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Distribution of geometric lengths - notation
Let us consider a pair of pants Σ of cuff lengths A,B,C.
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I Then G := π1(Σ) is a free group, fix a standard generating
set.

I Each closed geodesic on Σ is represented by a conjugacy
class γ.

I The word length of g ∈ G is

‖g‖ := min{k : g = s1 . . . sk : si ∈ S}

and for a conjugacy class γ is ‖γ‖ := min[g]=γ ‖g‖.
I Denote as τ(γ) the hyperbolic length of the closed

geodesic in Σ corresponding to γ.
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Distribution of self-intersections (Chas-Lalley, 2011)



The conjecture

Let us consider a pair of pants Σ of cuff lengths A,B,C.

Fix a
standard generating set S for G := π1(Σ). Each closed
geodesic on Σ is represented by a conjugacy class γ. Denote

I ‖γ‖ the word length of γ
I τ(γ) the hyperbolic length of the closed geodesic

corresponding to γ

Conjecture (Chas-Li-Maskit, ’13)
Let λn be the uniform distribution on the set of conjugacy
classes of length n. Then there exists L = L(A,B,C) > 0 and
σ = σ(A,B,C) > 0 such that for any a < b

λn

(
γ : a ≤ τ(γ)− nL

σ
√

n
≤ b

)
→ 1√

2π

∫ b

a
e−

t2
2 dt

as n→∞.
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Distribution of closed geodesics
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I For quasimorphisms: Horsham-Sharp (2009),
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Basic definitions
A metric space is δ-hyperbolic if triangles are δ-thin.



Definitions

Let (X ,d) be a geodesic, δ-hyperbolic, metric space, o ∈ X a
base point.

Let G < Isom(X ,d). Let S be a finite generating set. Then the
word length is

‖g‖S := min{k : g = si . . . sk , si ∈ S}

and the sphere of radius n is

Sn := {g ∈ G : ‖g‖S = n}

The (stable) translation length of g is

τ(g) := lim
n→∞

d(o,gno)

n

An element is loxodromic (hyperbolic) if τ(g) > 0.
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Main result
Theorem (Gekhtman-Taylor-T. ’20)
Let (G,S) be a finitely generated group admitting a thick
bicombing for S.

Let G y X be a non-elementary isometric
action on a hyperbolic metric space.

1. Then there exists ` > 0, σ ≥ 0 such that

lim
n→∞

1
#Sn

#

{
g ∈ Sn :

d(o,go)− n`√
n

∈ [a,b]

}
=

∫ b

a
e−

t2

2σ2 dt

2. Moreover,

lim
n→∞

1
#Sn

#

{
g ∈ Sn :

τ(g)− n`√
n

∈ [a,b]

}
=

∫ b

a
e−

t2

2σ2 dt

3. Further, σ = 0 if and only if exists C > 0 s.t.

|d(o,go)− `‖g‖| ≤ C

for all g ∈ G.



Main result
Theorem (Gekhtman-Taylor-T. ’20)
Let (G,S) be a finitely generated group admitting a thick
bicombing for S. Let G y X be a non-elementary isometric
action on a hyperbolic metric space.

1. Then there exists ` > 0, σ ≥ 0 such that

lim
n→∞

1
#Sn

#

{
g ∈ Sn :

d(o,go)− n`√
n

∈ [a,b]

}
=

∫ b

a
e−

t2

2σ2 dt

2. Moreover,

lim
n→∞

1
#Sn

#

{
g ∈ Sn :

τ(g)− n`√
n

∈ [a,b]

}
=

∫ b

a
e−

t2

2σ2 dt

3. Further, σ = 0 if and only if exists C > 0 s.t.

|d(o,go)− `‖g‖| ≤ C

for all g ∈ G.



Main result
Theorem (Gekhtman-Taylor-T. ’20)
Let (G,S) be a finitely generated group admitting a thick
bicombing for S. Let G y X be a non-elementary isometric
action on a hyperbolic metric space.

