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» Then G := m1(X) is a free group, fix a standard generating
set.

» Each closed geodesic on ¥ is represented by a conjugacy
class 7.

» The word lengthof g € Gis
lgll :=min{k : g=5y...5¢ : s5;€ S}

and for a conjugacy class v is ||v|| := minig—, [|g]|-

» Denote as 7(y) the hyperbolic length of the closed
geodesic in X corresponding to ~.
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Distribution of geometric lengths (Chas-Li-Maskit, ’13)
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Fioure 1. Histograms of the geometric length of a sample of 100,000 words of word
length 100. The parameters are (A, B,C); (1.1,1) top left, (0.1,1,1) top right,
(1,10,0.1) bottom right; (0.1, 1,10) bottom left



Distribution of geometric lengths (Chas-Li-Maskit, ’13)
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Ficure 2. Top left: Histogram of all words of word length 14, with metric (1,1, 5). Top
right, bottom left and bottom right respectively, are histograms of the geometric length
of a sample of 100,000 words with parameters (1, 1, 5) and word length 20, 50 and 100
respectively.



Distribution of self-intersections (Chas-Lalley, 2011)
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Fig. 2 A histogram showing the distribution of self-intersection numbers over all reduced
cyclic words of length 19 in the doubly punctured plane. The horizontal coordinate shows the
self-intersection count k; the vertical coordinate shows the number of cyclic reduced words
for which the self-intersection number is &
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Let us consider a pair of pants X of cuff lengths A, B, C. Fix a
standard generating set S for G := m(X). Each closed
geodesic on X is represented by a conjugacy class «. Denote

> ||v]| the word length of ~
» 7() the hyperbolic length of the closed geodesic
corresponding to
Conjecture (Chas-Li-Maskit, '13)
Let \,, be the uniform distribution on the set of conjugacy

classes of length n. Then there exists L = L(A, B, C) > 0 and
o =0(A, B, C) > 0 such that forany a < b

7(v) — nL ) 1 /b N
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Distribution of closed geodesics

Let us consider a pair of pants X of cuff lengths A, B, C. Fix a
standard generating set for G := m(X). Each closed geodesic
on X is represented by a conjugacy class ~. Denote

> ||v|| the word length of

» 7(7) the hyperbolic length of the closed geodesic
corresponding to

Conjecture (Gekhtman-Taylor-T, ’18)

Let \,, be the uniform distribution on the set of conjugacy
classes of length n. Then there exists L = L(A, B, C) > 0 and
o =o0(A, B, C) > 0 such that forany a < b

s ) k[T

as n — oo.



History

» Sinai (1960) - CLT for geodesic flow in constant negative
curvature



History

» Sinai (1960) - CLT for geodesic flow in constant negative
curvature

» Ratner (1973) - CLT for geodesic flow in variable negative
curvature



History

» Sinai (1960) - CLT for geodesic flow in constant negative
curvature

» Ratner (1973) - CLT for geodesic flow in variable negative
curvature

» Bowen (1975)



History

» Sinai (1960) - CLT for geodesic flow in constant negative
curvature

» Ratner (1973) - CLT for geodesic flow in variable negative
curvature

» Bowen (1975), Lalley (1987)



History

» Sinai (1960) - CLT for geodesic flow in constant negative
curvature

» Ratner (1973) - CLT for geodesic flow in variable negative
curvature

» Bowen (1975), Lalley (1987), Parry-Pollicott (1990)



History

» Sinai (1960) - CLT for geodesic flow in constant negative
curvature

» Ratner (1973) - CLT for geodesic flow in variable negative
curvature

» Bowen (1975), Lalley (1987), Parry-Pollicott (1990)
For the word metric:
» Pollicott-Sharp (1998)




History

» Sinai (1960) - CLT for geodesic flow in constant negative
curvature

» Ratner (1973) - CLT for geodesic flow in variable negative
curvature

» Bowen (1975), Lalley (1987), Parry-Pollicott (1990)
For the word metric:

» Pollicott-Sharp (1998)

» For quasimorphisms: Horsham-Sharp (2009)




History

» Sinai (1960) - CLT for geodesic flow in constant negative
curvature

» Ratner (1973) - CLT for geodesic flow in variable negative
curvature

» Bowen (1975), Lalley (1987), Parry-Pollicott (1990)
For the word metric:
» Pollicott-Sharp (1998)

» For quasimorphisms: Horsham-Sharp (2009),
Calegari-Fujiwara (2010)




History

» Sinai (1960) - CLT for geodesic flow in constant negative
curvature

» Ratner (1973) - CLT for geodesic flow in variable negative
curvature

» Bowen (1975), Lalley (1987), Parry-Pollicott (1990)
For the word metric:
» Pollicott-Sharp (1998)

» For quasimorphisms: Horsham-Sharp (2009),
Calegari-Fujiwara (2010), Bjérklund-Hartnick (2011)




