a semigroup action ge-

nerated by bi-Lipschitz homeomorphisms

G1 = {f1, f2, . . . , f}. If S has frequent

hitting times and ' 2 C(X ) is not a co-

boundary for some fi then the set

I'(S) :=
n
x 2 X :

1

n

n�1X

j=0

'(gj
!(x)) diverges

along some infinite path in G

o

is Baire generic in X . Moreover:

(i) h
GLW

(S, IS(')) > H
Pinsker

(')

(ii) h
B
(S, IS(')) > h⇤(')� log 

hGLW (S, ·) = Ghys-Langevin-Walczak’s entropy (1988)

hB(S, ·) = Bufetov’s entropy (1999)

HPinsker
(') = c if 8" > 0 9µ1, µ2 2 Merg (F ) that

distinguish ' and hµi (F | �) > c � "

.

h⇤(') = c if 8" > 0

9µ1, µ2 2 Merg (F ) that

distinguish ' and

hµi (F ) > c � "
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Some Notions of Entropy:

X compact metric space

G1 = {id , g1, g2, . . . , g} continuous, G =
S

n>1
Gn semigroup

• x , y 2 X are (n, ")-separated along the path g!n � · · · � g!2
� g!1

if there

exists 1 6 j 6 n s.t. d(g
j
!(x), g

j
!(y)) > "

• Entropy of infinite path F! = (g
j
!)j in G (Kolyada-Snoha 96’):

h(F!) = lim
"!0

lim sup
n!1

1

n
log s(!, n, ")

where s(!, n, ") = max. card. of (n, ")-separated points along path

• GLW-entropy of semigroup action (Ghys-Langevin-Walczak 88’):

h
GLW

(S) = lim
"!0

lim sup
n!1

1

n
log s(G , n, ")

where s(G , n, ") = max. card. of points separated by Gn elements

• B-entropy of free semigroup action (Bufetov 99’):

h
B
(S) = lim

"!0

lim sup
n!1

1

n
log

⇣
1

n

X

g2Gn

s(!, n, ")
⌘
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Main Results (Averaging along paths)

Theorem 4 (Ferreira, V., 2021’)

Let X be a compact metric space and

S : G⇥X ! X be a semigroup action ge-

nerated by bi-Lipschitz homeomorphisms

G1 = {f1, f2, . . . , f}. If S has frequent

hitting times, some fi is minimal and

' 2 C(X ) is not a coboundary for some

fi then

I!(') :=
n
x 2 X :

1

n

n�1X

j=0

'(gj
!(x)) diverges

o

satisfies:

(i) {! 2 ⌃ : I!(') Baire generic in X}

is Baire generic in ⌃

(ii) sup!2⌃
hI!( )(F!) > H

Pinsker
( )

(iii) {! 2 ⌃ : hI!( )(F!) > H
Pinsker

( )}
has entropy > H

Pinsker

� ( )

H�( ) = c if 8" > 0 9µ1, µ2 2 Merg (F ) that

distinguish  and h⇡⇤µi (�) > c � "

.

Rmk: Item (i) still holds without the

minimality assumption. Previous results

by Nakano (2017) on random circle

expanding maps.
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Application: Lyapunov irregular behavior

Given A1,A2, . . . ,A 2 SL(d ,R) and
! 2 ⌃ set A

(n)
(!) := A!n . . .A!2

A!1

I Furstenberg-Kesten (1960) if µ = ⌫Z

the top Lyapunov exponent is (µ-a.e.)

�+(A, ⌫) = lim
n!1

1

n
log kA

(n)
(!)k

I Furstenberg (1963) if µ = ⌫Z, the
semigroup generated by matrices is

non-compact and strongly irreducible

on supp ⌫ then �+(A, ⌫) > 0.

I Skew-product

FA : ⌃ ⇥ Rd
�! ⌃ ⇥ Rd

(x , v) 7! (f (x),A(x) · v)

I Projective cocycle

PA : ⌃ ⇥ PRd
�! ⌃ ⇥ PRd

(!, v) 7!
�
�(!), A(!)·v

kA(!)·vk
�

I Sumi- V.-Yamamoto (2016)

these skew-products do not satisfy the

specification property

I In low dimension the linear cocycle is

’often’ strongly projectively accessible

(i.e. the projective semigroup action on X = PRd
has

frequent hitting times)

Example: SO(3,R) matrices (↵,� /2 Q)