1. Then there exists ` > 0, σ ≥ 0 such that

lim
n→∞

1
#Sn

#

{
g ∈ Sn :

d(o,go)− n`√
n

∈ [a,b]

}
=

∫ b

a
e−

t2

2σ2 dt

2. Moreover,

lim
n→∞

1
#Sn

#

{
g ∈ Sn :

τ(g)− n`√
n

∈ [a,b]

}
=

∫ b

a
e−

t2

2σ2 dt

3. Further, σ = 0 if and only if exists C > 0 s.t.

|d(o,go)− `‖g‖| ≤ C

for all g ∈ G.



Main result
Theorem (Gekhtman-Taylor-T. ’20)
Let (G,S) be a finitely generated group admitting a thick
bicombing for S. Let G y X be a non-elementary isometric
action on a hyperbolic metric space.

1. Then there exists ` > 0, σ ≥ 0 such that

lim
n→∞

1
#Sn

#

{
g ∈ Sn :

d(o,go)− n`√
n

∈ [a,b]

}
=

∫ b

a
e−

t2

2σ2 dt

2. Moreover,

lim
n→∞

1
#Sn

#

{
g ∈ Sn :

τ(g)− n`√
n

∈ [a,b]

}
=

∫ b

a
e−

t2

2σ2 dt

3. Further, σ = 0 if and only if exists C > 0 s.t.

|d(o,go)− `‖g‖| ≤ C

for all g ∈ G.



Main result
Theorem (Gekhtman-Taylor-T. ’20)
Let (G,S) be a finitely generated group admitting a thick
bicombing for S. Let G y X be a non-elementary isometric
action on a hyperbolic metric space.

1. Then there exists ` > 0, σ ≥ 0 such that

lim
n→∞

1
#Sn

#

{
g ∈ Sn :

d(o,go)− n`√
n

∈ [a,b]

}
=

∫ b

a
e−

t2

2σ2 dt

2. Moreover,

lim
n→∞

1
#Sn

#

{
g ∈ Sn :

τ(g)− n`√
n

∈ [a,b]

}
=

∫ b

a
e−

t2

2σ2 dt

3. Further, σ = 0 if and only if exists C > 0 s.t.

|d(o,go)− `‖g‖| ≤ C

for all g ∈ G.



Applications (I) Geodesic lengths in geometrically
finite manifolds

Theorem
Let M = Hn/Γ be a geometrically finite hyperbolic manifold.

For
γ ∈ Γ = π1(M), let `(γ) be the length of the geodesic in the free
homotopy class of γ. Then for any S there exists S′ ⊇ S such
that for S′ we have

`(γ)− n`√
n

→ Nσ

where γ is chosen uniformly at random in the sphere of radius n
with respect to S′.

I If π1(M) is word hyperbolic, then we can take S′ = S.
I Already new for finite volume surfaces with cusps
I `(γ) is not Hölder
I σ > 0 (length spectrum is not arithmetic)
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Applications (II) Intersection with submanifolds

Let M be a hyperbolic manifold and let S be any generating set
for π1(M).

Let Σ be a (smooth, orientable) codimension-1
submanifold, and let i(γ,Σ) be the intersection number.

Theorem
Suppose that Σ→ M is π1-injective but not fiber-like. Then
there are `, σ > 0 such that

i(γ,Σ)− `n√
n

−→ Nσ,

where γ is chosen uniformly at random in the sphere of radius n
with respect to S.

I Example. M compact surface of genus g ≥ 2, Σ an
essential simple closed curve.

I The action is on a non-proper metric space
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groups.

Let S,S′ be generating sets. Then there exist
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with respect to S.



Applications (III) Homomorphisms between hyperbolic
groups

Theorem
Let φ : G→ G′ be a homomorphism between hyperbolic
groups. Let S,S′ be generating sets.

