Central limit theorems for counting measures in coarse negative curvature

> Giulio Tiozzo University of Toronto

> > May 27, 2020

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

1. Experimental results - geometric length

- 1. Experimental results geometric length
- 2. The CLM conjecture

1. Experimental results - geometric length

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

- 2. The CLM conjecture
- 3. History

1. Experimental results - geometric length

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

- 2. The CLM conjecture
- 3. History
- 4. Main result

1. Experimental results - geometric length

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

- 2. The CLM conjecture
- 3. History
- 4. Main result
- 5. Applications

1. Experimental results - geometric length

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- 2. The CLM conjecture
- 3. History
- 4. Main result
- 5. Applications
- 6. Proof techniques

- 1. Experimental results geometric length
- 2. The CLM conjecture
- 3. History
- 4. Main result
- 5. Applications
- 6. Proof techniques

joint with Ilya Gekhtman and Sam Taylor

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Let us consider a pair of pants Σ of cuff lengths A, B, C.

Distribution of geometric lengths

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 の々で

Then G := π₁(Σ) is a free group, fix a standard generating set.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

- Then G := π₁(Σ) is a free group, fix a standard generating set.
- Each closed geodesic on Σ is represented by a conjugacy class γ.

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

- Then G := π₁(Σ) is a free group, fix a standard generating set.
- Each closed geodesic on Σ is represented by a conjugacy class γ.
- The word length of $g \in G$ is

$$||g|| := \min\{k : g = s_1 \dots s_k : s_i \in S\}$$

(ロ) (同) (三) (三) (三) (○) (○)

- Then G := π₁(Σ) is a free group, fix a standard generating set.
- Each closed geodesic on Σ is represented by a conjugacy class γ.
- The word length of $g \in G$ is

$$||g|| := \min\{k : g = s_1 \dots s_k : s_i \in S\}$$

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

and for a conjugacy class γ is $\|\gamma\| := \min_{[g]=\gamma} \|g\|$.

- Then G := π₁(Σ) is a free group, fix a standard generating set.
- Each closed geodesic on Σ is represented by a conjugacy class γ.
- The word length of $g \in G$ is

$$\|g\| := \min\{k : g = s_1 \dots s_k : s_i \in S\}$$

and for a conjugacy class γ is $\|\gamma\| := \min_{[g]=\gamma} \|g\|$.

Denote as τ(γ) the <u>hyperbolic length</u> of the closed geodesic in Σ corresponding to γ.

Distribution of geometric lengths

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 の々で

Distribution of geometric lengths (Chas-Li-Maskit, '13)

FIGURE 1. Histograms of the geometric length of a sample of 100,000 words of word length 100. The parameters are (A, B, C); (1, 1, 1) top left, (0.1, 1, 1) top right, (1, 10, 0.1) bottom right; (0.1, 1, 10) bottom left

▲□▶ ▲圖▶ ▲理▶ ▲理▶ 三理 - 釣A@

Distribution of geometric lengths (Chas-Li-Maskit, '13)

FIGURE 2. Top left: Histogram of all words of word length 14, with metric (1, 1, 5). Top right, bottom left and bottom right respectively, are histograms of the geometric length of a sample of 100,000 words with parameters (1, 1, 5) and word length 20, 50 and 100 respectively.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - 釣�()~.

Distribution of self-intersections (Chas-Lalley, 2011)

Fig. 2 A histogram showing the distribution of self-intersection numbers over all reduced cyclic words of length 19 in the doubly punctured plane. The horizontal coordinate shows the self-intersection count k; the vertical coordinate shows the number of cyclic reduced words for which the self-intersection number is k

Let us consider a pair of pants Σ of cuff lengths A, B, C.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Let us consider a pair of pants Σ of cuff lengths A, B, C. Fix a standard generating set S for $G := \pi_1(\Sigma)$.

Let us consider a pair of pants Σ of cuff lengths A, B, C. Fix a standard generating set S for $G := \pi_1(\Sigma)$. Each closed geodesic on Σ is represented by a conjugacy class γ .

Let us consider a pair of pants Σ of cuff lengths *A*, *B*, *C*. Fix a standard generating set *S* for $G := \pi_1(\Sigma)$. Each closed geodesic on Σ is represented by a conjugacy class γ . Denote

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

• $\|\gamma\|$ the word length of γ

Let us consider a pair of pants Σ of cuff lengths *A*, *B*, *C*. Fix a standard generating set *S* for $G := \pi_1(\Sigma)$. Each closed geodesic on Σ is represented by a conjugacy class γ . Denote

(ロ) (同) (三) (三) (三) (○) (○)

- $\|\gamma\|$ the word length of γ
- τ(γ) the hyperbolic length of the closed geodesic corresponding to γ

Let us consider a pair of pants Σ of cuff lengths *A*, *B*, *C*. Fix a standard generating set *S* for $G := \pi_1(\Sigma)$. Each closed geodesic on Σ is represented by a conjugacy class γ . Denote

- $\|\gamma\|$ the word length of γ
- τ(γ) the hyperbolic length of the closed geodesic corresponding to γ

Conjecture (Chas-Li-Maskit, '13)

Let λ_n be the uniform distribution on the set of conjugacy classes of length n.

(ロ) (同) (三) (三) (三) (○) (○)

Let us consider a pair of pants Σ of cuff lengths *A*, *B*, *C*. Fix a standard generating set *S* for $G := \pi_1(\Sigma)$. Each closed geodesic on Σ is represented by a conjugacy class γ . Denote

- $\|\gamma\|$ the word length of γ
- τ(γ) the hyperbolic length of the closed geodesic corresponding to γ

Conjecture (Chas-Li-Maskit, '13)

Let λ_n be the uniform distribution on the set of conjugacy classes of length n. Then there exists L = L(A, B, C) > 0 and $\sigma = \sigma(A, B, C) > 0$ such that for any a < b

$$\lambda_n\left(\gamma : \mathbf{a} \leq \frac{\tau(\gamma) - nL}{\sigma\sqrt{n}} \leq b\right) \rightarrow \frac{1}{\sqrt{2\pi}} \int_{\mathbf{a}}^{b} e^{-\frac{t^2}{2}} dt$$

as $n \to \infty$.

