Central limit theorems for counting measures in coarse negative curvature

Giulio Tiozzo
University of Toronto

May 27, 2020
Summary

1. Experimental results - geometric length
Summary

1. Experimental results - geometric length
2. The CLM conjecture
Summary

1. Experimental results - geometric length
2. The CLM conjecture
3. History
Summary

1. Experimental results - geometric length
2. The CLM conjecture
3. History
4. Main result
Summary

1. Experimental results - geometric length
2. The CLM conjecture
3. History
4. Main result
5. Applications
Summary

1. Experimental results - geometric length
2. The CLM conjecture
3. History
4. Main result
5. Applications
6. Proof techniques
Summary

1. Experimental results - geometric length
2. The CLM conjecture
3. History
4. Main result
5. Applications
6. Proof techniques

joint with Ilya Gekhtman and Sam Taylor
Distribution of geometric lengths - notation

Let us consider a pair of pants Σ of cuff lengths A, B, C.

![Diagram of a pair of pants with labels A, B, C]
Distribution of geometric lengths
Distribution of geometric lengths - notation

- Then $G := \pi_1(\Sigma)$ is a free group, fix a standard generating set.
Then $G := \pi_1(\Sigma)$ is a free group, fix a standard generating set.

Each closed geodesic on Σ is represented by a conjugacy class γ.
Then $G := \pi_1(\Sigma)$ is a free group, fix a standard generating set.

Each closed geodesic on Σ is represented by a conjugacy class γ.

The word length of $g \in G$ is

$$\|g\| := \min\{k : g = s_1 \ldots s_k : s_i \in S\}$$
Then $G := \pi_1(\Sigma)$ is a free group, fix a standard generating set.

Each closed geodesic on Σ is represented by a conjugacy class γ.

The word length of $g \in G$ is

$$\|g\| := \min\{k : g = s_1 \ldots s_k : s_i \in S\}$$

and for a conjugacy class γ is $\|\gamma\| := \min_{[g]=\gamma} \|g\|$.

Denote as $\tau(\gamma)$ the hyperbolic length of the closed geodesic in Σ corresponding to γ.

Distribution of geometric lengths - notation
Distribution of geometric lengths - notation

- Then $G := \pi_1(\Sigma)$ is a free group, fix a standard generating set.
- Each closed geodesic on Σ is represented by a conjugacy class γ.
- The **word length** of $g \in G$ is
 \[
 \|g\| := \min\{k : g = s_1 \ldots s_k : s_i \in S\}
 \]
 and for a conjugacy class γ is $\|\gamma\| := \min_{[g]=\gamma} \|g\|$.
- Denote as $\tau(\gamma)$ the **hyperbolic length** of the closed geodesic in Σ corresponding to γ.

Distribution of geometric lengths
Distribution of geometric lengths (Chas-Li-Maskit, ’13)

Figure 1. Histograms of the geometric length of a sample of 100,000 words of word length 100. The parameters are \((A, B, C)\); \((1, 1, 1)\) top left, \((0.1, 1, 1)\) top right, \((1, 10, 0.1)\) bottom right; \((0.1, 1, 10)\) bottom left.
Distribution of geometric lengths (Chas-Li-Maskit, ’13)

Figure 2. Top left: Histogram of all words of word length 14, with metric \((1, 1, 5)\). Top right, bottom left and bottom right respectively, are histograms of the geometric length of a sample of 100,000 words with parameters \((1, 1, 5)\) and word length 20, 50 and 100 respectively.
Fig. 2 A histogram showing the distribution of self-intersection numbers over all reduced cyclic words of length 19 in the doubly punctured plane. The horizontal coordinate shows the self-intersection count k; the vertical coordinate shows the number of cyclic reduced words for which the self-intersection number is k.

Distribution of self-intersections (Chas-Lalley, 2011)
The conjecture

Let us consider a pair of pants Σ of cuff lengths A, B, C.

Fix a standard generating set S for $G := \pi_1(\Sigma)$. Each closed geodesic on Σ is represented by a conjugacy class γ. Denote $\|\gamma\|$ the word length of γ. $\tau(\gamma)$ the hyperbolic length of the closed geodesic corresponding to γ.

Conjecture (Chas-Li-Maskit, '13)

Let λ_n be the uniform distribution on the set of conjugacy classes of length n. Then there exists $L = L(A, B, C) > 0$ and $\sigma = \sigma(A, B, C) > 0$ such that for any $a < b$:

$$\lambda_n(\gamma : a \leq \tau(\gamma) - nL \sqrt{n} \leq b) \rightarrow \sqrt{\frac{2}{\pi}} \int_b^a e^{-t^2/2} dt$$

as $n \to \infty$.

The conjecture

Let us consider a pair of pants Σ of cuff lengths A, B, C. Fix a standard generating set S for $G := \pi_1(\Sigma)$.
The conjecture

Let us consider a pair of pants \(\Sigma \) of cuff lengths \(A, B, C \). Fix a standard generating set \(S \) for \(G := \pi_1(\Sigma) \). Each closed geodesic on \(\Sigma \) is represented by a conjugacy class \(\gamma \).

Conjecture (Chas-Li-Maskit, '13)

Let \(\lambda_n \) be the uniform distribution on the set of conjugacy classes of length \(n \). Then there exists \(L = L(A, B, C) > 0 \) and \(\sigma = \sigma(A, B, C) > 0 \) such that for any \(a < b \)

\[
\lambda_n(\gamma : a \leq \tau(\gamma) - nL\sigma \sqrt{n} \leq b) \to \frac{1}{\sqrt{2\pi}} \int_b^a e^{-t^2/2} dt \text{ as } n \to \infty.
\]
The conjecture

Let us consider a pair of pants Σ of cuff lengths A, B, C. Fix a standard generating set S for $G := \pi_1(\Sigma)$. Each closed geodesic on Σ is represented by a conjugacy class γ. Denote

- $||\gamma||$ the word length of γ

Conjecture (Chas-Li-Maskit, '13)

Let λ_n be the uniform distribution on the set of conjugacy classes of length n. Then there exists $L = L(A, B, C) > 0$ and $\sigma = \sigma(A, B, C) > 0$ such that for any $a < b$,

$$\lambda_n(\gamma: a \leq \tau(\gamma) - nL \sigma \sqrt{n} \leq b) \to 1$$

as $n \to \infty$.

$$\sqrt{2} \pi \int_b^a e^{-t^2/2} dt$$
The conjecture

Let us consider a pair of pants Σ of cuff lengths A, B, C. Fix a standard generating set S for $G := \pi_1(\Sigma)$. Each closed geodesic on Σ is represented by a conjugacy class γ. Denote

- $||\gamma||$ the word length of γ
- $\tau(\gamma)$ the hyperbolic length of the closed geodesic corresponding to γ

Conjecture (Chas-Li-Maskit, '13)

Let λ_n be the uniform distribution on the set of conjugacy classes of length n. Then there exists $L = L(A, B, C) > 0$ and $\sigma = \sigma(A, B, C) > 0$ such that for any $a < b$

$$\lambda_n(\gamma; a \leq \tau(\gamma) - nL\sigma\sqrt{n} \leq b) \to \sqrt{2\pi} \int_b^a e^{-t^2/2} dt$$

as $n \to \infty$.
The conjecture

Let us consider a pair of pants Σ of cuff lengths A, B, C. Fix a standard generating set S for $G := \pi_1(\Sigma)$. Each closed geodesic on Σ is represented by a conjugacy class γ. Denote

- $||\gamma||$ the word length of γ
- $\tau(\gamma)$ the hyperbolic length of the closed geodesic corresponding to γ

Conjecture (Chas-Li-Maskit, ’13)

Let λ_n be the uniform distribution on the set of conjugacy classes of length n.

Let λ_n be the uniform distribution on the set of conjugacy classes of length n.

Then there exists $L = L(A, B, C) > 0$ and $\sigma = \sigma(A, B, C) > 0$ such that for any $a < b$

\[
\int_a^b e^{-t^2/2} dt
\]
The conjecture

Let us consider a pair of pants Σ of cuff lengths A, B, C. Fix a standard generating set S for $G := \pi_1(\Sigma)$. Each closed geodesic on Σ is represented by a conjugacy class γ. Denote

- $\|\gamma\|$ the word length of γ
- $\tau(\gamma)$ the hyperbolic length of the closed geodesic corresponding to γ

Conjecture (Chas-Li-Maskit, ’13)

Let λ_n be the uniform distribution on the set of conjugacy classes of length n. Then there exists $L = L(A, B, C) > 0$ and $\sigma = \sigma(A, B, C) > 0$ such that for any $a < b$

$$\lambda_n \left(\gamma : a \leq \frac{\tau(\gamma) - nL}{\sigma \sqrt{n}} \leq b \right) \to \frac{1}{\sqrt{2\pi}} \int_a^b e^{-\frac{t^2}{2}} \, dt$$

as $n \to \infty$.
Distribution of closed geodesics

Let us consider a pair of pants Σ of cuff lengths A, B, C. Fix a standard generating set for $G := \pi_1(\Sigma)$. Each closed geodesic on Σ is represented by a conjugacy class γ. Denote

- $\|\gamma\|$ the word length of γ
- $\tau(\gamma)$ the hyperbolic length of the closed geodesic corresponding to γ

Conjecture (Gekhtman-Taylor-T, ’18)

Let λ_n be the uniform distribution on the set of conjugacy classes of length n. Then there exists $L = L(A, B, C) > 0$ and $\sigma = \sigma(A, B, C) > 0$ such that for any $a < b$

$$
\lambda_n \left(\gamma : a \leq \frac{\tau(\gamma) - nL}{\sigma \sqrt{n}} \leq b \right) \to \frac{1}{\sqrt{2\pi}} \int_a^b e^{-\frac{t^2}{2}} \, dt
$$

as $n \to \infty$.
History

- Sinai (1960) - CLT for geodesic flow in constant negative curvature

For the word metric:
- Pollicott-Sharp (1998)