History

» Sinai (1960) - CLT for geodesic flow in constant negative
curvature
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curvature
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» Pollicott-Sharp (1998)

» For quasimorphisms: Horsham-Sharp (2009),
Calegari-Fujiwara (2010), Bjérklund-Hartnick (2011)
» Cantrell (2019)
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Definitions

Let (X, d) be a geodesic, d-hyperbolic, metric space, 0 € X a
base point.
Let G < Isom(X, d). Let S be a finite generating set. Then the

word length is
lglls = min{k : g=s;...s, 5 € S}

and the sphere of radius nis

Shi={g€G : ||glls=n}

The (stable) translation length of g is

7(9) := lim d(0.g")

n—oo n

An element is loxodromic (hyperbolic) if 7(g) > 0.
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Main result

Theorem (Gekhtman-Taylor-T. '20)

Let (G, S) be a finitely generated group admitting a thick
bicombing for S. Let G ~ X be a non-elementary isometric
action on a hyperbolic metric space.

1. Then there exists £ > 0,0 > 0 such that

. 1 ~ d(o,g0) — nt e
nILmoo#Sn#{geSn : ﬁe[a,b]}_/a e 202 dt
2. Moreover,
: 1 o 7(g)—nt P2
nll—)moo #Sn#{g S Sn . T € [a,b]} —/a e 202 dt

3. Further, o0 = 0 if and only if exists C > 0 s.t.
[d(0,90) —Llgll| < C

for all g € G.
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Theorem

Let M =H"/T be a geometrically finite hyperbolic manifold. For
v €T =m(M), let ¢(~y) be the length of the geodesic in the free
homotopy class of v. Then for any S there exists S’ 2 S such

that for S’ we have
{(y) —nt

vn
where v is chosen uniformly at random in the sphere of radius n
with respect to S'.

- N,

v

If 71(M) is word hyperbolic, then we can take S’ = S.

v

Already new for finite volume surfaces with cusps
¢(~) is not Holder
o > 0 (length spectrum is not arithmetic)

v

v
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Applications (I') Geodesic lengths in geometrically
infinite 3-manifolds

Theorem

Let M =H3/T be a hyperbolic 3-manifold (possibly
geometrically infinite). For~ € I = 71(M), let ¢(~) be the length
of the geodesic in the free homotopy class of .

» If M has no rank 2 cusps, for any S we have

((y) —nt
Vvn
where ~ is chosen uniformly at random in the sphere of
radius n with respect to S.
» If M has rank 2 cusps, for any S there is S' O S such that
the CLT holds for S'.

Proof (1): [Tameness] + [Thurston’s hyperbolization] = m (M)
hyperbolic

— Ny
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Let M be a hyperbolic manifold and let S be any generating set
for m1(M). Let X be a (smooth, orientable) codimension-1
submanifold, and let i(y, X) be the intersection number.

Theorem

Suppose that . — M is w1 -injective but not fiber-like. Then
there are ¢,0 > 0 such that

i(y,X) —¢n
—

where ~ is chosen uniformly at random in the sphere of radius n
with respect to S.

H No',

» Example. M compact surface of genus g > 2, ¥ an
essential simple closed curve.

» The action is on a non-proper metric space
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Let M be a hyperbolic manifold and let S be any generating set
for m1(M). Let X be a (smooth, orientable) codimension-1
submanifold, and let i(y, X) be the intersection number.

Theorem

Suppose that ¥ — M is w1 -injective but not fiber-like. Then
there are ¢, 0 > 0 such that

i(y,X) —¢n
Vvn

where ~ is chosen uniformly at random in the sphere of radius n
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Applications (lll) Homomorphisms between hyperbolic
groups

Let : G — G be a homomorphism between hyperbolic

groups. Recall 0G := {geodesic rays based at 0}/ ~.

Let v = limsup,_,, +log#{g : d(o,go) < n}.
Moreover, for s > v

Zg e—sd(0,90) 590
Zg e—sd(o,90)

Vg 1=

and the Patterson-Sullivan (PS) measure is

vpsg = lim vg
S—V

Theorem

In the CLT we have o = 0 if and only if ¢ has finite kernel and
0¢: 0G — 0G' pushes the PS measure class for (G, S) to the
PS measure class for (¢(G), S').
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A graph structure is (I, vp, ev) with:
» [ is a finite graph
> Vg is a vertex of I (initial vertex)
» ev: E(I') — G the evaluation map
If v is a vertex, I, is the loop semigroup
» M: adjacency matrix
» \: leading eigenvalue
A component is maximal if its growth rate is A.
Definition
A graph structure is thick if for any v in a maximal component
there exists B C G finite such that

G=B-ev,) B

Thick = almost semisimple: for every maximal eigenvalue, its
algebraic and geometric multiplicities agree Note. M need not
be irreducible and not aperiodic.
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Techniques - Graph structures

Definition
A graph structure is biautomatic if for any B C G finite 3C > 0
such that if g, h are finite length paths with

ev(g) = by -ev(h) - b,

then
dG(Q1 ...g,',b1h1 h,) <C

for all i < max{||gll, ||hl}-
Definition
A group has a thick bicombing for S if it has a thick, biautomatic

graph structure for S such that paths are geodesic for the word
length | - 5.
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Hyperbolic groups have thick bicombings for every
generating set S (Cannon)

If G = w1 (M) with M a geometrically finite hyperbolic
manifold, then for any S there exists S’ which admits a
thick bicombing (Antolin-Ciobanu)

More generally, relatively hyperbolic groups with virtually
abelian parabolic subgroups.