Distribution of closed geodesics

Let us consider a pair of pants Σ of cuff lengths *A*, *B*, *C*. Fix a standard generating set for $G := \pi_1(\Sigma)$. Each closed geodesic on Σ is represented by a conjugacy class γ . Denote

- $\|\gamma\|$ the word length of γ
- τ(γ) the hyperbolic length of the closed geodesic corresponding to γ

Conjecture (Gekhtman-Taylor-T, '18)

Let λ_n be the uniform distribution on the set of conjugacy classes of length n. Then there exists L = L(A, B, C) > 0 and $\sigma = \sigma(A, B, C) > 0$ such that for any a < b

$$\lambda_n\left(\gamma : \mathbf{a} \leq \frac{\tau(\gamma) - nL}{\sigma\sqrt{n}} \leq b\right) \rightarrow \frac{1}{\sqrt{2\pi}} \int_{\mathbf{a}}^{b} e^{-\frac{t^2}{2}} dt$$

as $n \to \infty$.

Sinai (1960) - CLT for geodesic flow in constant negative curvature

- Sinai (1960) CLT for geodesic flow in constant negative curvature
- Ratner (1973) CLT for geodesic flow in variable negative curvature

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

- Sinai (1960) CLT for geodesic flow in constant negative curvature
- Ratner (1973) CLT for geodesic flow in variable negative curvature

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

Bowen (1975)

- Sinai (1960) CLT for geodesic flow in constant negative curvature
- Ratner (1973) CLT for geodesic flow in variable negative curvature

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Bowen (1975), Lalley (1987)

- Sinai (1960) CLT for geodesic flow in constant negative curvature
- Ratner (1973) CLT for geodesic flow in variable negative curvature

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Bowen (1975), Lalley (1987), Parry-Pollicott (1990)

- Sinai (1960) CLT for geodesic flow in constant negative curvature
- Ratner (1973) CLT for geodesic flow in variable negative curvature

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Bowen (1975), Lalley (1987), Parry-Pollicott (1990)

For the word metric:

Pollicott-Sharp (1998)

- Sinai (1960) CLT for geodesic flow in constant negative curvature
- Ratner (1973) CLT for geodesic flow in variable negative curvature

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Bowen (1975), Lalley (1987), Parry-Pollicott (1990)

For the word metric:

- Pollicott-Sharp (1998)
- For quasimorphisms: Horsham-Sharp (2009)

- Sinai (1960) CLT for geodesic flow in constant negative curvature
- Ratner (1973) CLT for geodesic flow in variable negative curvature

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Bowen (1975), Lalley (1987), Parry-Pollicott (1990)

For the word metric:

- Pollicott-Sharp (1998)
- For quasimorphisms: Horsham-Sharp (2009), Calegari-Fujiwara (2010)

- Sinai (1960) CLT for geodesic flow in constant negative curvature
- Ratner (1973) CLT for geodesic flow in variable negative curvature
- Bowen (1975), Lalley (1987), Parry-Pollicott (1990)

For the word metric:

- Pollicott-Sharp (1998)
- For quasimorphisms: Horsham-Sharp (2009), Calegari-Fujiwara (2010), Björklund-Hartnick (2011)

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

History

- Sinai (1960) CLT for geodesic flow in constant negative curvature
- Ratner (1973) CLT for geodesic flow in variable negative curvature
- Bowen (1975), Lalley (1987), Parry-Pollicott (1990)

For the word metric:

- Pollicott-Sharp (1998)
- For quasimorphisms: Horsham-Sharp (2009), Calegari-Fujiwara (2010), Björklund-Hartnick (2011)

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Cantrell (2019)

Basic definitions

A metric space is δ -hyperbolic if triangles are δ -thin.

Let (X, d) be a geodesic, δ -hyperbolic, metric space, $o \in X$ a base point.

Let (X, d) be a geodesic, δ -hyperbolic, metric space, $o \in X$ a base point.

Let (X, d) be a geodesic, δ -hyperbolic, metric space, $o \in X$ a base point.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

Let G < Isom(X, d). Let S be a finite generating set.

Let (X, d) be a geodesic, δ -hyperbolic, metric space, $o \in X$ a base point.

Let G < Isom(X, d). Let *S* be a finite generating set. Then the word length is

$$\|g\|_{\mathcal{S}} := \min\{k : g = s_i \dots s_k, s_i \in \mathcal{S}\}$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

Let (X, d) be a geodesic, δ -hyperbolic, metric space, $o \in X$ a base point.

Let G < Isom(X, d). Let *S* be a finite generating set. Then the word length is

$$\|g\|_{\mathcal{S}} := \min\{k : g = s_i \dots s_k, s_i \in \mathcal{S}\}$$

and the sphere of radius n is

$$\mathcal{S}_n := \{g \in G : \|g\|_{\mathcal{S}} = n\}$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Let (X, d) be a geodesic, δ -hyperbolic, metric space, $o \in X$ a base point.

Let G < Isom(X, d). Let S be a finite generating set. Then the word length is

$$\|g\|_{\mathcal{S}} := \min\{k : g = s_i \dots s_k, s_i \in \mathcal{S}\}$$

and the sphere of radius n is

$$S_n := \{g \in G : \|g\|_{\mathcal{S}} = n\}$$

The (stable) translation length of g is

$$au(g) := \lim_{n \to \infty} rac{d(o, g^n o)}{n}$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Let (X, d) be a geodesic, δ -hyperbolic, metric space, $o \in X$ a base point.

Let G < Isom(X, d). Let *S* be a finite generating set. Then the word length is

$$\|g\|_{\mathcal{S}} := \min\{k : g = s_i \dots s_k, s_i \in \mathcal{S}\}$$

and the sphere of radius n is

$$S_n := \{g \in G : \|g\|_{\mathcal{S}} = n\}$$

The (stable) translation length of g is

$$\tau(g) := \lim_{n \to \infty} \frac{d(o, g^n o)}{n}$$

・ロト・日本・日本・日本・日本

An element is <u>loxodromic</u> (hyperbolic) if $\tau(g) > 0$.

Theorem (Gekhtman-Taylor-T. '20)

Let (G, S) be a finitely generated group admitting a thick bicombing for S.

Theorem (Gekhtman-Taylor-T. '20)

Let (G, S) be a finitely generated group admitting a thick bicombing for S. Let $G \curvearrowright X$ be a non-elementary isometric action on a hyperbolic metric space.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Theorem (Gekhtman-Taylor-T. '20)

Let (G, S) be a finitely generated group admitting a thick bicombing for S. Let $G \curvearrowright X$ be a non-elementary isometric action on a hyperbolic metric space.