For quasimorphisms:
- Horsham-Sharp (2009)
- Calegari-Fujiwara (2010)
- Björklund-Hartnick (2011)
- Cantrell (2019)
History

- Sinai (1960) - CLT for geodesic flow in constant negative curvature
- Ratner (1973) - CLT for geodesic flow in variable negative curvature

For the word metric:
- Pollicott-Sharp (1998)

For quasimorphisms:

- Cantrell (2019)
History

- Sinai (1960) - CLT for geodesic flow in constant negative curvature
- Ratner (1973) - CLT for geodesic flow in variable negative curvature
- Bowen (1975)
History

- Sinai (1960) - CLT for geodesic flow in constant negative curvature
- Ratner (1973) - CLT for geodesic flow in variable negative curvature
- Bowen (1975), Lalley (1987)
- Pollicott-Sharp (1998)
- Cantrell (2019)
History

- Sinai (1960) - CLT for geodesic flow in constant negative curvature
- Ratner (1973) - CLT for geodesic flow in variable negative curvature
- Bowen (1975), Lalley (1987), Parry-Pollicott (1990)
History

- Sinai (1960) - CLT for geodesic flow in constant negative curvature
- Ratner (1973) - CLT for geodesic flow in variable negative curvature
- Bowen (1975), Lalley (1987), Parry-Pollicott (1990)

For the word metric:
- Pollicott-Sharp (1998)
History

- Sinai (1960) - CLT for geodesic flow in constant negative curvature
- Ratner (1973) - CLT for geodesic flow in variable negative curvature
- Bowen (1975), Lalley (1987), Parry-Pollicott (1990)

For the word metric:

- Pollicott-Sharp (1998)
- For quasimorphisms: Horsham-Sharp (2009)
History

- Sinai (1960) - CLT for geodesic flow in constant negative curvature
- Ratner (1973) - CLT for geodesic flow in variable negative curvature
- Bowen (1975), Lalley (1987), Parry-Pollicott (1990)

For the word metric:
- Pollicott-Sharp (1998)
- For quasimorphisms: Horsham-Sharp (2009), Calegari-Fujiwara (2010)
History

- Sinai (1960) - CLT for geodesic flow in constant negative curvature
- Ratner (1973) - CLT for geodesic flow in variable negative curvature
- Bowen (1975), Lalley (1987), Parry-Pollicott (1990)

For the word metric:

- Pollicott-Sharp (1998)
History

- Sinai (1960) - CLT for geodesic flow in constant negative curvature
- Ratner (1973) - CLT for geodesic flow in variable negative curvature
- Bowen (1975), Lalley (1987), Parry-Pollicott (1990)

For the word metric:
- Pollicott-Sharp (1998)
- Cantrell (2019)
Basic definitions

A metric space is δ-hyperbolic if triangles are δ-thin.
Definitions

Let (X, d) be a geodesic, δ-hyperbolic, metric space, $o \in X$ a base point.
Definitions

Let (X, d) be a geodesic, δ-hyperbolic, metric space, $o \in X$ a base point.
Definitions

Let (X, d) be a geodesic, δ-hyperbolic, metric space, $o \in X$ a base point.
Let $G < \text{Isom}(X, d)$. Let S be a finite generating set.
Let \((X, d)\) be a geodesic, \(\delta\)-hyperbolic, metric space, \(o \in X\) a base point.
Let \(G < \text{Isom}(X, d)\). Let \(S\) be a finite generating set. Then the word length is

\[
\|g\|_S := \min\{k : g = s_i \ldots s_k, \ s_i \in S\}
\]
Definitions

Let (X, d) be a geodesic, δ-hyperbolic, metric space, $o \in X$ a base point. Let $G < \text{Isom}(X, d)$. Let S be a finite generating set. Then the word length is

$$\|g\|_S := \min\{k : g = s_i \ldots s_k, s_i \in S\}$$

and the sphere of radius n is

$$S_n := \{g \in G : \|g\|_S = n\}$$
Definitions

Let \((X, d)\) be a geodesic, \(\delta\)-hyperbolic, metric space, \(o \in X\) a base point.
Let \(G < \text{Isom}(X, d)\). Let \(S\) be a finite generating set. Then the [word length is](#)

\[
\|g\|_S := \min\{k : g = s_i \ldots s_k, s_i \in S\}
\]

and the [sphere of radius \(n\)](##) is

\[
S_n := \{g \in G : \|g\|_S = n\}
\]

The (stable) [translation length of \(g\)](##) is

\[
\tau(g) := \lim_{n \to \infty} \frac{d(o, g^n o)}{n}
\]
Definitions

Let \((X, d)\) be a geodesic, \(\delta\)-hyperbolic, metric space, \(o \in X\) a base point. Let \(G < \text{Isom}(X, d)\). Let \(S\) be a finite generating set. Then the word length is

\[
\|g\|_S := \min\{k : g = s_1 \ldots s_k, \ s_i \in S\}
\]

and the sphere of radius \(n\) is

\[
S_n := \{g \in G : \|g\|_S = n\}
\]

The (stable) translation length of \(g\) is

\[
\tau(g) := \lim_{n \to \infty} \frac{d(o, g^no)}{n}
\]

An element is loxodromic (hyperbolic) if \(\tau(g) > 0\).
Main result

Theorem (Gekhtman-Taylor-T. ’20)

Let \((G, S)\) be a finitely generated group admitting a thick bicombing for \(S\).
Main result

Theorem (Gekhtman-Taylor-T. ’20)

Let (G, S) be a finitely generated group admitting a thick bicombing for S. Let $G \acts X$ be a non-elementary isometric action on a hyperbolic metric space.
Main result

Theorem (Gekhtman-Taylor-T. ’20)

Let (G, S) be a finitely generated group admitting a thick bicombing for S. Let $G \acts X$ be a non-elementary isometric action on a hyperbolic metric space.

1. Then there exists $\ell > 0$, $\sigma \geq 0$ such that

$$
\lim_{n \to \infty} \frac{1}{\#S_n} \# \left\{ g \in S_n : \frac{d(o, go) - n\ell}{\sqrt{n}} \in [a, b] \right\} = \int_a^b e^{-\frac{t^2}{2\sigma^2}} \, dt
$$

Moreover,

2. \hspace{1cm} \lim_{n \to \infty} \frac{1}{\#S_n} \# \left\{ g \in S_n : \tau(g) - n\ell \sqrt{n} \in [a, b] \right\} = \int_a^b e^{-\frac{t^2}{2\sigma^2}} \, dt

3. Further, $\sigma = 0$ if and only if there exists $C > 0$ s.t. $|d(o, go) - \ell \| g \| | \leq C$ for all $g \in G.$
Main result

Theorem (Gekhtman-Taylor-T. ’20)

Let \((G, S)\) be a finitely generated group admitting a thick bicombing for \(S\). Let \(G \curvearrowright X\) be a non-elementary isometric action on a hyperbolic metric space.

1. Then there exists \(\ell > 0, \sigma \geq 0\) such that

\[
\lim_{n \to \infty} \frac{1}{\#S_n} \# \left\{ g \in S_n : \frac{d(o, go) - n\ell}{\sqrt{n}} \in [a, b] \right\} = \int_a^b e^{-\frac{t^2}{2\sigma^2}} \, dt
\]

2. Moreover,

\[
\lim_{n \to \infty} \frac{1}{\#S_n} \# \left\{ g \in S_n : \frac{\tau(g) - n\ell}{\sqrt{n}} \in [a, b] \right\} = \int_a^b e^{-\frac{t^2}{2\sigma^2}} \, dt
\]
Main result

Theorem (Gekhtman-Taylor-T. ’20)

Let \((G, S)\) be a finitely generated group admitting a thick bicombing for \(S\). Let \(G \curvearrowright X\) be a non-elementary isometric action on a hyperbolic metric space.

1. Then there exists \(\ell > 0, \sigma \geq 0\) such that

\[
\lim_{n \to \infty} \frac{1}{\#S_n} \# \left\{ g \in S_n : \frac{d(o, go) - n\ell}{\sqrt{n}} \in [a, b] \right\} = \int_a^b e^{-\frac{t^2}{2\sigma^2}} dt
\]

2. Moreover,

\[
\lim_{n \to \infty} \frac{1}{\#S_n} \# \left\{ g \in S_n : \frac{\tau(g) - n\ell}{\sqrt{n}} \in [a, b] \right\} = \int_a^b e^{-\frac{t^2}{2\sigma^2}} dt
\]

3. Further, \(\sigma = 0\) if and only if exists \(C > 0\) s.t.

\[|d(o, go) - \ell||g||| \leq C\]

for all \(g \in G\).
Applications (I) Geodesic lengths in geometrically finite manifolds

Theorem

Let $M = \mathbb{H}^n / \Gamma$ be a geometrically finite hyperbolic manifold.
Applications (I) Geodesic lengths in geometrically finite manifolds

Theorem

Let \(M = \mathbb{H}^n / \Gamma \) be a geometrically finite hyperbolic manifold. For \(\gamma \in \Gamma = \pi_1(M) \), let \(\ell(\gamma) \) be the length of the geodesic in the free homotopy class of \(\gamma \).