Then there exist
` > 0, σ ≥ 0 such that

‖φ(g)‖S′ − `‖g‖S√
‖g‖S

→ Nσ,

for g ∈ G chosen uniformly at random in the sphere of radius n
with respect to S.



Applications (III) Homomorphisms between hyperbolic
groups

Theorem
Let φ : G→ G′ be a homomorphism between hyperbolic
groups. Let S,S′ be generating sets. Then there exist
` > 0, σ ≥ 0 such that

‖φ(g)‖S′ − `‖g‖S√
‖g‖S

→ Nσ,

for g ∈ G chosen uniformly at random in the sphere of radius n
with respect to S.



Applications (III) Homomorphisms between hyperbolic
groups

Theorem
Let φ : G→ G′ be a homomorphism between hyperbolic
groups. Let S,S′ be generating sets. Then there exist
` > 0, σ ≥ 0 such that

‖φ(g)‖S′ − `‖g‖S√
‖g‖S

→ Nσ,

for g ∈ G chosen uniformly at random in the sphere of radius n
with respect to S.
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groups

Let φ : G→ G′ be a homomorphism between hyperbolic
groups. Recall ∂G := {geodesic rays based at o}/ ∼.

Let v = lim supn→∞
1
n log #{g : d(o,go) ≤ n}.

Moreover, for s > v

νs :=

∑
g e−sd(o,go)δgo∑

g e−sd(o,go)

and the Patterson-Sullivan (PS) measure is

νPS := lim
s→v

νs

Theorem
In the CLT we have σ = 0 if and only if φ has finite kernel and
∂φ : ∂G→ ∂G′ pushes the PS measure class for (G,S) to the
PS measure class for (φ(G),S′).
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Techniques - Graph structures
A graph structure is (Γ, v0,ev) with:

I Γ is a finite graph

I v0 is a vertex of Γ (initial vertex)
I ev : E(Γ)→ G the evaluation map

If v is a vertex, Γv is the loop semigroup
I M: adjacency matrix
I λ: leading eigenvalue

A component is maximal if its growth rate is λ.

Definition
A graph structure is thick if for any v in a maximal component
there exists B ⊆ G finite such that

G = B · ev(Γv ) · B

Thick⇒ almost semisimple: for every maximal eigenvalue, its
algebraic and geometric multiplicities agree Note. M need not
be irreducible and not aperiodic.
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Techniques - Graph structures

Definition
A graph structure is biautomatic if

for any B ⊆ G finite ∃C ≥ 0
such that if g,h are finite length paths with

ev(g) = b1 · ev(h) · b2

then
dG(g1 . . . gi ,b1h1 . . . hi) ≤ C

for all i ≤ max{‖g‖, ‖h‖}.

Definition
A group has a thick bicombing for S if it has a thick, biautomatic
graph structure for S such that paths are geodesic for the word
length ‖ · ‖S.
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Graph structures - examples

1. Hyperbolic groups have thick bicombings for every
generating set S (Cannon)

2. If G = π1(M) with M a geometrically finite hyperbolic
manifold, then for any S there exists S′ which admits a
thick bicombing (Antolin-Ciobanu)
More generally, relatively hyperbolic groups with virtually
abelian parabolic subgroups.

3. Right-angled Artin/Coxeter groups (Hermiller-Meier)
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Structure of the proof

1. Central limit theorem for centerable cocycles
(Benoist-Quint, Horbez)

+ Busemann cocycle for the loop
semigroup⇒ CLT for the random walk on the loop
semigroup

2. CLT for suspensions (Melbourne-Török)⇒ CLT for the
Markov chain

3. Biautomaticity⇒ Uniqueness of drift and variance
4. For semisimple structures, approximate counting measure

by Markov chain measure⇒ CLT for counting measure
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Step 1: CLT for cocycles
LetM a metric space on which G acts continuously.