1. Then there exists $\ell > 0, \sigma \ge 0$ such that

$$\lim_{n \to \infty} \frac{1}{\#S_n} \# \left\{ g \in S_n \ : \ \frac{d(o, go) - n\ell}{\sqrt{n}} \in [a, b] \right\} = \int_a^b e^{-\frac{t^2}{2\sigma^2}} dt$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Theorem (Gekhtman-Taylor-T. '20)

Let (G, S) be a finitely generated group admitting a thick bicombing for S. Let $G \curvearrowright X$ be a non-elementary isometric action on a hyperbolic metric space.

1. Then there exists $\ell > 0, \sigma \ge 0$ such that

$$\lim_{n \to \infty} \frac{1}{\#S_n} \# \left\{ g \in S_n : \frac{d(o, go) - n\ell}{\sqrt{n}} \in [a, b] \right\} = \int_a^b e^{-\frac{t^2}{2\sigma^2}} dt$$

2. Moreover,

$$\lim_{n\to\infty}\frac{1}{\#S_n}\#\left\{g\in S_n\ :\ \frac{\tau(g)-n\ell}{\sqrt{n}}\in[a,b]\right\}=\int_a^b e^{-\frac{t^2}{2\sigma^2}}\ dt$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Theorem (Gekhtman-Taylor-T. '20)

Let (G, S) be a finitely generated group admitting a thick bicombing for S. Let $G \curvearrowright X$ be a non-elementary isometric action on a hyperbolic metric space.

1. Then there exists $\ell > 0, \sigma \ge 0$ such that

$$\lim_{n \to \infty} \frac{1}{\#S_n} \# \left\{ g \in S_n \ : \ \frac{d(o, go) - n\ell}{\sqrt{n}} \in [a, b] \right\} = \int_a^b e^{-\frac{t^2}{2\sigma^2}} dt$$

2. Moreover,

$$\lim_{n\to\infty}\frac{1}{\#S_n}\#\left\{g\in S_n\ :\ \frac{\tau(g)-n\ell}{\sqrt{n}}\in[a,b]\right\}=\int_a^b e^{-\frac{t^2}{2\sigma^2}}\ dt$$

3. Further, $\sigma = 0$ if and only if exists C > 0 s.t.

$$d(o, go) - \ell \|g\|| \leq C$$

for all $g \in G$.

Theorem Let $M = \mathbb{H}^n / \Gamma$ be a geometrically finite hyperbolic manifold.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Theorem

Let $M = \mathbb{H}^n/\Gamma$ be a geometrically finite hyperbolic manifold. For $\gamma \in \Gamma = \pi_1(M)$, let $\ell(\gamma)$ be the length of the geodesic in the free homotopy class of γ .

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Theorem

Let $M = \mathbb{H}^n/\Gamma$ be a geometrically finite hyperbolic manifold. For $\gamma \in \Gamma = \pi_1(M)$, let $\ell(\gamma)$ be the length of the geodesic in the free homotopy class of γ . Then for any S there exists $S' \supseteq S$ such that for S' we have

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Theorem

Let $M = \mathbb{H}^n/\Gamma$ be a geometrically finite hyperbolic manifold. For $\gamma \in \Gamma = \pi_1(M)$, let $\ell(\gamma)$ be the length of the geodesic in the free homotopy class of γ . Then for any S there exists $S' \supseteq S$ such that for S' we have

$$\frac{\ell(\gamma)-n\ell}{\sqrt{n}}\to\mathcal{N}_{\sigma}$$

where γ is chosen uniformly at random in the sphere of radius n with respect to S'.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Theorem

Let $M = \mathbb{H}^n/\Gamma$ be a geometrically finite hyperbolic manifold. For $\gamma \in \Gamma = \pi_1(M)$, let $\ell(\gamma)$ be the length of the geodesic in the free homotopy class of γ . Then for any S there exists $S' \supseteq S$ such that for S' we have

$$\frac{\ell(\gamma)-n\ell}{\sqrt{n}}\to\mathcal{N}_{\sigma}$$

where γ is chosen uniformly at random in the sphere of radius n with respect to S'.

(日) (日) (日) (日) (日) (日) (日)

• If $\pi_1(M)$ is word hyperbolic, then we can take S' = S.

Theorem

Let $M = \mathbb{H}^n/\Gamma$ be a geometrically finite hyperbolic manifold. For $\gamma \in \Gamma = \pi_1(M)$, let $\ell(\gamma)$ be the length of the geodesic in the free homotopy class of γ . Then for any S there exists $S' \supseteq S$ such that for S' we have

$$\frac{\ell(\gamma)-n\ell}{\sqrt{n}}\to\mathcal{N}_{\sigma}$$

where γ is chosen uniformly at random in the sphere of radius n with respect to S'.

(ロ) (同) (三) (三) (三) (○) (○)

- If $\pi_1(M)$ is word hyperbolic, then we can take S' = S.
- Already new for finite volume surfaces with cusps

Theorem

Let $M = \mathbb{H}^n/\Gamma$ be a geometrically finite hyperbolic manifold. For $\gamma \in \Gamma = \pi_1(M)$, let $\ell(\gamma)$ be the length of the geodesic in the free homotopy class of γ . Then for any S there exists $S' \supseteq S$ such that for S' we have

$$\frac{\ell(\gamma)-n\ell}{\sqrt{n}}\to\mathcal{N}_{\sigma}$$

where γ is chosen uniformly at random in the sphere of radius n with respect to S'.

- If $\pi_1(M)$ is word hyperbolic, then we can take S' = S.
- Already new for finite volume surfaces with cusps
- ℓ(γ) is <u>not</u> Hölder

Theorem

Let $M = \mathbb{H}^n/\Gamma$ be a geometrically finite hyperbolic manifold. For $\gamma \in \Gamma = \pi_1(M)$, let $\ell(\gamma)$ be the length of the geodesic in the free homotopy class of γ . Then for any S there exists $S' \supseteq S$ such that for S' we have

$$\frac{\ell(\gamma)-n\ell}{\sqrt{n}}\to\mathcal{N}_{\sigma}$$

where γ is chosen uniformly at random in the sphere of radius n with respect to S'.

- If $\pi_1(M)$ is word hyperbolic, then we can take S' = S.
- Already new for finite volume surfaces with cusps
- $\ell(\gamma)$ is <u>not</u> Hölder
- $\sigma > 0$ (length spectrum is not arithmetic)

(ロ) (同) (三) (三) (三) (○) (○)

Theorem Let $M = \mathbb{H}^3/\Gamma$ be a hyperbolic 3-manifold

(ロ) (同) (三) (三) (三) (○) (○)

Theorem Let $M = \mathbb{H}^3/\Gamma$ be a hyperbolic 3-manifold (possibly geometrically infinite).