\(\sigma > 0 \) (length spectrum is not arithmetic)
Applications (I) Geodesic lengths in geometrically finite manifolds

Theorem
Let $M = \mathbb{H}^n / \Gamma$ be a geometrically finite hyperbolic manifold. For $\gamma \in \Gamma = \pi_1(M)$, let $\ell(\gamma)$ be the length of the geodesic in the free homotopy class of γ. Then for any S there exists $S' \supset S$ such that for S' we have

\[\ell(\gamma) \sim \sqrt{n} \sigma \]

If $\pi_1(M)$ is word hyperbolic, then we can take $S' = S$.

Already new for finite volume surfaces with cusps

$\ell(\gamma)$ is not Hölder

$\sigma > 0$ (length spectrum is not arithmetic)
Applications (I) Geodesic lengths in geometrically finite manifolds

Theorem
Let $M = \mathbb{H}^n / \Gamma$ be a geometrically finite hyperbolic manifold. For $\gamma \in \Gamma = \pi_1(M)$, let $\ell(\gamma)$ be the length of the geodesic in the free homotopy class of γ. Then for any S there exists $S' \supseteq S$ such that for S' we have
\[
\frac{\ell(\gamma) - n\ell}{\sqrt{n}} \to \mathcal{N}_\sigma
\]
where γ is chosen uniformly at random in the sphere of radius n with respect to S'.
Applications (I) Geodesic lengths in geometrically finite manifolds

Theorem
Let $M = \mathbb{H}^n / \Gamma$ be a geometrically finite hyperbolic manifold. For $\gamma \in \Gamma = \pi_1(M)$, let $\ell(\gamma)$ be the length of the geodesic in the free homotopy class of γ. Then for any S there exists $S' \supseteq S$ such that for S' we have

$$\frac{\ell(\gamma) - n\ell}{\sqrt{n}} \to \mathcal{N}_\sigma$$

where γ is chosen uniformly at random in the sphere of radius n with respect to S'.

- If $\pi_1(M)$ is word hyperbolic, then we can take $S' = S$.
Applications (I) Geodesic lengths in geometrically finite manifolds

Theorem

Let $M = \mathbb{H}^n / \Gamma$ be a geometrically finite hyperbolic manifold. For $\gamma \in \Gamma = \pi_1(M)$, let $\ell(\gamma)$ be the length of the geodesic in the free homotopy class of γ. Then for any S there exists $S' \supseteq S$ such that for S' we have

$$\frac{\ell(\gamma) - n\ell}{\sqrt{n}} \to \mathcal{N}_\sigma$$

where γ is chosen uniformly at random in the sphere of radius n with respect to S'.

- If $\pi_1(M)$ is word hyperbolic, then we can take $S' = S$.
- Already new for finite volume surfaces with cusps.
Applications (I) Geodesic lengths in geometrically finite manifolds

Theorem

Let $M = \mathbb{H}^n / \Gamma$ be a geometrically finite hyperbolic manifold. For $\gamma \in \Gamma = \pi_1(M)$, let $\ell(\gamma)$ be the length of the geodesic in the free homotopy class of γ. Then for any S there exists $S' \supseteq S$ such that for S' we have

$$\frac{\ell(\gamma) - n\ell}{\sqrt{n}} \to \mathcal{N}_\sigma$$

where γ is chosen uniformly at random in the sphere of radius n with respect to S'.

- If $\pi_1(M)$ is word hyperbolic, then we can take $S' = S$.
- Already new for finite volume surfaces with cusps
- $\ell(\gamma)$ is not Hölder
Applications (I) Geodesic lengths in geometrically finite manifolds

Theorem

Let $M = \mathbb{H}^n / \Gamma$ be a geometrically finite hyperbolic manifold. For $\gamma \in \Gamma = \pi_1(M)$, let $\ell(\gamma)$ be the length of the geodesic in the free homotopy class of γ. Then for any S there exists $S' \supseteq S$ such that for S' we have

$$\frac{\ell(\gamma) - n\ell}{\sqrt{n}} \to \mathcal{N}_\sigma$$

where γ is chosen uniformly at random in the sphere of radius n with respect to S'.

- If $\pi_1(M)$ is word hyperbolic, then we can take $S' = S$.
- Already new for finite volume surfaces with cusps
- $\ell(\gamma)$ is not Hölder
- $\sigma > 0$ (length spectrum is not arithmetic)
Applications (I') Geodesic lengths in geometrically infinite 3-manifolds

Theorem

Let $M = \mathbb{H}^3 / \Gamma$ be a hyperbolic 3-manifold
Theorem

Let $M = \mathbb{H}^3 / \Gamma$ be a hyperbolic 3-manifold (possibly geometrically infinite).
Applications (I’) Geodesic lengths in geometrically infinite 3-manifolds

Theorem

Let $M = \mathbb{H}^3 / \Gamma$ be a hyperbolic 3-manifold (possibly geometrically infinite). For $\gamma \in \Gamma = \pi_1(M)$, let $\ell(\gamma)$ be the length of the geodesic in the free homotopy class of γ.

Proof (1): [Tameness] + [Thurston’s hyperbolization] $\Rightarrow \pi_1(M)$ hyperbolic
Applications (I’) Geodesic lengths in geometrically infinite 3-manifolds

Theorem

Let \(M = \mathbb{H}^3 / \Gamma \) be a hyperbolic 3-manifold (possibly geometrically infinite). For \(\gamma \in \Gamma = \pi_1(M) \), let \(\ell(\gamma) \) be the length of the geodesic in the free homotopy class of \(\gamma \).

- If \(M \) has no rank 2 cusps, for any \(S \) we have

\[\ell(\gamma) - n \ell(\gamma) \sqrt{n} \to N \]

where \(\gamma \) is chosen uniformly at random in the sphere of radius \(n \) with respect to \(S \).

- If \(M \) has rank 2 cusps, for any \(S \) there is \(S' \supseteq S \) such that the CLT holds for \(S' \).

Proof (1): [Tameness] + [Thurston’s hyperbolization] \(\Rightarrow \) \(\pi_1(M) \) hyperbolic
Applications (I’) Geodesic lengths in geometrically infinite 3-manifolds

Theorem

Let $M = \mathbb{H}^3 / \Gamma$ be a hyperbolic 3-manifold (possibly geometrically infinite). For $\gamma \in \Gamma = \pi_1(M)$, let $\ell(\gamma)$ be the length of the geodesic in the free homotopy class of γ.

- If M has no rank 2 cusps, for any S we have

 $$\frac{\ell(\gamma) - n\ell}{\sqrt{n}} \to \mathcal{N}_\sigma$$

 where γ is chosen uniformly at random in the sphere of radius n with respect to S.

Proof (1): [Tameness] + [Thurston’s hyperbolization] $\Rightarrow \pi_1(M)$ hyperbolic
Applications (I’): Geodesic lengths in geometrically infinite 3-manifolds

Theorem

Let $M = \mathbb{H}^3 / \Gamma$ be a hyperbolic 3-manifold (possibly geometrically infinite). For $\gamma \in \Gamma = \pi_1(M)$, let $\ell(\gamma)$ be the length of the geodesic in the free homotopy class of γ.

- If M has no rank 2 cusps, for any S we have

 $$\frac{\ell(\gamma) - n\ell}{\sqrt{n}} \to \mathcal{N}_\sigma$$

 where γ is chosen uniformly at random in the sphere of radius n with respect to S.

- If M has rank 2 cusps, for any S there is $S' \supset S$ such that the CLT holds for S'.
Applications (I’) Geodesic lengths in geometrically infinite 3-manifolds

Theorem

Let $M = \mathbb{H}^3 / \Gamma$ be a hyperbolic 3-manifold (possibly geometrically infinite). For $\gamma \in \Gamma = \pi_1(M)$, let $\ell(\gamma)$ be the length of the geodesic in the free homotopy class of γ.

- If M has no rank 2 cusps, for any S we have

$$\frac{\ell(\gamma) - n\ell}{\sqrt{n}} \to \mathcal{N}_\sigma$$

where γ is chosen uniformly at random in the sphere of radius n with respect to S.

- If M has rank 2 cusps, for any S there is $S' \supset S$ such that the CLT holds for S'.

Proof (1): [Tameness] + [Thurston’s hyperbolization] $\Rightarrow \pi_1(M)$ hyperbolic
Applications (II) Intersection with submanifolds

Let M be a hyperbolic manifold and let S be any generating set for $\pi_1(M)$. Let Σ be a (smooth, orientable) codimension-1 submanifold, and let $i(\gamma, \Sigma)$ be the intersection number.

Theorem
Suppose that $\Sigma \to M$ is π_1-injective but not fiber-like. Then there are $\ell, \sigma > 0$ such that $i(\gamma, \Sigma) - \ell n^{\sqrt{n}} \to N \sigma$, where γ is chosen uniformly at random in the sphere of radius n with respect to S.

▶ Example. M compact surface of genus $g \geq 2$, Σ an essential simple closed curve.▶ The action is on a non-proper metric space
Applications (II) Intersection with submanifolds

Let M be a hyperbolic manifold and let S be any generating set for $\pi_1(M)$. Let Σ be a (smooth, orientable) codimension-1 submanifold, and let $i(\gamma, \Sigma)$ be the intersection number.

▶ Example. M compact surface of genus $g \geq 2$, Σ an essential simple closed curve. ▶ The action is on a non-proper metric space.
Applications (II) Intersection with submanifolds

Let M be a hyperbolic manifold and let S be any generating set for $\pi_1(M)$. Let Σ be a (smooth, orientable) codimension-1 submanifold, and let $i(\gamma, \Sigma)$ be the intersection number.

Theorem

Suppose that $\Sigma \to M$ is π_1-injective but not fiber-like.