A cocycle
is η : G ×M→ R with

σ(gh, x) = σ(g,hx) + σ(h, x)

A measure ν onM is µ-stationary if∫
g∗ν dµ(g) = ν.

A cocycle η has constant drift λ if∫
η(g, x)dµ(g) = λ for all x ∈M.

A cocycle η is centerable if it can be written as

η(g, x) = η0(g, x) + ψ(x)− ψ(g · x)

where η0 is a cocycle with constant drift and ψ : M→ R a
bounded, measurable function.
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Central limit theorem for centerable cocycles

Theorem (Benoist-Quint + Horbez)
Let ν be a µ-ergodic, µ-stationary probability measure onM,

and let η : G ×M→ R be a centerable cocycle with drift λ and
finite second moment. Then there exist σ ≥ 0 such that for any
continuous F : R→ R with compact support, we have for ν-a.e.
x ∈M,

lim
n→∞

∫
G

F
(
σ(g, x)− nλ√

n

)
dµ∗n(g) =

∫
R

F (t) dNσ(t).
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The Busemann cocycle

Horofunction boundary. We have embedding
ρ : X → C(X ,R)

ρx (z) := d(x , z)− d(x ,o)

ThenM = X
h

is the closure of ρ(X ) for the topology of
pointwise convergence.

Definition
The Busemann cocycle

β(g, ξ) := lim
zn→ξ

(d(o, zn)− d(g−1o, zn))

Proposition (Horbez)
The Busemann cocycle is centerable.
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Step 1: Random walks on the loop semigroup
Fix a graph structure Γ and let v be a vertex in a maximal
growth component.

Fix a measure µ on the set of edges of Γ.

Definition
The loop semigroup Γv is the set of all loops from v to v . The
first return measure is

µv (l) = µ(g1) . . . µ(gn)

if l = g1 . . . gn.

Theorem
Let νv be a µv -ergodic, µv -stationary measure on X

h
. Then

there exist `, σ ≥ 0 such that for νv -a.e. ξ

lim
n→∞

∫
G

F
(
βξ(o,go)− `‖g‖√

n
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dµ∗nv (g) =
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R
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for any F ∈ Cc(R).
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Step 2: Suspension to the Markov chain
Let S : (X , λ)→ (X , λ), and let r : X → N be a roof function.
Then the discrete suspension flow of S with roof function r is
Ŝ : X̂ → X̂ where

X̂ := {(x ,n) ∈ X × N : 0 ≤ n ≤ r(x)− 1}

Then, the map Ŝ is defined as

Ŝ(x ,n) =

{
(x ,n + 1) if n ≤ r(x)− 2
(S(x),0) if n = r(x)− 1.

Theorem (Melbourne-Törok)
Let S : (X , λ)→ (X , λ) be ergodic, and let Ŝ : (X̂ , λ̂)→ (X̂ , λ̂)
be the suspension flow with roof function r .
Let φ : X̂ → R and define Φ(x) :=

∑r(x)−1
k=0 φ(x , k). Suppose

that Φ and r satisfy a CLT. Then φ satisfies a CLT.
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Ŝ(x ,n) =

{
(x ,n + 1) if n ≤ r(x)− 2
(S(x),0) if n = r(x)− 1.

Theorem (Melbourne-Törok)
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CLT for Markov chain

Recall that if M is primitive

(i.e. Mn > 0)

lim
n

Mn

λn = ρuT

Define Markov chain
I Starting probabilities

πi := ρiui

I Transition probabilities

pij :=
ρj

λρi
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Let Ω = GN, Ωv = ΓN
v .

Consider skew product T : Ω×M→ R

T (ω, ξ) := (σ(ω),g−1
1 ξ)

Two versions: T : Ω×M→ R and Tv : Ωv ×M→ R.