Theorem

Let $M = \mathbb{H}^3/\Gamma$ be a hyperbolic 3-manifold (possibly geometrically infinite). For $\gamma \in \Gamma = \pi_1(M)$, let $\ell(\gamma)$ be the length of the geodesic in the free homotopy class of γ .

(日) (日) (日) (日) (日) (日) (日)

Theorem

Let $M = \mathbb{H}^3/\Gamma$ be a hyperbolic 3-manifold (possibly geometrically infinite). For $\gamma \in \Gamma = \pi_1(M)$, let $\ell(\gamma)$ be the length of the geodesic in the free homotopy class of γ .

(日) (日) (日) (日) (日) (日) (日)

If M has no rank 2 cusps, for any S we have

Theorem

Let $M = \mathbb{H}^3/\Gamma$ be a hyperbolic 3-manifold (possibly geometrically infinite). For $\gamma \in \Gamma = \pi_1(M)$, let $\ell(\gamma)$ be the length of the geodesic in the free homotopy class of γ .

If M has no rank 2 cusps, for any S we have

$$\frac{\ell(\gamma) - n\ell}{\sqrt{n}} \to \mathcal{N}_{\sigma}$$

(日) (日) (日) (日) (日) (日) (日)

where γ is chosen uniformly at random in the sphere of radius n with respect to S.

Theorem

Let $M = \mathbb{H}^3/\Gamma$ be a hyperbolic 3-manifold (possibly geometrically infinite). For $\gamma \in \Gamma = \pi_1(M)$, let $\ell(\gamma)$ be the length of the geodesic in the free homotopy class of γ .

If M has no rank 2 cusps, for any S we have

$$\frac{\ell(\gamma) - n\ell}{\sqrt{n}} \to \mathcal{N}_{\sigma}$$

where γ is chosen uniformly at random in the sphere of radius n with respect to S.

If M has rank 2 cusps, for any S there is S' ⊇ S such that the CLT holds for S'.

Theorem

Let $M = \mathbb{H}^3/\Gamma$ be a hyperbolic 3-manifold (possibly geometrically infinite). For $\gamma \in \Gamma = \pi_1(M)$, let $\ell(\gamma)$ be the length of the geodesic in the free homotopy class of γ .

If M has no rank 2 cusps, for any S we have

$$\frac{\ell(\gamma) - n\ell}{\sqrt{n}} \to \mathcal{N}_{\sigma}$$

where γ is chosen uniformly at random in the sphere of radius n with respect to S.

If M has rank 2 cusps, for any S there is S' ⊇ S such that the CLT holds for S'.

Proof (1): [Tameness] + [Thurston's hyperbolization] $\Rightarrow \pi_1(M)$ hyperbolic

Let *M* be a hyperbolic manifold and let *S* be any generating set for $\pi_1(M)$.

Let *M* be a hyperbolic manifold and let *S* be any generating set for $\pi_1(M)$. Let Σ be a (smooth, orientable) codimension-1 submanifold, and let $i(\gamma, \Sigma)$ be the intersection number.

Let *M* be a hyperbolic manifold and let *S* be any generating set for $\pi_1(M)$. Let Σ be a (smooth, orientable) codimension-1 submanifold, and let $i(\gamma, \Sigma)$ be the intersection number.

(ロ) (同) (三) (三) (三) (○) (○)

Theorem

Suppose that $\Sigma \to M$ is π_1 -injective but not fiber-like.

Let *M* be a hyperbolic manifold and let *S* be any generating set for $\pi_1(M)$. Let Σ be a (smooth, orientable) codimension-1 submanifold, and let $i(\gamma, \Sigma)$ be the intersection number.

Theorem

Suppose that $\Sigma \to M$ is π_1 -injective but not fiber-like. Then there are $\ell, \sigma > 0$ such that

$$\frac{i(\gamma, \Sigma) - \ell n}{\sqrt{n}} \longrightarrow \mathcal{N}_{\sigma},$$

where γ is chosen uniformly at random in the sphere of radius n with respect to S.

(ロ) (同) (三) (三) (三) (○) (○)

Let *M* be a hyperbolic manifold and let *S* be any generating set for $\pi_1(M)$. Let Σ be a (smooth, orientable) codimension-1 submanifold, and let $i(\gamma, \Sigma)$ be the intersection number.

Theorem

Suppose that $\Sigma \to M$ is π_1 -injective but not fiber-like. Then there are $\ell, \sigma > 0$ such that

$$\frac{i(\gamma, \Sigma) - \ell n}{\sqrt{n}} \longrightarrow \mathcal{N}_{\sigma},$$

where γ is chosen uniformly at random in the sphere of radius n with respect to S.

Example. *M* compact surface of genus g ≥ 2, Σ an essential simple closed curve.

Let *M* be a hyperbolic manifold and let *S* be any generating set for $\pi_1(M)$. Let Σ be a (smooth, orientable) codimension-1 submanifold, and let $i(\gamma, \Sigma)$ be the intersection number.

Theorem

Suppose that $\Sigma \to M$ is π_1 -injective but not fiber-like. Then there are $\ell, \sigma > 0$ such that

$$\frac{i(\gamma, \Sigma) - \ell n}{\sqrt{n}} \longrightarrow \mathcal{N}_{\sigma},$$

where γ is chosen uniformly at random in the sphere of radius n with respect to S.

- ► Example. *M* compact surface of genus *g* ≥ 2, Σ an essential simple closed curve.
- The action is on a <u>non-proper</u> metric space

Applications (II) Intersection with submanifolds

Applications (II) Intersection with submanifolds

Applications (II) Intersection with submanifolds

Let *M* be a hyperbolic manifold and let *S* be any generating set for $\pi_1(M)$. Let Σ be a (smooth, orientable) codimension-1 submanifold, and let $i(\gamma, \Sigma)$ be the intersection number.

Theorem

Suppose that $\Sigma \to M$ is π_1 -injective but not fiber-like. Then there are $\ell, \sigma > 0$ such that

$$\frac{i(\gamma, \Sigma) - \ell n}{\sqrt{n}} \longrightarrow \mathcal{N}_{\sigma},$$

where γ is chosen uniformly at random in the sphere of radius n with respect to S.