▶ Example. M compact surface of genus $g \geq 2$, Σ an essential simple closed curve. ▶ The action is on a non-proper metric space.
Let M be a hyperbolic manifold and let S be any generating set for $\pi_1(M)$. Let Σ be a (smooth, orientable) codimension-1 submanifold, and let $i(\gamma, \Sigma)$ be the intersection number.

Theorem

Suppose that $\Sigma \to M$ is π_1-injective but not fiber-like. Then there are $\ell, \sigma > 0$ such that

$$\frac{i(\gamma, \Sigma) - \ell n}{\sqrt{n}} \to N_\sigma,$$

where γ is chosen uniformly at random in the sphere of radius n with respect to S.

Example. M compact surface of genus $g \geq 2$, Σ an essential simple closed curve.
Let M be a hyperbolic manifold and let S be any generating set for $\pi_1(M)$. Let Σ be a (smooth, orientable) codimension-1 submanifold, and let $i(\gamma, \Sigma)$ be the intersection number.

Theorem

Suppose that $\Sigma \to M$ is π_1-injective but not fiber-like. Then there are $\ell, \sigma > 0$ such that

$$i(\gamma, \Sigma) - \frac{\ell n}{\sqrt{n}} \xrightarrow{\mathcal{N}_{\sigma}}.$$

*where γ is chosen uniformly at random in the sphere of radius n with respect to S.***

Example. M compact surface of genus $g \geq 2$, Σ an essential simple closed curve.
Let M be a hyperbolic manifold and let S be any generating set for $\pi_1(M)$. Let Σ be a (smooth, orientable) codimension-1 submanifold, and let $i(\gamma, \Sigma)$ be the intersection number.

Theorem

Suppose that $\Sigma \to M$ is π_1-injective but not fiber-like. Then there are $\ell, \sigma > 0$ such that

$$\frac{i(\gamma, \Sigma) - \ell n}{\sqrt{n}} \to \mathcal{N}_\sigma,$$

where γ is chosen uniformly at random in the sphere of radius n with respect to S.

- **Example.** M compact surface of genus $g \geq 2$, Σ an essential simple closed curve.
- The action is on a non-proper metric space
Applications (II) Intersection with submanifolds
Applications (II) Intersection with submanifolds

\[\tilde{M} = \mathbb{H}^2 \]
Applications (II) Intersection with submanifolds

\[\sim \quad M = H^2 \]

\begin{itemize}
 \item locally infinite tree
\end{itemize}
Let M be a hyperbolic manifold and let S be any generating set for $\pi_1(M)$. Let Σ be a (smooth, orientable) codimension-1 submanifold, and let $i(\gamma, \Sigma)$ be the intersection number.

Theorem

Suppose that $\Sigma \to M$ is π_1-injective but not fiber-like. Then there are $\ell, \sigma > 0$ such that

$$\frac{i(\gamma, \Sigma) - \ell n}{\sqrt{n}} \to \mathcal{N}_\sigma,$$

where γ is chosen uniformly at random in the sphere of radius n with respect to S.
Fig. 2 A histogram showing the distribution of self-intersection numbers over all reduced cyclic words of length 19 in the doubly punctured plane. The horizontal coordinate shows the self-intersection count k; the vertical coordinate shows the number of cyclic reduced words for which the self-intersection number is k.

Distribution of self-intersections (Chas-Lalley, 2011)
Applications (III) Homomorphisms between hyperbolic groups

Theorem

Let $\phi : G \to G'$ be a homomorphism between hyperbolic groups.
Applications (III) Homomorphisms between hyperbolic groups

Theorem

Let \(\phi : G \rightarrow G' \) be a homomorphism between hyperbolic groups. Let \(S, S' \) be generating sets.
Applications (III) Homomorphisms between hyperbolic groups

Theorem

Let $\phi : G \to G'$ be a homomorphism between hyperbolic groups. Let S, S' be generating sets. Then there exist $\ell > 0, \sigma \geq 0$ such that

$$\frac{\|\phi(g)\|_{S'} - \ell \|g\|_S}{\sqrt{\|g\|_S}} \to \mathcal{N}_\sigma,$$

for $g \in G$ chosen uniformly at random in the sphere of radius n with respect to S.
Theorem

Let $\phi : G \to G'$ be a homomorphism between hyperbolic groups. Let S, S' be generating sets. Then there exist $\ell > 0, \sigma \geq 0$ such that

$$\frac{\|\phi(g)\|_{S'} - \ell\|g\|_S}{\sqrt{\|g\|_S}} \to \mathcal{N}_\sigma,$$

for $g \in G$ chosen uniformly at random in the sphere of radius n with respect to S.
Applications (III) Homomorphisms between hyperbolic groups

Let $\phi: G \to G'$ be a homomorphism between hyperbolic groups. Recall $\partial G := \{\text{geodesic rays based at } o\}/\sim$.

Moreover, for $s > v$, $\nu_s := \sum_g e^{-sd(o, go)} \delta_{go} \sum_g e^{-sd(o, go)}$.

Theorem

In the CLT we have $\sigma = 0$ if and only if ϕ has finite kernel and $\partial \phi : \partial G \to \partial G'$ pushes the PS measure class for (G, S) to the PS measure class for $(\phi(G), S')$.

Applications (III) Homomorphisms between hyperbolic groups

Let $\phi: G \to G'$ be a homomorphism between hyperbolic groups. Recall $\partial G := \{\text{geodesic rays based at } o\}/\sim$.

Let $\nu = \limsup_{n \to \infty} \frac{1}{n} \log \#\{g : d(o, go) \leq n\}$.

Moreover, for $s > \nu$ $\nu_s := \sum g \exp(-sd(o, go)) \delta_{go} \sum g \exp(-sd(o, go))$ and the Patterson-Sullivan (PS) measure is $\nu_{\text{PS}} := \lim_{s \to \nu} \nu_s$.

Theorem

In the CLT we have $\sigma = 0$ if and only if ϕ has finite kernel and $\partial \phi: \partial G \to \partial G'$ pushes the PS measure class for (G, S) to the PS measure class for $(\phi(G), S')$.
Applications (III) Homomorphisms between hyperbolic groups

Let $\phi: G \to G'$ be a homomorphism between hyperbolic groups. Recall $\partial G := \{\text{geodesic rays based at } o\}/\sim$.

Let $\nu = \limsup_{n \to \infty} \frac{1}{n} \log \# \{ g : d(o, go) \leq n \}$. Moreover, for $s > \nu$

$$\nu_s := \frac{\sum g \ e^{-sd(o, go)} \delta_{go}}{\sum g \ e^{-sd(o, go)}}$$
Applications (III) Homomorphisms between hyperbolic groups

Let $\phi: G \to G'$ be a homomorphism between hyperbolic groups. Recall $\partial G := \{\text{geodesic rays based at } o\}/\sim$.

Let $\nu = \limsup_{n \to \infty} \frac{1}{n} \log \# \{ g : d(o, go) \leq n \}$. Moreover, for $s > \nu$

$$\nu_s := \frac{\sum g e^{-sd(o, go)} \delta_{go}}{\sum g e^{-sd(o, go)}}$$

and the Patterson-Sullivan (PS) measure is

$$\nu_{PS} := \lim_{s \to \nu} \nu_s$$
Applications (III) Homomorphisms between hyperbolic groups

Let $\phi: G \rightarrow G'$ be a homomorphism between hyperbolic groups. Recall $\partial G := \{\text{geodesic rays based at } o\} / \sim$.

Let $v = \limsup_{n \to \infty} \frac{1}{n} \log \#\{g : d(o, go) \leq n\}$. Moreover, for $s > v$

$$\nu_s := \frac{\sum g e^{-sd(o, go)} \delta_{go}}{\sum g e^{-sd(o, go)}}$$

and the Patterson-Sullivan (PS) measure is

$$\nu_{PS} := \lim_{s \to v} \nu_s$$

Theorem

In the CLT we have $\sigma = 0$ if and only if ϕ has finite kernel and $\partial \phi: \partial G \rightarrow \partial G'$ pushes the PS measure class for (G, S) to the PS measure class for $(\phi(G), S')$.
Techniques - Graph structures

A graph structure is \((\Gamma, v_0, ev)\) with:

- \(\Gamma\) is a finite graph
- \(v_0\) is a vertex of \(\Gamma\) (initial vertex)
- \(ev: E(\Gamma) \rightarrow G\) the evaluation map

If \(v\) is a vertex, \(\Gamma_v\) is the loop semigroup

- \(M:\) adjacency matrix
- \(\lambda:\) leading eigenvalue

A component is maximal if its growth rate is \(\lambda\).

Definition

A graph structure is thick if for any \(v\) in a maximal component there exists \(B \subseteq G\) finite such that \(G = B \cdot ev(\Gamma_v) \cdot B\)

Thick \(\Rightarrow\) almost semisimple: for every maximal eigenvalue, its algebraic and geometric multiplicities agree

Note.

\(M\) need not be irreducible and not aperiodic.
Techniques - Graph structures

A graph structure is \((\Gamma, v_0, ev)\) with:

- \(\Gamma\) is a finite graph
- \(v_0\) is a vertex of \(\Gamma\) (initial vertex)
Techniques - Graph structures

A graph structure is \((\Gamma, v_0, ev)\) with:

- \(\Gamma\) is a finite graph
- \(v_0\) is a vertex of \(\Gamma\) (initial vertex)
- \(ev : E(\Gamma) \rightarrow G\) is the evaluation map

A component is maximal if its growth rate is \(\lambda\).

Definition

A graph structure is thick if for any \(v\) in a maximal component there exists \(B \subseteq G\) finite such that \(G = B \cdot ev(\Gamma_v) \cdot B\).

Thick \(\Rightarrow\) almost semisimple: for every maximal eigenvalue, its algebraic and geometric multiplicities agree.