Graph structures - examples

1. Hyperbolic groups have thick bicombings for every
generating set S (Cannon)

2. If G = m(M) with M a geometrically finite hyperbolic
manifold, then for any S there exists S’ which admits a
thick bicombing (Antolin-Ciobanu)

More generally, relatively hyperbolic groups with virtually
abelian parabolic subgroups.

3. Right-angled Artin/Coxeter groups (Hermiller-Meier)
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Structure of the proof

1. Central limit theorem for centerable cocycles
(Benoist-Quint, Horbez) + Busemann cocycle for the loop
semigroup = CLT for the random walk on the loop
semigroup

2. CLT for suspensions (Melbourne-Térok) = CLT for the
Markov chain

3. Biautomaticity = Uniqueness of drift and variance

4. For semisimple structures, approximate counting measure
by Markov chain measure = CLT for counting measure
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Step 1: CLT for cocycles
Let M a metric space on which G acts continuously. A cocycle
isn:Gx M — Rwith

o(gh, x) = o(g, hx) + o(h, x)
A measure v on M is p-stationary if

/Q*V du(g) =v.

A cocycle n has constant drift \ if

/W(Q,X)d;a(g) =\ forallx e M.
A cocycle n is centerable if it can be written as

n(g, X) = no(g, X) + ¥(x) — (g - X)

where 7 is a cocycle with constant drift and v: M — R a
bounded, measurable function.
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Central limit theorem for centerable cocycles

Theorem (Benoist-Quint + Horbez)

Let v be a u-ergodic, u-stationary probability measure on M,
and letn: G x M — R be a centerable cocycle with drift A and
finite second moment. Then there exist o > 0 such that for any

continuous F: R — R with compact support, we have for v-a.e.
X eM,

Tim. /G F<“(g’%_m) d*(g) = /R F(1) AN, (t).
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The Busemann cocycle

Horofunction boundary. We have embedding
p: X —= C(X,R)

px(2) :=d(x,z) — d(x,0)

Then M = X" is the closure of p(X) for the topology of
pointwise convergence.

Definition

The Busemann cocycle

5(g.€) = lim (d(0,2n) — d(g~"0,2p))

Zn—§

Proposition (Horbez)
The Busemann cocycle is centerable.
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Step 1: Random walks on the loop semigroup

Fix a graph structure I' and let v be a vertex in a maximal
growth component. Fix a measure n on the set of edges of I'.
Definition

The loop semigroup Iy is the set of all loops from v to v. The
first return measure is

pv(l) = p(g1) - - - 11(gn)

ifl=g1...9n.

Theorem o
Let v, be a u,-ergodic, 1, -stationary measure on X . Then
there exist ¢, o > 0 such that for v,-a.e. &

i [ (09091 gy [ e

for any F € C¢(R).
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Step 2: Suspension to the Markov chain

Let S: (X, \) — (X,)\),and let r: X — N be a roof function.
Then the discrete suspension flow of S with roof function r is
S: X — X where

X:={(x,n)eXxN:0<n<r(x)—1}
Then, the map S is defined as

a [ (x,n+1) ifn<r(x)—-2
S(x,n) —{ (S(x),0) if n=r(x)—1.

Theorem (Melbourne-Torok)

Let S: (X,\) — (X, \) be ergodic, and let S: (X, )) — (X, )
be the suspension flow with roof function r.

Let¢: X — R and define ®(x) := 310" ¢(x, k). Suppose
that ® and r satisfy a CLT. Then ¢ satisfies a CLT.
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Recall that if M is primitive (i.e. M" > 0)

n

oM T
I|’r7n S pu
Define Markov chain
» Starting probabilities
i = pili
» Transition probabilities
Pj

P Nor
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Then »
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j=0

hence

Theorem

Suppose that T is primitive and let ., be the n-th step
distribution of the Markov chain onI'. Then there are ¢ and o
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for any F € C¢(R).
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Definition

A function f: Q* — R is uniformly bicontinuous if for any finite
set B C G and any n > 0, there exists N > 0 such that if

gl > N and

bi - ev(g) - bo = ev(h)
for by, bo € B, then

1£(9) — f(MI <.

Theorem
(CLT for displacement) There exists ¢ > 0, o > 0 such that for

any a < b we have

#{gesn : We[a,b]}:LbdNa(t).

1
i
nL\moo #S,




The end

AL
Thank you!!!
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