(日) (日) (日) (日) (日) (日) (日)

Distribution of self-intersections (Chas-Lalley, 2011)

Fig. 2 A histogram showing the distribution of self-intersection numbers over all reduced cyclic words of length 19 in the doubly punctured plane. The horizontal coordinate shows the self-intersection count k; the vertical coordinate shows the number of cyclic reduced words for which the self-intersection number is k

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Theorem Let $\phi: G \rightarrow G'$ be a homomorphism between hyperbolic groups.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Theorem Let $\phi: G \rightarrow G'$ be a homomorphism between hyperbolic groups. Let S, S' be generating sets.

Theorem

Let $\phi: G \to G'$ be a homomorphism between hyperbolic groups. Let S, S' be generating sets. Then there exist $\ell > 0, \sigma \ge 0$ such that

$$\frac{\|\phi(\boldsymbol{g})\|_{\mathcal{S}'}-\ell\|\boldsymbol{g}\|_{\mathcal{S}}}{\sqrt{\|\boldsymbol{g}\|_{\mathcal{S}}}}\to\mathcal{N}_{\sigma},$$

for $g \in G$ chosen uniformly at random in the sphere of radius n with respect to S.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Theorem

Let $\phi: G \to G'$ be a homomorphism between hyperbolic groups. Let S, S' be generating sets. Then there exist $\ell > 0, \sigma \ge 0$ such that

$$\frac{\|\phi(\boldsymbol{g})\|_{\mathcal{S}'}-\ell\|\boldsymbol{g}\|_{\mathcal{S}}}{\sqrt{\|\boldsymbol{g}\|_{\mathcal{S}}}}\to\mathcal{N}_{\sigma},$$

for $g \in G$ chosen uniformly at random in the sphere of radius n with respect to S.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Let $\phi: G \to G'$ be a homomorphism between hyperbolic groups. Recall $\partial G := \{\text{geodesic rays based at } o\} / \sim$.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Let $\phi: G \to G'$ be a homomorphism between hyperbolic groups. Recall $\partial G := \{\text{geodesic rays based at } o\} / \sim$.

Let $v = \limsup_{n \to \infty} \frac{1}{n} \log \# \{g : d(o, go) \le n\}.$

Let $\phi: G \to G'$ be a homomorphism between hyperbolic groups. Recall $\partial G := \{\text{geodesic rays based at } o\} / \sim$.

Let $v = \limsup_{n \to \infty} \frac{1}{n} \log \# \{g : d(o, go) \le n\}.$ Moreover, for s > v

$$\nu_{s} := \frac{\sum_{g} e^{-sd(o,go)} \delta_{go}}{\sum_{g} e^{-sd(o,go)}}$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Let $\phi: G \to G'$ be a homomorphism between hyperbolic groups. Recall $\partial G := \{\text{geodesic rays based at } o\} / \sim$.

Let $v = \limsup_{n \to \infty} \frac{1}{n} \log \# \{g : d(o, go) \le n\}.$ Moreover, for s > v

$$\nu_{s} := \frac{\sum_{g} e^{-sd(o,go)} \delta_{go}}{\sum_{g} e^{-sd(o,go)}}$$

and the Patterson-Sullivan (PS) measure is

$$\nu_{PS} := \lim_{s \to v} \nu_s$$

(日) (日) (日) (日) (日) (日) (日)

Let $\phi: G \to G'$ be a homomorphism between hyperbolic groups. Recall $\partial G := \{\text{geodesic rays based at } o\} / \sim$.

Let $v = \limsup_{n \to \infty} \frac{1}{n} \log \# \{g : d(o, go) \le n\}$. Moreover, for s > v

$$\nu_{s} := \frac{\sum_{g} e^{-sd(o,go)} \delta_{go}}{\sum_{g} e^{-sd(o,go)}}$$

and the Patterson-Sullivan (PS) measure is

$$\nu_{PS} := \lim_{s \to v} \nu_s$$

Theorem

In the CLT we have $\sigma = 0$ if and only if ϕ has finite kernel and $\partial \phi: \partial G \rightarrow \partial G'$ pushes the PS measure class for (G, S) to the PS measure class for $(\phi(G), S')$.

A graph structure is (Γ, v_0, ev) with:

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Γ is a finite graph

A graph structure is (Γ, v_0, ev) with:

- Γ is a finite graph
- v₀ is a vertex of Γ (initial vertex)

(ロ) (同) (三) (三) (三) (○) (○)

A graph structure is (Γ, v_0, ev) with:

- Γ is a finite graph
- v_0 is a vertex of Γ (initial vertex)
- $ev : E(\Gamma) \rightarrow G$ the <u>evaluation map</u>

(ロ) (同) (三) (三) (三) (○) (○)

A graph structure is (Γ, v_0, ev) with:

- Γ is a finite graph
- v₀ is a vertex of Γ (initial vertex)
- ev : $E(\Gamma) \rightarrow G$ the <u>evaluation map</u>

If v is a vertex, Γ_v is the loop semigroup

(日) (日) (日) (日) (日) (日) (日)

A graph structure is (Γ, v_0, ev) with:

- Γ is a finite graph
- v₀ is a vertex of Γ (initial vertex)
- $ev : E(\Gamma) \rightarrow G$ the <u>evaluation map</u>
- If v is a vertex, Γ_v is the loop semigroup

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

M: adjacency matrix

A graph structure is (Γ, v_0, ev) with:

- Γ is a finite graph
- v₀ is a vertex of Γ (initial vertex)
- $ev : E(\Gamma) \rightarrow G$ the <u>evaluation map</u>
- If v is a vertex, Γ_v is the loop semigroup

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

- M: adjacency matrix
- λ: leading eigenvalue

A graph structure is (Γ, v_0, ev) with:

- Γ is a finite graph
- v₀ is a vertex of Γ (initial vertex)
- $ev : E(\Gamma) \rightarrow G$ the <u>evaluation map</u>
- If v is a vertex, Γ_v is the loop semigroup
 - M: adjacency matrix
 - λ: leading eigenvalue

A component is maximal if its growth rate is λ .

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

A graph structure is (Γ, v_0, ev) with:

- Γ is a finite graph
- v_0 is a vertex of Γ (initial vertex)
- $ev : E(\Gamma) \rightarrow G$ the <u>evaluation map</u>
- If v is a vertex, Γ_v is the <u>loop semigroup</u>
 - M: adjacency matrix
 - λ : leading eigenvalue

A component is maximal if its growth rate is λ .