Note. \(M\) need not be irreducible and not aperiodic.
Techniques - Graph structures

A graph structure is \((\Gamma, v_0, \text{ev})\) with:
- \(\Gamma\) is a finite graph
- \(v_0\) is a vertex of \(\Gamma\) (initial vertex)
- \(\text{ev} : E(\Gamma) \to G\) the \underline{evaluation map}

If \(\nu\) is a vertex, \(\Gamma_{\nu}\) is the \underline{loop semigroup}
Techniques - Graph structures

A graph structure is (Γ, v_0, ev) with:

- Γ is a finite graph
- v_0 is a vertex of Γ (initial vertex)
- $ev : E(\Gamma) \rightarrow G$ the evaluation map

If v is a vertex, Γ_v is the loop semigroup

- M: adjacency matrix
Techniques - Graph structures

A graph structure is (Γ, v_0, ev) with:

- Γ is a finite graph
- v_0 is a vertex of Γ (initial vertex)
- $\text{ev} : E(\Gamma) \to G$ the evaluation map

If v is a vertex, Γ_v is the loop semigroup

- M: adjacency matrix
- λ: leading eigenvalue

A component is maximal if its growth rate is λ.

Definition

A graph structure is thick if for any v in a maximal component there exists $B \subseteq G$ finite such that $G = B \cdot \text{ev}(\Gamma_v) \cdot B$

Thick \Rightarrow almost semisimple: for every maximal eigenvalue, its algebraic and geometric multiplicities agree

Note. M need not be irreducible and not aperiodic.
A graph structure is \((\Gamma, v_0, ev)\) with:

- \(\Gamma\) is a finite graph
- \(v_0\) is a vertex of \(\Gamma\) (initial vertex)
- \(ev : E(\Gamma) \to G\) the evaluation map

If \(v\) is a vertex, \(\Gamma_v\) is the loop semigroup

- \(M\): adjacency matrix
- \(\lambda\): leading eigenvalue

A component is maximal if its growth rate is \(\lambda\).
Techniques - Graph structures

A graph structure is \((\Gamma, v_0, ev)\) with:

- \(\Gamma\) is a finite graph
- \(v_0\) is a vertex of \(\Gamma\) (initial vertex)
- \(ev : E(\Gamma) \rightarrow G\) the evaluation map

If \(v\) is a vertex, \(\Gamma_v\) is the loop semigroup

- \(M\): adjacency matrix
- \(\lambda\): leading eigenvalue

A component is maximal if its growth rate is \(\lambda\).

Definition

A graph structure is **thick** if for any \(v\) in a maximal component there exists \(B \subseteq G\) finite such that

\[
G = B \cdot ev(\Gamma_v) \cdot B
\]
Techniques - Graph structures

A graph structure is \((\Gamma, v_0, ev)\) with:

- \(\Gamma\) is a finite graph
- \(v_0\) is a vertex of \(\Gamma\) (initial vertex)
- \(ev : E(\Gamma) \to G\) the evaluation map

If \(v\) is a vertex, \(\Gamma_v\) is the loop semigroup

- \(M\): adjacency matrix
- \(\lambda\): leading eigenvalue

A component is maximal if its growth rate is \(\lambda\).

Definition

A graph structure is thick if for any \(v\) in a maximal component there exists \(B \subseteq G\) finite such that

\[
G = B \cdot ev(\Gamma_v) \cdot B
\]

Thick \(\Rightarrow\) almost semisimple: for every maximal eigenvalue, its algebraic and geometric multiplicities agree.
Techniques - Graph structures

A graph structure is \((\Gamma, v_0, ev)\) with:

- \(\Gamma\) is a finite graph
- \(v_0\) is a vertex of \(\Gamma\) (initial vertex)
- \(ev : E(\Gamma) \rightarrow G\) the evaluation map

If \(v\) is a vertex, \(\Gamma_v\) is the loop semigroup

- \(M\): adjacency matrix
- \(\lambda\): leading eigenvalue

A component is maximal if its growth rate is \(\lambda\).

Definition

A graph structure is thick if for any \(v\) in a maximal component there exists \(B \subseteq G\) finite such that

\[G = B \cdot ev(\Gamma_v) \cdot B \]

Thick \(\Rightarrow\) almost semisimple: for every maximal eigenvalue, its algebraic and geometric multiplicities agree. \(M\) need not be irreducible and not aperiodic.
Techniques - Graph structures

Definition
A graph structure is biautomatic if

\[\text{for any } B \subseteq G \text{ finite } \exists C \geq 0 \text{ such that if } g_1, h_1 \text{ are finite length paths with } \text{ev}(g_1) = b_1 \cdot \text{ev}(h_1) \cdot b_2 \text{ then } d_G(g_1, b_1 h_1) \leq C \text{ for all } i \leq \max \{ \|g\|, \|h\| \}. \]
Definition
A graph structure is **biautomatic** if for any $B \subseteq G$ finite $\exists C \geq 0$ such that if g, h are finite length paths with

$$\text{ev}(g) = b_1 \cdot \text{ev}(h) \cdot b_2$$
Definition
A graph structure is biautomatic if for any \(B \subseteq G \) finite \(\exists C \geq 0 \) such that if \(g, h \) are finite length paths with

\[
ev(g) = b_1 \cdot \ev(h) \cdot b_2
\]

then

\[
d_G(g_1 \ldots g_i, b_1 h_1 \ldots h_i) \leq C
\]

for all \(i \leq \max\{\|g\|, \|h\|\} \).
Definition
A graph structure is biautomatic if for any $B \subseteq G$ finite $\exists C \geq 0$ such that if g, h are finite length paths with

$$\text{ev}(g) = b_1 \cdot \text{ev}(h) \cdot b_2$$

then

$$d_G(g_1 \ldots g_i, b_1 h_1 \ldots h_i) \leq C$$

for all $i \leq \max\{\|g\|, \|h\|\}$.

Definition
A group has a thick bicombing for S if it has a thick, biautomatic graph structure for S such that paths are geodesic for the word length $\| \cdot \|_S$.
1. **Hyperbolic groups** have thick bicombings for every generating set S (Cannon)
Graph structures - examples

1. **Hyperbolic groups** have thick bicombings for every generating set S (Cannon)

2. If $G = \pi_1(M)$ with M a geometrically finite hyperbolic manifold, then for any S there exists S' which admits a thick bicombing (Antolin-Ciobanu)
Graph structures - examples

1. Hyperbolic groups have thick bicombings for every generating set S (Cannon)

2. If $G = \pi_1(M)$ with M a geometrically finite hyperbolic manifold, then for any S there exists S' which admits a thick bicombing (Antolin-Ciobanu)
 More generally, relatively hyperbolic groups with virtually abelian parabolic subgroups.
Graph structures - examples

1. **Hyperbolic groups** have thick bicombings for every generating set \(S \) (Cannon)

2. If \(G = \pi_1(M) \) with \(M \) a geometrically finite hyperbolic manifold, then for any \(S \) there exists \(S' \) which admits a thick bicombing (Antolin-Ciobanu)

 More generally, **relatively hyperbolic groups** with virtually abelian parabolic subgroups.

3. **Right-angled Artin/Coxeter groups** (Hermiller-Meier)
Structure of the proof

1. Central limit theorem for centerable cocycles (Benoist-Quint, Horbez)
Structure of the proof

1. Central limit theorem for centerable cocycles (Benoist-Quint, Horbez) + Busemann cocycle for the loop semigroup
1. Central limit theorem for centerable cocycles (Benoist-Quint, Horbez) + Busemann cocycle for the loop semigroup \Rightarrow CLT for the random walk on the loop semigroup
Structure of the proof

1. Central limit theorem for centerable cocycles (Benoist-Quint, Horbez) + Busemann cocycle for the loop semigroup \(\Rightarrow \) CLT for the random walk on the loop semigroup
2. CLT for suspensions (Melbourne-Török)
Structure of the proof

1. Central limit theorem for centerable cocycles (Benoist-Quint, Horbez) + Busemann cocycle for the loop semigroup \Rightarrow CLT for the random walk on the loop semigroup

2. CLT for suspensions (Melbourne-Török) \Rightarrow CLT for the Markov chain
Structure of the proof

1. Central limit theorem for centerable cocycles (Benoist-Quint, Horbez) + Busemann cocycle for the loop semigroup \Rightarrow CLT for the random walk on the loop semigroup

2. CLT for suspensions (Melbourne-Török) \Rightarrow CLT for the Markov chain

3. Biautomaticity \Rightarrow Uniqueness of drift and variance
Structure of the proof

1. Central limit theorem for centerable cocycles (Benoist-Quint, Horbez) + Busemann cocycle for the loop semigroup \Rightarrow CLT for the random walk on the loop semigroup

2. CLT for suspensions (Melbourne-Török) \Rightarrow CLT for the Markov chain

3. Biautomaticity \Rightarrow Uniqueness of drift and variance

4. For semisimple structures, approximate counting measure by Markov chain measure
Structure of the proof

1. Central limit theorem for centerable cocycles (Benoist-Quint, Horbez) + Busemann cocycle for the loop semigroup \Rightarrow CLT for the random walk on the loop semigroup

2. CLT for suspensions (Melbourne-Török) \Rightarrow CLT for the Markov chain

3. Biautomaticity \Rightarrow Uniqueness of drift and variance

4. For semisimple structures, approximate counting measure by Markov chain measure \Rightarrow CLT for counting measure
Step 1: CLT for cocycles

Let \mathcal{M} a metric space on which G acts continuously.