(Ω(s), ν(s))

T̂




π //

��

Ω×M

T

��

(Ωv ×M, µNv ⊗ νv )

Consider observable

f (ω, ξ) := βξ(o,g1o)



Let Ω = GN, Ωv = ΓN
v . Consider skew product T : Ω×M→ R

T (ω, ξ) := (σ(ω),g−1
1 ξ)

Two versions: T : Ω×M→ R and Tv : Ωv ×M→ R.

(Ω(s), ν(s))

T̂




π //

��

Ω×M

T

��

(Ωv ×M, µNv ⊗ νv )

Consider observable

f (ω, ξ) := βξ(o,g1o)



Let Ω = GN, Ωv = ΓN
v . Consider skew product T : Ω×M→ R

T (ω, ξ) := (σ(ω),g−1
1 ξ)

Two versions: T : Ω×M→ R and Tv : Ωv ×M→ R.

(Ω(s), ν(s))

T̂




π //

��

Ω×M

T

��

(Ωv ×M, µNv ⊗ νv )

Consider observable

f (ω, ξ) := βξ(o,g1o)



Let Ω = GN, Ωv = ΓN
v . Consider skew product T : Ω×M→ R

T (ω, ξ) := (σ(ω),g−1
1 ξ)

Two versions: T : Ω×M→ R and Tv : Ωv ×M→ R.

(Ω(s), ν(s))

T̂




π //

��

Ω×M

T

��

(Ωv ×M, µNv ⊗ νv )

Consider observable

f (ω, ξ) := βξ(o,g1o)



Let Ω = GN, Ωv = ΓN
v . Consider skew product T : Ω×M→ R

T (ω, ξ) := (σ(ω),g−1
1 ξ)

Two versions: T : Ω×M→ R and Tv : Ωv ×M→ R.

(Ω(s), ν(s))

T̂




π //

��

Ω×M

T

��

(Ωv ×M, µNv ⊗ νv )

Consider observable

f (ω, ξ) := βξ(o,g1o)



Let Ω = GN, Ωv = ΓN
v . Consider skew product T : Ω×M→ R

T (ω, ξ) := (σ(ω),g−1
1 ξ)

Two versions: T : Ω×M→ R and Tv : Ωv ×M→ R.

(Ω(s), ν(s))

T̂




π //

��

Ω×M

T

��

(Ωv ×M, µNv ⊗ νv )

Consider observable

f (ω, ξ) := βξ(o,g1o)
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Then

βξ(o,g1 . . . gno) =
n−1∑
j=0

f ◦ T j(ω, ξ)

hence

Theorem
Suppose that Γ is primitive and let µn be the n-th step
distribution of the Markov chain on Γ. Then there are ` and σ
such that
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Step 3: Approximating the counting measure

Suppose M is semisimple (there is only one maximal
eigenvalue).

Let λn be the uniform measure on all paths of length n, and let
λ̃n be the distribution of the subpath of positions
[log n,n − log n].

Lemma

‖µn−2 log n − λ̃n‖TV → 0
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Definition
A function f : Ω∗ → R is uniformly bicontinuous

if for any finite
set B ⊆ G and any η > 0, there exists N ≥ 0 such that if
‖g‖ ≥ N and

b1 · ev(g) · b2 = ev(h)

for b1,b2 ∈ B, then

|f (g)− f (h)| < η.

Consider
ϕ(g) :=

d(o,go)− `‖g‖√
‖g‖

Then if g = g0g1g2 we have

|ϕ(g1)− ϕ(g)| ≤ ε

⇒ CLT for the counting measure
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‖g‖ ≥ N and

b1 · ev(g) · b2 = ev(h)

for b1,b2 ∈ B, then

|f (g)− f (h)| < η.

Theorem
(CLT for displacement) There exists ` > 0, σ ≥ 0 such that for
any a < b we have

lim
n→∞

1
#Sn

#

{
g ∈ Sn :

d(o,go)− n`√
n

∈ [a,b]

}
=

∫ b

a
dNσ(t).



The end

Thank you!!!
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