Definition

A graph structure is thick if for any v in a maximal component there exists $B \subseteq G$ finite such that

$$G = B \cdot \operatorname{ev}(\Gamma_v) \cdot B$$

(ロ) (同) (三) (三) (三) (○) (○)

A graph structure is (Γ, v_0, ev) with:

- Γ is a finite graph
- v_0 is a vertex of Γ (initial vertex)
- $ev : E(\Gamma) \rightarrow G$ the <u>evaluation map</u>
- If v is a vertex, Γ_v is the <u>loop semigroup</u>
 - M: adjacency matrix
 - λ : leading eigenvalue

A component is maximal if its growth rate is λ .

Definition

A graph structure is thick if for any v in a maximal component there exists $B \subseteq G$ finite such that

$$G = B \cdot \operatorname{ev}(\Gamma_v) \cdot B$$

Thick \Rightarrow <u>almost semisimple</u>: for every maximal eigenvalue, its algebraic and geometric multiplicities agree

A graph structure is (Γ, v_0, ev) with:

- Γ is a finite graph
- v_0 is a vertex of Γ (initial vertex)
- $ev : E(\Gamma) \rightarrow G$ the <u>evaluation map</u>
- If v is a vertex, Γ_v is the loop semigroup
 - M: adjacency matrix
 - λ : leading eigenvalue

A component is maximal if its growth rate is λ .

Definition

A graph structure is thick if for any v in a maximal component there exists $B \subseteq G$ finite such that

$$G = B \cdot \operatorname{ev}(\Gamma_v) \cdot B$$

Thick \Rightarrow <u>almost semisimple</u>: for every maximal eigenvalue, its algebraic and geometric multiplicities agree **Note**. *M* need <u>not</u> be irreducible and <u>not</u> aperiodic.

Definition A graph structure is <u>biautomatic</u> if

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Definition

A graph structure is <u>biautomatic</u> if for any $B \subseteq G$ finite $\exists C \ge 0$ such that if g, h are finite length paths with

$$\operatorname{\mathsf{ev}}(g) = b_1 \cdot \operatorname{\mathsf{ev}}(h) \cdot b_2$$

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

Definition

A graph structure is <u>biautomatic</u> if for any $B \subseteq G$ finite $\exists C \ge 0$ such that if g, h are finite length paths with

$$\mathsf{ev}(g) = b_1 \cdot \mathsf{ev}(h) \cdot b_2$$

then

$$d_G(g_1 \dots g_i, b_1 h_1 \dots h_i) \leq C$$

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

for all $i \le \max\{\|g\|, \|h\|\}$.

Definition

A graph structure is <u>biautomatic</u> if for any $B \subseteq G$ finite $\exists C \ge 0$ such that if g, h are finite length paths with

$$\mathsf{ev}(g) = b_1 \cdot \mathsf{ev}(h) \cdot b_2$$

then

$$d_G(g_1 \dots g_i, b_1 h_1 \dots h_i) \leq C$$

for all $i \le \max\{\|g\|, \|h\|\}$.

Definition

A group has a <u>thick bicombing</u> for *S* if it has a thick, biautomatic graph structure for *S* such that paths are geodesic for the word length $\|\cdot\|_S$.

1. Hyperbolic groups have thick bicombings for every generating set *S* (Cannon)

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

- 1. Hyperbolic groups have thick bicombings for every generating set *S* (Cannon)
- 2. If $G = \pi_1(M)$ with M a geometrically finite hyperbolic manifold, then for any S there exists S' which admits a thick bicombing (Antolin-Ciobanu)

(日) (日) (日) (日) (日) (日) (日)

- 1. Hyperbolic groups have thick bicombings for every generating set *S* (Cannon)
- 2. If $G = \pi_1(M)$ with M a geometrically finite hyperbolic manifold, then for any S there exists S' which admits a thick bicombing (Antolin-Ciobanu) More generally, relatively hyperbolic groups with virtually abelian parabolic subgroups.

(日) (日) (日) (日) (日) (日) (日)

- 1. Hyperbolic groups have thick bicombings for every generating set *S* (Cannon)
- 2. If $G = \pi_1(M)$ with M a geometrically finite hyperbolic manifold, then for any S there exists S' which admits a thick bicombing (Antolin-Ciobanu) More generally, relatively hyperbolic groups with virtually abelian parabolic subgroups.

(日) (日) (日) (日) (日) (日) (日)

3. Right-angled Artin/Coxeter groups (Hermiller-Meier)

1. Central limit theorem for centerable cocycles (Benoist-Quint, Horbez)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

 Central limit theorem for centerable cocycles (Benoist-Quint, Horbez) + Busemann cocycle for the loop semigroup

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

 Central limit theorem for centerable cocycles (Benoist-Quint, Horbez) + Busemann cocycle for the loop semigroup ⇒ CLT for the random walk on the loop semigroup

(ロ) (同) (三) (三) (三) (○) (○)

 Central limit theorem for centerable cocycles (Benoist-Quint, Horbez) + Busemann cocycle for the loop semigroup ⇒ CLT for the random walk on the loop semigroup

(ロ) (同) (三) (三) (三) (○) (○)

2. CLT for suspensions (Melbourne-Török)

- Central limit theorem for centerable cocycles (Benoist-Quint, Horbez) + Busemann cocycle for the loop semigroup ⇒ CLT for the random walk on the loop semigroup
- 2. CLT for suspensions (Melbourne-Török) \Rightarrow CLT for the Markov chain

(ロ) (同) (三) (三) (三) (○) (○)

Structure of the proof

- Central limit theorem for centerable cocycles (Benoist-Quint, Horbez) + Busemann cocycle for the loop semigroup ⇒ CLT for the random walk on the loop semigroup
- 2. CLT for suspensions (Melbourne-Török) \Rightarrow CLT for the Markov chain

(ロ) (同) (三) (三) (三) (○) (○)

3. Biautomaticity \Rightarrow Uniqueness of drift and variance

Structure of the proof

- Central limit theorem for centerable cocycles (Benoist-Quint, Horbez) + Busemann cocycle for the loop semigroup ⇒ CLT for the random walk on the loop semigroup
- 2. CLT for suspensions (Melbourne-Török) \Rightarrow CLT for the Markov chain
- 3. Biautomaticity \Rightarrow Uniqueness of drift and variance
- 4. For semisimple structures, approximate counting measure by Markov chain measure

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Structure of the proof

- Central limit theorem for centerable cocycles (Benoist-Quint, Horbez) + Busemann cocycle for the loop semigroup ⇒ CLT for the random walk on the loop semigroup
- 2. CLT for suspensions (Melbourne-Török) \Rightarrow CLT for the Markov chain
- 3. Biautomaticity \Rightarrow Uniqueness of drift and variance
- 4. For semisimple structures, approximate counting measure by Markov chain measure \Rightarrow CLT for counting measure

(ロ) (同) (三) (三) (三) (○) (○)

Let \mathcal{M} a metric space on which G acts continuously.