A cocycle η is μ-stationary if

$$\int g^* \nu \, d\mu(g) = \nu.$$
Step 1: CLT for cocycles

Let \mathcal{M} a metric space on which G acts continuously. A cocycle is $\eta : G \times \mathcal{M} \to \mathbb{R}$ with

$$\sigma(gh, x) = \sigma(g, hx) + \sigma(h, x)$$
Step 1: CLT for cocycles

Let \mathcal{M} a metric space on which G acts continuously. A cocycle is $\eta : G \times \mathcal{M} \to \mathbb{R}$ with

$$\sigma(gh, x) = \sigma(g, hx) + \sigma(h, x)$$

A measure ν on \mathcal{M} is μ-stationary if

$$\int g_*\nu \, d\mu(g) = \nu.$$
Step 1: CLT for cocycles

Let \mathcal{M} a metric space on which G acts continuously. A cocycle is $\eta : G \times \mathcal{M} \to \mathbb{R}$ with

$$\sigma(gh, x) = \sigma(g, hx) + \sigma(h, x)$$

A measure ν on \mathcal{M} is μ-stationary if

$$\int g_* \nu \, d\mu(g) = \nu.$$

A cocycle η has constant drift λ if

$$\int \eta(g, x) \, d\mu(g) = \lambda \quad \text{for all } x \in \mathcal{M}.$$
Step 1: CLT for cocycles

Let \mathcal{M} a metric space on which G acts continuously. A **cocycle** is $\eta : G \times \mathcal{M} \to \mathbb{R}$ with

$$\sigma(gh, x) = \sigma(g, hx) + \sigma(h, x)$$

A measure ν on \mathcal{M} is μ-stationary if

$$\int g_* \nu \, d\mu(g) = \nu.$$

A cocycle η has **constant drift** λ if

$$\int \eta(g, x) \, d\mu(g) = \lambda \quad \text{for all } x \in \mathcal{M}.$$

A cocycle η is **centerable** if it can be written as

$$\eta(g, x) = \eta_0(g, x) + \psi(x) - \psi(g \cdot x)$$

where η_0 is a cocycle with constant drift and $\psi : \mathcal{M} \to \mathbb{R}$ a bounded, measurable function.
Theorem (Benoist-Quint + Horbez)

Let ν be a μ-ergodic, μ-stationary probability measure on \mathcal{M}, and let $\eta : G \times \mathcal{M} \to \mathbb{R}$ be a centerable cocycle with drift λ and finite second moment. Then there exist $\sigma \geq 0$ such that for any continuous $F : \mathbb{R} \to \mathbb{R}$ with compact support, we have for ν-a.e. $x \in \mathcal{M}$,

$$\lim_{n \to \infty} \int G \left(F\left(\sigma(\cdot, x) - n\lambda \sqrt{n} \right) \right) d\mu^* n(g) = \int \mathbb{R} F(t) dN_{\sigma}(t).$$
Central limit theorem for centerable cocycles

Theorem (Benoist-Quint + Horbez)

Let ν be a μ-ergodic, μ-stationary probability measure on \mathcal{M}, and let $\eta: G \times \mathcal{M} \rightarrow \mathbb{R}$ be a centerable cocycle with drift λ and finite second moment.

\[\lim_{n \to \infty} \int_{G} F(\sigma(g, x) - n\lambda \sqrt{n}) \, d\mu^\ast n(g) = \int_{\mathbb{R}} F(t) \, dN_{\sigma}(t). \]
Central limit theorem for centerable cocycles

Theorem (Benoist-Quint + Horbez)

Let ν be a μ-ergodic, μ-stationary probability measure on \mathcal{M}, and let $\eta: G \times \mathcal{M} \to \mathbb{R}$ be a centerable cocycle with drift λ and finite second moment. Then there exist $\sigma \geq 0$ such that for any continuous $F: \mathbb{R} \to \mathbb{R}$ with compact support, we have for ν-a.e. $x \in \mathcal{M}$,

$$\lim_{n \to \infty} \int_G F \left(\frac{\sigma(g, x) - n\lambda}{\sqrt{n}} \right) \, d\mu^*(g) = \int_{\mathbb{R}} F(t) \, dN_{\sigma}(t).$$
The Busemann cocycle

Horofunction boundary. We have embedding\[
\rho : X \to C(X, \mathbb{R})
\]
The Busemann cocycle

Horofunction boundary. We have embedding
\(\rho : X \rightarrow C(X, \mathbb{R}) \)

\[\rho_x(z) := d(x, z) − d(x, o) \]
The Busemann cocycle

Horofunction boundary. We have embedding

\[\rho : X \rightarrow C(X, \mathbb{R}) \]

\[\rho_x(z) := d(x, z) - d(x, o) \]

Then \(\mathcal{M} = \overline{X^h} \) is the closure of \(\rho(X) \) for the topology of pointwise convergence.
The Busemann cocycle

Horofunction boundary. We have embedding \(\rho : X \to C(X, \mathbb{R}) \)

\[
\rho_x(z) := d(x, z) - d(x, o)
\]

Then \(\mathcal{M} = \overline{X}^h \) is the closure of \(\rho(X) \) for the topology of pointwise convergence.

Definition

The Busemann cocycle

\[
\beta(g, \xi) := \lim_{z_n \to \xi} (d(o, z_n) - d(g^{-1}o, z_n))
\]
The Busemann cocycle

Horofunction boundary. We have embedding
\[\rho : X \to C(X, \mathbb{R}) \]
\[\rho_x(z) := d(x, z) - d(x, o) \]

Then \(\mathcal{M} = \overline{X}^h \) is the closure of \(\rho(X) \) for the topology of pointwise convergence.

Definition
The Busemann cocycle
\[\beta(g, \xi) := \lim_{z_n \to \xi} (d(o, z_n) - d(g^{-1}o, z_n)) \]

Proposition (Horbez)
The Busemann cocycle is centerable.
Step 1: Random walks on the loop semigroup

Fix a graph structure Γ and let ν be a vertex in a maximal growth component.
Step 1: Random walks on the loop semigroup

Fix a graph structure Γ and let v be a vertex in a maximal growth component. Fix a measure μ on the set of edges of Γ.

Definition

The loop semigroup Γ_v is the set of all loops from v to v.

The first return measure is $\mu_v(l) = \mu(g_1) \cdots \mu(g_n)$ if $l = g_1 \cdots g_n$.

Theorem

Let ν_v be a μ_v-ergodic, μ_v-stationary measure on X. Then there exist $\ell, \sigma \geq 0$ such that for ν_v-a.e. ξ

$$\lim_{n \to \infty} \int_G F(\beta(\xi(o, go)) - \ell \|g\| \sqrt{n}) d\mu^*_{\nu_v}(g) = \int_R F(t) dN_\sigma(t)$$

for any $F \in C_c(R)$.

Step 1: Random walks on the loop semigroup

Fix a graph structure Γ and let v be a vertex in a maximal growth component. Fix a measure μ on the set of edges of Γ.

Definition

The loop semigroup Γ_v is the set of all loops from v to v.
Step 1: Random walks on the loop semigroup

Fix a graph structure Γ and let ν be a vertex in a maximal growth component. Fix a measure μ on the set of edges of Γ.

Definition

The loop semigroup Γ_{ν} is the set of all loops from ν to ν. The first return measure is

$$\mu_{\nu}(l) = \mu(g_1) \ldots \mu(g_n)$$

if $l = g_1 \ldots g_n$.
Step 1: Random walks on the loop semigroup

Fix a graph structure Γ and let v be a vertex in a maximal growth component. Fix a measure μ on the set of edges of Γ.

Definition

The loop semigroup Γ_v is the set of all loops from v to v. The first return measure is

$$\mu_v(l) = \mu(g_1) \ldots \mu(g_n)$$

if $l = g_1 \ldots g_n$.

Theorem

Let ν_v be a μ_v-ergodic, μ_v-stationary measure on \overline{X}^h.
Step 1: Random walks on the loop semigroup

Fix a graph structure Γ and let v be a vertex in a maximal growth component. Fix a measure μ on the set of edges of Γ.

Definition

The loop semigroup Γ_v is the set of all loops from v to v. The first return measure is

$$\mu_v(l) = \mu(g_1) \ldots \mu(g_n)$$

if $l = g_1 \ldots g_n$.

Theorem

Let ν_v be a μ_v-ergodic, μ_v-stationary measure on \overline{X}^h. Then there exist $\ell, \sigma \geq 0$ such that for ν_v-a.e. ξ
Step 1: Random walks on the loop semigroup

Fix a graph structure \(\Gamma \) and let \(\nu \) be a vertex in a maximal growth component. Fix a measure \(\mu \) on the set of edges of \(\Gamma \).

Definition
The loop semigroup \(\Gamma_\nu \) is the set of all loops from \(\nu \) to \(\nu \). The first return measure is

\[
\mu_\nu(l) = \mu(g_1) \cdots \mu(g_n)
\]

if \(l = g_1 \cdots g_n \).