0

@
cos↵ � sin↵ 0

sin↵ cos↵ 0

0 0 1

1

A ,

0

@
1 0 0

0 cos � � sin �
0 sin � cos �

1

A
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Application (Lyapunov irregular behavior)

Theorem 5 (Ferreira, V., 2021’)

If A1,A2, . . . ,A 2 SL(d ,R) generate a non-

compact and strongly projectively accessible

semigroup then:

• for each v 2 PRd
there exists Rv ⇢ ⌃

Baire generic, with entropy at least h⇤('A)

s.t. for every ! 2 Rv ,

lim inf
n!1

1

n
log kAn

(!)vk < lim sup
n!1

1

n
log kAn

(!)vk

(?)

• there exists a Baire residual subsetR ⇢ ⌃

and a dense subset D ⇢ PRd
so that (?)

holds for every ! 2 R and every v 2 D.

Rmk: Previous results on irregular

behavior for the top Lyapunov exponent

of Hölder continuous cocycles: Herman

(1981), Furman (1997), Tian (2015,

2017) These rely on very di↵erent

techniques: (i) u.s.c. of

µ 7! �+(A, f , µ), (ii) bounded

distortion for linear cocycles by Kalinin

(2011)
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Application (Lyapunov irregular behavior)

Corollary (Ferreira, V., 2021’)

Let H ⇢ C
0

loc(⌃, SL(3,R)) be the set of hyper-

bolic cocycles. There exist C
0
-open sets U1 and

U2 so that U1 [ U2 is dense in H and:

1. if B 2 U1 then the set of Lyapunov

irregular points in ⌃ is Baire generic and

has full entropy

2. there exists R ⇢ U2 C
0
-Baire residual and

full Haar measure s.t. if B 2 R then

lim inf
n!1

1

n
log kBn

(!)vk < lim sup
n!1

1

n
log kBn

(!)vk.

for generic ! 2 ⌃ and a dense set of

vectors D! ⇢ E
s
!.
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A basic strategy ( = quantitative control on recurrence)

• take µ1, µ2 ergodic so that
R
 dµ1 6=

R
 dµ2

• pick x1, x2 so that
1

n

Pn�1

j=0
 (f j(xi )) !

R
 dµi (i = 1, 2)

• n1⌧n2⌧n3⌧n4⌧ . . . (arbitrary choice)

• uniform continuity + specification ) there exists zk which approximates

well the finite orbits of x1 and x2 alternatively

00 · · · 0| {z }
n1

⇤ · · · ⇤| {z }
6p

111 · · · 1| {z }
n2

⇤ · · · ⇤| {z }
6p

0000 · · · 0| {z }
n3

⇤ · · · ⇤| {z }
6p

. . . 11111 · · · 1| {z }
nk

zk+1 is a point that 1/2k -shadows zk and the next finite piece of orbit.

• z = limk!1 zk is '-irregular
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A basic strategy ( = quantitative control on recurrence)
• if µ1, µ2 ergodic large entropy s.t.

R
 dµ1 6=

R
 dµ2

• find many points xi so that
1

n

Pn�1

j=0
 (f j(xi )) !

R
 dµi

• uniform continuity + specification ) there exist many irregular points

z = limn zn as before

• Similar reasoning yields a Baire generic set

However: This argument requires bounded transitions!



Ergodic theorems & Irregular points Main results Ideas in the proofs

A basic strategy ( = quantitative control on recurrence)
• if µ1, µ2 ergodic large entropy s.t.

R
 dµ1 6=

R
 dµ2

• find many points xi so that
1

n

Pn�1

j=0
 (f j(xi )) !

R
 dµi

• uniform continuity + specification ) there exist many irregular points

z = limn zn as before

• Similar reasoning yields a Baire generic set

However: This argument requires bounded transitions!



Ergodic theorems & Irregular points Main results Ideas in the proofs

Toy model



Ergodic theorems & Irregular points Main results Ideas in the proofs

Toy model



Ergodic theorems & Irregular points Main results Ideas in the proofs

Toy model



Ergodic theorems & Irregular points Main results Ideas in the proofs

Toy model



Ergodic theorems & Irregular points Main results Ideas in the proofs

Toy model



Ergodic theorems & Irregular points Main results Ideas in the proofs

Toy model



Ergodic theorems & Irregular points Main results Ideas in the proofs

Toy model



Ergodic theorems & Irregular points Main results Ideas in the proofs

A Different Approach
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