Let \mathcal{M} a metric space on which G acts continuously. A <u>cocycle</u> is $\eta : G \times \mathcal{M} \to \mathbb{R}$ with

$$\sigma(gh, x) = \sigma(g, hx) + \sigma(h, x)$$

Let \mathcal{M} a metric space on which G acts continuously. A <u>cocycle</u> is $\eta: G \times \mathcal{M} \to \mathbb{R}$ with

$$\sigma(gh, x) = \sigma(g, hx) + \sigma(h, x)$$

A measure ν on \mathcal{M} is μ -stationary if

$$\int g_*
u \; d\mu(g) =
u.$$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Let \mathcal{M} a metric space on which G acts continuously. A <u>cocycle</u> is $\eta: G \times \mathcal{M} \to \mathbb{R}$ with

$$\sigma(gh, x) = \sigma(g, hx) + \sigma(h, x)$$

A measure ν on \mathcal{M} is μ -stationary if

٠

$$\int g_*
u \ d\mu(g) =
u$$

A cocycle η has constant drift λ if

$$\int \eta(\boldsymbol{g}, \boldsymbol{x}) \boldsymbol{d} \mu(\boldsymbol{g}) = \lambda$$
 for all $\boldsymbol{x} \in \mathcal{M}$.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Let \mathcal{M} a metric space on which G acts continuously. A <u>cocycle</u> is $\eta: G \times \mathcal{M} \to \mathbb{R}$ with

$$\sigma(gh, x) = \sigma(g, hx) + \sigma(h, x)$$

A measure ν on \mathcal{M} is μ -stationary if

$$\int g_*
u \ d\mu(g) =
u$$

A cocycle η has constant drift λ if

$$\int \eta(\boldsymbol{g}, \boldsymbol{x}) \boldsymbol{d} \mu(\boldsymbol{g}) = \lambda$$
 for all $\boldsymbol{x} \in \mathcal{M}.$

A cocycle η is <u>centerable</u> if it can be written as

٠

$$\eta(\boldsymbol{g},\boldsymbol{x}) = \eta_0(\boldsymbol{g},\boldsymbol{x}) + \psi(\boldsymbol{x}) - \psi(\boldsymbol{g}\cdot\boldsymbol{x})$$

where η_0 is a cocycle with constant drift and $\psi \colon \mathcal{M} \to \mathbb{R}$ a bounded, measurable function.

Central limit theorem for centerable cocycles

Theorem (Benoist-Quint + Horbez)

Let ν be a μ -ergodic, μ -stationary probability measure on \mathcal{M} ,

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Central limit theorem for centerable cocycles

Theorem (Benoist-Quint + Horbez)

Let ν be a μ -ergodic, μ -stationary probability measure on \mathcal{M} , and let $\eta \colon \mathbf{G} \times \mathcal{M} \to \mathbb{R}$ be a centerable cocycle with drift λ and finite second moment.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Central limit theorem for centerable cocycles

Theorem (Benoist-Quint + Horbez)

Let ν be a μ -ergodic, μ -stationary probability measure on \mathcal{M} , and let $\eta: \mathbb{G} \times \mathcal{M} \to \mathbb{R}$ be a centerable cocycle with drift λ and finite second moment. Then there exist $\sigma \ge 0$ such that for any continuous $F: \mathbb{R} \to \mathbb{R}$ with compact support, we have for ν -a.e. $x \in \mathcal{M}$,

$$\lim_{n\to\infty}\int_G F\left(\frac{\sigma(g,x)-n\lambda}{\sqrt{n}}\right) \ d\mu^{*n}(g) = \int_{\mathbb{R}} F(t) \ d\mathcal{N}_{\sigma}(t).$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Horofunction boundary. We have embedding $\rho: X \to C(X, \mathbb{R})$

Horofunction boundary. We have embedding $\rho: X \to C(X, \mathbb{R})$

$$\rho_x(z) := d(x,z) - d(x,o)$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

Horofunction boundary. We have embedding $\rho: X \to C(X, \mathbb{R})$

$$\rho_x(z) := d(x,z) - d(x,o)$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Then $\mathcal{M} = \overline{X}^h$ is the closure of $\rho(X)$ for the topology of pointwise convergence.

Horofunction boundary. We have embedding $\rho: X \to C(X, \mathbb{R})$

$$\rho_x(z) := d(x,z) - d(x,o)$$

Then $\mathcal{M} = \overline{X}^h$ is the closure of $\rho(X)$ for the topology of pointwise convergence.

Definition The <u>Busemann cocycle</u>

$$\beta(g,\xi) := \lim_{z_n \to \xi} (d(o,z_n) - d(g^{-1}o,z_n))$$

(ロ) (同) (三) (三) (三) (○) (○)

Horofunction boundary. We have embedding $\rho: X \to C(X, \mathbb{R})$

$$\rho_x(z) := d(x,z) - d(x,o)$$

Then $\mathcal{M} = \overline{X}^h$ is the closure of $\rho(X)$ for the topology of pointwise convergence.

Definition The <u>Busemann cocycle</u>

$$\beta(g,\xi) := \lim_{z_n \to \xi} (d(o,z_n) - d(g^{-1}o,z_n))$$

Proposition (Horbez)

The Busemann cocycle is centerable.

Fix a graph structure Γ and let v be a vertex in a maximal growth component.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

Fix a graph structure Γ and let *v* be a vertex in a maximal growth component. Fix a measure μ on the set of edges of Γ .

Fix a graph structure Γ and let v be a vertex in a maximal growth component. Fix a measure μ on the set of edges of Γ .

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Definition

The loop semigroup Γ_v is the set of all loops from v to v.

Fix a graph structure Γ and let v be a vertex in a maximal growth component. Fix a measure μ on the set of edges of Γ .

Definition

The <u>loop semigroup</u> Γ_v is the set of all loops from v to v. The first return measure is

$$\mu_{v}(I) = \mu(g_1) \dots \mu(g_n)$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

if $I = g_1 \dots g_n$.

Fix a graph structure Γ and let v be a vertex in a maximal growth component. Fix a measure μ on the set of edges of Γ .

Definition

The <u>loop semigroup</u> Γ_v is the set of all loops from v to v. The first return measure is

$$\mu_{v}(I) = \mu(g_1) \dots \mu(g_n)$$

if $l = g_1 \dots g_n$.