Theorem
Let \(\nu_\nu \) be a \(\mu_\nu \)-ergodic, \(\mu_\nu \)-stationary measure on \(X^h \). Then there exist \(\ell, \sigma \geq 0 \) such that for \(\nu_\nu \)-a.e. \(\xi \)

\[
\lim_{n \to \infty} \int_G F \left(\frac{\beta_\xi(o, go) - \ell \|g\|}{\sqrt{n}} \right) d\mu_\nu^n(g) = \int_\mathbb{R} F(t) \, d\mathcal{N}_\sigma(t)
\]

for any \(F \in C_c(\mathbb{R}) \).
Step 2: Suspension to the Markov chain

Let \(S : (\mathcal{X}, \lambda) \to (\mathcal{X}, \lambda) \), and let \(r : \mathcal{X} \to \mathbb{N} \) be a roof function. Then the discrete suspension flow of \(S \) with roof function \(r \) is \(\hat{S} : \hat{\mathcal{X}} \to \hat{\mathcal{X}} \) where

\[
\hat{\mathcal{X}} := \{(x, n) \in \mathcal{X} \times \mathbb{N} : 0 \leq n \leq r(x) - 1\}
\]
Step 2: Suspension to the Markov chain

Let \(S: (\mathcal{X}, \lambda) \to (\mathcal{X}, \lambda) \), and let \(r: \mathcal{X} \to \mathbb{N} \) be a roof function. Then the discrete suspension flow of \(S \) with roof function \(r \) is \(\hat{S}: \hat{\mathcal{X}} \to \hat{\mathcal{X}} \) where

\[
\hat{\mathcal{X}} := \{ (x, n) \in \mathcal{X} \times \mathbb{N} : 0 \leq n \leq r(x) - 1 \}
\]

Then, the map \(\hat{S} \) is defined as

\[
\hat{S}(x, n) = \begin{cases}
(x, n + 1) & \text{if } n \leq r(x) - 2 \\
(S(x), 0) & \text{if } n = r(x) - 1.
\end{cases}
\]

Theorem (Melbourne-Török)

Let \(S: (\mathcal{X}, \lambda) \to (\mathcal{X}, \lambda) \) be ergodic, and let \(\hat{S}: (\hat{\mathcal{X}}, \hat{\lambda}) \to (\hat{\mathcal{X}}, \hat{\lambda}) \) be the suspension flow with roof function \(r \). Let \(\phi: \hat{\mathcal{X}} \to \mathbb{R} \) and define \(\Phi(x) := \sum_{k=0}^{r(x) - 1} \phi(x, k) \).

Suppose that \(\Phi \) and \(r \) satisfy a CLT. Then \(\phi \) satisfies a CLT.
Step 2: Suspension to the Markov chain

Let $S: (\mathcal{X}, \lambda) \rightarrow (\mathcal{X}, \lambda)$, and let $r: \mathcal{X} \rightarrow \mathbb{N}$ be a roof function. Then the discrete suspension flow of S with roof function r is

\[\hat{S}: \hat{\mathcal{X}} \rightarrow \hat{\mathcal{X}} \]

where

\[\hat{\mathcal{X}} := \{(x, n) \in \mathcal{X} \times \mathbb{N} : 0 \leq n \leq r(x) - 1\} \]

Then, the map \hat{S} is defined as

\[\hat{S}(x, n) = \begin{cases} (x, n + 1) & \text{if } n \leq r(x) - 2 \\ (S(x), 0) & \text{if } n = r(x) - 1. \end{cases} \]

Theorem (Melbourne-Török)

Let $S: (\mathcal{X}, \lambda) \rightarrow (\mathcal{X}, \lambda)$ be ergodic,
Step 2: Suspension to the Markov chain

Let $S: (\mathcal{X}, \lambda) \to (\mathcal{X}, \lambda)$, and let $r: \mathcal{X} \to \mathbb{N}$ be a roof function. Then the discrete suspension flow of S with roof function r is $\hat{S}: \hat{\mathcal{X}} \to \hat{\mathcal{X}}$ where

$$\hat{\mathcal{X}} := \{(x, n) \in \mathcal{X} \times \mathbb{N} : 0 \leq n \leq r(x) - 1\}$$

Then, the map \hat{S} is defined as

$$\hat{S}(x, n) = \begin{cases}
(x, n + 1) & \text{if } n \leq r(x) - 2 \\
(S(x), 0) & \text{if } n = r(x) - 1.
\end{cases}$$

Theorem (Melbourne-Törokk)

Let $S: (\mathcal{X}, \lambda) \to (\mathcal{X}, \lambda)$ be ergodic, and let $\hat{S}: (\hat{\mathcal{X}}, \hat{\lambda}) \to (\hat{\mathcal{X}}, \hat{\lambda})$ be the suspension flow with roof function r.
Step 2: Suspension to the Markov chain

Let $S: (\mathcal{X}, \lambda) \to (\mathcal{X}, \lambda)$, and let $r: \mathcal{X} \to \mathbb{N}$ be a roof function. Then the discrete suspension flow of S with roof function r is $\hat{S}: \hat{\mathcal{X}} \to \hat{\mathcal{X}}$ where

$$\hat{\mathcal{X}} := \{(x, n) \in \mathcal{X} \times \mathbb{N} : 0 \leq n \leq r(x) - 1\}$$

Then, the map \hat{S} is defined as

$$\hat{S}(x, n) = \begin{cases} (x, n + 1) & \text{if } n \leq r(x) - 2 \\ (S(x), 0) & \text{if } n = r(x) - 1. \end{cases}$$

Theorem (Melbourne-Török)

Let $S: (\mathcal{X}, \lambda) \to (\mathcal{X}, \lambda)$ be ergodic, and let $\hat{S}: (\hat{\mathcal{X}}, \hat{\lambda}) \to (\hat{\mathcal{X}}, \hat{\lambda})$ be the suspension flow with roof function r. Let $\phi: \hat{\mathcal{X}} \to \mathbb{R}$ and define $\Phi(x) := \sum_{k=0}^{r(x)-1} \phi(x, k)$.
Step 2: Suspension to the Markov chain

Let $S: (\mathcal{X}, \lambda) \to (\mathcal{X}, \lambda)$, and let $r: \mathcal{X} \to \mathbb{N}$ be a roof function. Then the discrete suspension flow of S with roof function r is $\hat{S}: \hat{\mathcal{X}} \to \hat{\mathcal{X}}$ where

$$\hat{\mathcal{X}} := \{(x, n) \in \mathcal{X} \times \mathbb{N} : 0 \leq n \leq r(x) - 1\}$$

Then, the map \hat{S} is defined as

$$\hat{S}(x, n) = \begin{cases} (x, n + 1) & \text{if } n \leq r(x) - 2 \\ (S(x), 0) & \text{if } n = r(x) - 1. \end{cases}$$

Theorem (Melbourne-Török)

Let $S: (\mathcal{X}, \lambda) \to (\mathcal{X}, \lambda)$ be ergodic, and let $\hat{S}: (\hat{\mathcal{X}}, \hat{\lambda}) \to (\hat{\mathcal{X}}, \hat{\lambda})$ be the suspension flow with roof function r. Let $\phi: \hat{\mathcal{X}} \to \mathbb{R}$ and define $\Phi(x) := \sum_{k=0}^{r(x)-1} \phi(x, k)$. Suppose that Φ and r satisfy a CLT.
Step 2: Suspension to the Markov chain

Let $S: (\mathcal{X}, \lambda) \to (\mathcal{X}, \lambda)$, and let $r: \mathcal{X} \to \mathbb{N}$ be a roof function. Then the discrete suspension flow of S with roof function r is $\hat{S}: \hat{\mathcal{X}} \to \hat{\mathcal{X}}$ where

$$\hat{\mathcal{X}} := \{ (x, n) \in \mathcal{X} \times \mathbb{N} : 0 \leq n \leq r(x) - 1 \}$$

Then, the map \hat{S} is defined as

$$\hat{S}(x, n) = \begin{cases} (x, n + 1) & \text{if } n \leq r(x) - 2 \\ (S(x), 0) & \text{if } n = r(x) - 1. \end{cases}$$

Theorem (Melbourne-Török)

Let $S: (\mathcal{X}, \lambda) \to (\mathcal{X}, \lambda)$ be ergodic, and let $\hat{S}: (\hat{\mathcal{X}}, \hat{\lambda}) \to (\hat{\mathcal{X}}, \hat{\lambda})$ be the suspension flow with roof function r. Let $\phi: \hat{\mathcal{X}} \to \mathbb{R}$ and define $\Phi(x) := \sum_{k=0}^{r(x)-1} \phi(x, k)$. Suppose that Φ and r satisfy a CLT. Then ϕ satisfies a CLT.
CLT for Markov chain

Recall that if M is primitive
CLT for Markov chain

Recall that if M is primitive (i.e. $M^n > 0$)
Recall that if M is primitive (i.e. $M^n > 0$)

\[
\lim_{n} \frac{M^n}{\lambda^n} = \rho u^T
\]
CLT for Markov chain

Recall that if M is primitive (i.e. $M^n > 0$)

$$\lim_{n} \frac{M^n}{\lambda^n} = \rho u^T$$

Define Markov chain

- Starting probabilities

$$\pi_i := \rho_i u_i$$
CLT for Markov chain

Recall that if M is primitive (i.e. $M^n > 0$)

$$\lim_{n} \frac{M^n}{\lambda^n} = \rho u^T$$

Define Markov chain

- Starting probabilities

$$\pi_i := \rho_i u_i$$

- Transition probabilities

$$p_{ij} := \frac{\rho_j}{\lambda \rho_i}$$
CLT for Markov chain

Recall that if M is primitive (i.e. $M^n > 0$)

$$\lim_{n} \frac{M^n}{\lambda^n} = \rho u^T$$

Define Markov chain

- Starting probabilities
 $$\pi_i := \rho_i u_i$$

- Transition probabilities
 $$p_{ij} := \frac{\rho_j}{\lambda \rho_i}$$
Let $\Omega = G^N$, $\Omega_v = \Gamma_v^N$.
Let $\Omega = G^N$, $\Omega_\nu = \Gamma_\nu^N$. Consider skew product $T : \Omega \times M \to \mathbb{R}$.
Let $\Omega = G^\mathbb{N}$, $\Omega_v = \Gamma_v^\mathbb{N}$. Consider skew product $T : \Omega \times M \to \mathbb{R}$

$$T(\omega, \xi) := (\sigma(\omega), g_1^{-1} \xi)$$
Let $\Omega = G^N$, $\Omega_v = \Gamma^N_v$. Consider skew product $T : \Omega \times \mathcal{M} \to \mathbb{R}$

$$T(\omega, \xi) := (\sigma(\omega), g^{-1}_1 \xi)$$

Two versions: $T : \Omega \times \mathcal{M} \to \mathbb{R}$ and $T_v : \Omega_v \times \mathcal{M} \to \mathbb{R}$.
Let $\Omega = G^N$, $\Omega_V = \Gamma_V^N$. Consider skew product $T : \Omega \times M \to \mathbb{R}$

$$T(\omega, \xi) := (\sigma(\omega), g_1^{-1}\xi)$$

Two versions: $T : \Omega \times M \to \mathbb{R}$ and $T_V : \Omega_V \times M \to \mathbb{R}$.

Consider observable $f(\omega, \xi) := \beta \xi(o, g_1o)$
Let $\Omega = G^N$, $\Omega_V = \Gamma_V^N$. Consider skew product $T : \Omega \times \mathcal{M} \to \mathbb{R}$

$$T(\omega, \xi) := (\sigma(\omega), g_1^{-1}\xi)$$

Two versions: $T : \Omega \times \mathcal{M} \to \mathbb{R}$ and $T_V : \Omega_V \times \mathcal{M} \to \mathbb{R}$.

Consider observable

$$f(\omega, \xi) := \beta_\xi(\omega, g_1\omega)$$
Consider observable

\[f(\omega, \xi) := \beta_{\xi}(o, g_1 o) \]
Consider observable

\[f(\omega, \xi) := \beta_\xi(o, g_1 o) \]

Then

\[\beta_\xi(o, g_1 \ldots g_n o) = \sum_{j=0}^{n-1} f \circ T^j(\omega, \xi) \]

hence

Theorem

Suppose that \(\Gamma \) is primitive and let \(\mu_n \) be the \(n \)-th step distribution of the Markov chain on \(\Gamma \).
Consider observable

\[f(\omega, \xi) := \beta_\xi(o, g_1 o) \]

Then

\[\beta_\xi(o, g_1 \cdots g_n o) = \sum_{j=0}^{n-1} f \circ T^j(\omega, \xi) \]

hence

Theorem

Suppose that Γ is primitive and let μ_n be the n-th step distribution of the Markov chain on Γ. Then there are ℓ and σ such that
Consider observable

\[f(\omega, \xi) := \beta_\xi(o, g_1 o) \]

Then

\[\beta_\xi(o, g_1 \ldots g_n o) = \sum_{j=0}^{n-1} f \circ T^j(\omega, \xi) \]

hence

Theorem

Suppose that \(\Gamma \) is primitive and let \(\mu_n \) be the \(n \)-th step distribution of the Markov chain on \(\Gamma \). Then there are \(\ell \) and \(\sigma \) such that

\[
\lim_{n \to \infty} \int_G F \left(\frac{\beta_\xi(o, go) - n\ell}{\sqrt{n}} \right) \, d\mu_n(g) = \int_\mathbb{R} F(t) \, d\mathcal{N}_\sigma(t)
\]

for any \(F \in C_c(\mathbb{R}) \).
Consider observable

\[f(\omega, \xi) := \beta_\xi(o, g_1 o) \]

Then

\[\beta_\xi(o, g_1 \ldots g_n o) = \sum_{j=0}^{n-1} f \circ T^j(\omega, \xi) \]

hence

Theorem

Suppose that \(\Gamma \) is primitive and let \(\mu_n \) be the n-th step distribution of the Markov chain on \(\Gamma \). Then there are \(\ell \) and \(\sigma \) such that

\[\lim_{n \to \infty} \int_G F \left(\frac{d(o, g_0) - n\ell}{\sqrt{n}} \right) d\mu_n(g) = \int_{\mathbb{R}} F(t) \, d\mathcal{N}_\sigma(t) \]

for any \(F \in C_c(\mathbb{R}) \).
Step 3: Approximating the counting measure

Suppose M is semisimple (there is only one maximal eigenvalue).
Suppose M is semisimple (there is only one maximal eigenvalue).

Let λ_n be the uniform measure on all paths of length n, and let $\widetilde{\lambda}_n$ be the distribution of the subpath of positions $[\log n, n - \log n]$.
Step 3: Approximating the counting measure

Suppose M is semisimple (there is only one maximal eigenvalue).

Let λ_n be the uniform measure on all paths of length n, and let $\tilde{\lambda}_n$ be the distribution of the subpath of positions $[\log n, n - \log n]$.

Lemma

$$\|\mu_{n-2\log n} - \tilde{\lambda}_n\|_{TV} \to 0$$
Step 3: Approximating the counting measure

Suppose M is semisimple (there is only one maximal eigenvalue).

Let λ_n be the uniform measure on all paths of length n, and let $\tilde{\lambda}_n$ be the distribution of the subpath of positions $[\log n, n - \log n]$.

Lemma

$$\|\mu_{n-2\log n} - \tilde{\lambda}_n\|_{TV} \to 0$$
Definition
A function $f : \Omega^* \to \mathbb{R}$ is **uniformly bicontinuous**
Definition
A function $f : \Omega^* \rightarrow \mathbb{R}$ is uniformly bicontinuous if for any finite set $B \subseteq G$ and any $\eta > 0$,

$$\|g\| \geq N$$

and

$$b_1 \cdot \text{ev}(g) \cdot b_2 = \text{ev}(h)$$

for $b_1, b_2 \in B$,

then

$$|f(g) - f(h)| < \eta.$$
Definition
A function \(f : \Omega^* \rightarrow \mathbb{R} \) is uniformly bicontinuous if for any finite set \(B \subseteq G \) and any \(\eta > 0 \), there exists \(N \geq 0 \) such that if \(\| g \| \geq N \) and
Definition
A function $f : \Omega^* \to \mathbb{R}$ is uniformly bicontinuous if for any finite set $B \subseteq G$ and any $\eta > 0$, there exists $N \geq 0$ such that if $\|g\| \geq N$ and

$$b_1 \cdot \text{ev}(g) \cdot b_2 = \text{ev}(h)$$

for $b_1, b_2 \in B$, then

$$|f(g) - f(h)| < \eta.$$
Definition
A function $f : \Omega^* \rightarrow \mathbb{R}$ is uniformly bicontinuous if for any finite set $B \subseteq G$ and any $\eta > 0$, there exists $N \geq 0$ such that if $\|g\| \geq N$ and

$$b_1 \cdot \text{ev}(g) \cdot b_2 = \text{ev}(h)$$

for $b_1, b_2 \in B$, then

$$|f(g) - f(h)| < \eta.$$
Definition
A function $f : \Omega^* \to \mathbb{R}$ is uniformly bicontinuous if for any finite set $B \subseteq G$ and any $\eta > 0$, there exists $N \geq 0$ such that if $\|g\| \geq N$ and

$$b_1 \cdot \text{ev}(g) \cdot b_2 = \text{ev}(h)$$

for $b_1, b_2 \in B$, then

$$|f(g) - f(h)| < \eta.$$

Consider

$$\varphi(g) := \frac{d(o, go) - \ell\|g\|}{\sqrt{\|g\|}}$$
Definition
A function \(f : \Omega^* \to \mathbb{R} \) is uniformly bicontinuous if for any finite set \(B \subseteq G \) and any \(\eta > 0 \), there exists \(N \geq 0 \) such that if \(\|g\| \geq N \) and
\[
b_1 \cdot \text{ev}(g) \cdot b_2 = \text{ev}(h)
\]
for \(b_1, b_2 \in B \), then
\[
|f(g) - f(h)| < \eta.
\]

Consider
\[
\varphi(g) := \frac{d(o, go) - \ell\|g\|}{\sqrt{\|g\|}}
\]
Then if \(g = g_0g_1g_2 \) we have
\[
|\varphi(g_1) - \varphi(g)| \leq \epsilon
\]
Definition
A function \(f : \Omega^* \rightarrow \mathbb{R} \) is uniformly bicontinuous if for any finite set \(B \subseteq G \) and any \(\eta > 0 \), there exists \(N \geq 0 \) such that if \(\|g\| \geq N \) and
\[
b_1 \cdot \text{ev}(g) \cdot b_2 = \text{ev}(h)
\]
for \(b_1, b_2 \in B \), then
\[
|f(g) - f(h)| < \eta.
\]
Consider
\[
\varphi(g) := \frac{d(o, go) - \ell\|g\|}{\sqrt{\|g\|}}
\]
Then if \(g = g_0 g_1 g_2 \) we have
\[
|\varphi(g_1) - \varphi(g)| \leq \epsilon
\]
\(\Rightarrow \) CLT for the counting measure
Definition
A function $f : \Omega^* \rightarrow \mathbb{R}$ is \textbf{uniformly bicontinuous} if for any finite set $B \subseteq G$ and any $\eta > 0$, there exists $N \geq 0$ such that if $\|g\| \geq N$ and
\[
b_1 \cdot \text{ev}(g) \cdot b_2 = \text{ev}(h)\]
for $b_1, b_2 \in B$, then
\[
|f(g) - f(h)| < \eta.
\]

Theorem
(\text{CLT for displacement}) \textbf{There exists} $\ell > 0$, $\sigma \geq 0$ \textbf{such that for any} $a < b$ \textbf{we have}
\[
\lim_{n \to \infty} \frac{1}{\#S_n} \# \left\{ g \in S_n : \frac{d(o, go) - n\ell}{\sqrt{n}} \in [a, b] \right\} = \int_a^b d\mathcal{N}_\sigma(t).
\]
The end

감사합니다

Thank you!!!