Theorem

Let ν_v be a μ_v -ergodic, μ_v -stationary measure on \overline{X}^n .

・ロト・四ト・モー・ 中下・ 日・ うらぐ

Fix a graph structure Γ and let v be a vertex in a maximal growth component. Fix a measure μ on the set of edges of Γ .

Definition

The <u>loop semigroup</u> Γ_v is the set of all loops from v to v. The first return measure is

$$\mu_{v}(l) = \mu(g_1) \dots \mu(g_n)$$

if $I = g_1 \dots g_n$.

Theorem

Let ν_{v} be a μ_{v} -ergodic, μ_{v} -stationary measure on \overline{X}^{h} . Then there exist $\ell, \sigma \geq 0$ such that for ν_{v} -a.e. ξ

・ロト・四ト・モー・ ヨー うへぐ

Fix a graph structure Γ and let v be a vertex in a maximal growth component. Fix a measure μ on the set of edges of Γ .

Definition

The <u>loop semigroup</u> Γ_v is the set of all loops from v to v. The first return measure is

$$\mu_{\mathbf{v}}(I) = \mu(g_1) \dots \mu(g_n)$$

if $I = g_1 \dots g_n$.

Theorem

Let ν_{v} be a μ_{v} -ergodic, μ_{v} -stationary measure on \overline{X}^{h} . Then there exist $\ell, \sigma \geq 0$ such that for ν_{v} -a.e. ξ

$$\lim_{n\to\infty}\int_{G} F\left(\frac{\beta_{\xi}(o,go)-\ell\|g\|}{\sqrt{n}}\right) \ d\mu_{v}^{*n}(g) = \int_{\mathbb{R}} F(t) \ d\mathcal{N}_{\sigma}(t)$$

for any $F \in C_c(\mathbb{R})$.

Let $S: (\mathcal{X}, \lambda) \to (\mathcal{X}, \lambda)$, and let $r: \mathcal{X} \to \mathbb{N}$ be a <u>roof function</u>. Then the discrete suspension flow of *S* with roof function *r* is $\widehat{S}: \widehat{\mathcal{X}} \to \overline{\widehat{\mathcal{X}}}$ where

$$\widehat{\mathcal{X}} := \{ (x, n) \in \mathcal{X} \times \mathbb{N} : 0 \le n \le r(x) - 1 \}$$

(ロ) (同) (三) (三) (三) (○) (○)

Let $S: (\mathcal{X}, \lambda) \to (\mathcal{X}, \lambda)$, and let $r: \mathcal{X} \to \mathbb{N}$ be a <u>roof function</u>. Then the discrete suspension flow of *S* with roof function *r* is $\widehat{S}: \widehat{\mathcal{X}} \to \overline{\widehat{\mathcal{X}}}$ where

$$\widehat{\mathcal{X}} := \{ (x, n) \in \mathcal{X} \times \mathbb{N} : 0 \le n \le r(x) - 1 \}$$

Then, the map \widehat{S} is defined as

$$\widehat{S}(x,n) = \begin{cases} (x,n+1) & \text{if } n \leq r(x) - 2\\ (S(x),0) & \text{if } n = r(x) - 1. \end{cases}$$

Let $S: (\mathcal{X}, \lambda) \to (\mathcal{X}, \lambda)$, and let $r: \mathcal{X} \to \mathbb{N}$ be a <u>roof function</u>. Then the discrete suspension flow of *S* with roof function *r* is $\widehat{S}: \widehat{\mathcal{X}} \to \overline{\widehat{\mathcal{X}}}$ where

$$\widehat{\mathcal{X}} := \{ (x, n) \in \mathcal{X} \times \mathbb{N} : 0 \le n \le r(x) - 1 \}$$

Then, the map \widehat{S} is defined as

$$\widehat{S}(x,n) = \begin{cases} (x,n+1) & \text{if } n \le r(x) - 2\\ (S(x),0) & \text{if } n = r(x) - 1. \end{cases}$$

(日) (日) (日) (日) (日) (日) (日)

Theorem (Melbourne-Törok) Let $S: (\mathcal{X}, \lambda) \rightarrow (\mathcal{X}, \lambda)$ be ergodic,

Let $S: (\mathcal{X}, \lambda) \to (\mathcal{X}, \lambda)$, and let $r: \mathcal{X} \to \mathbb{N}$ be a <u>roof function</u>. Then the discrete suspension flow of *S* with roof function *r* is $\widehat{S}: \widehat{\mathcal{X}} \to \overline{\widehat{\mathcal{X}}}$ where

$$\widehat{\mathcal{X}} := \{ (x, n) \in \mathcal{X} \times \mathbb{N} : 0 \le n \le r(x) - 1 \}$$

Then, the map \widehat{S} is defined as

$$\widehat{S}(x,n) = \begin{cases} (x,n+1) & \text{if } n \le r(x) - 2\\ (S(x),0) & \text{if } n = r(x) - 1. \end{cases}$$

Theorem (Melbourne-Törok)

Let $S: (\mathcal{X}, \lambda) \to (\mathcal{X}, \lambda)$ be ergodic, and let $\widehat{S}: (\widehat{\mathcal{X}}, \widehat{\lambda}) \to (\widehat{\mathcal{X}}, \widehat{\lambda})$ be the suspension flow with roof function *r*.

Let $S: (\mathcal{X}, \lambda) \to (\mathcal{X}, \lambda)$, and let $r: \mathcal{X} \to \mathbb{N}$ be a <u>roof function</u>. Then the discrete suspension flow of *S* with roof function *r* is $\widehat{S}: \widehat{\mathcal{X}} \to \overline{\widehat{\mathcal{X}}}$ where

$$\widehat{\mathcal{X}} := \{ (x, n) \in \mathcal{X} \times \mathbb{N} : 0 \le n \le r(x) - 1 \}$$

Then, the map \widehat{S} is defined as

$$\widehat{S}(x,n) = \begin{cases} (x,n+1) & \text{if } n \le r(x) - 2\\ (S(x),0) & \text{if } n = r(x) - 1. \end{cases}$$

Theorem (Melbourne-Törok)

Let $S: (\mathcal{X}, \lambda) \to (\mathcal{X}, \lambda)$ be ergodic, and let $\widehat{S}: (\widehat{\mathcal{X}}, \widehat{\lambda}) \to (\widehat{\mathcal{X}}, \widehat{\lambda})$ be the suspension flow with roof function *r*. Let $\phi: \widehat{\mathcal{X}} \to \mathbb{R}$ and define $\Phi(x) := \sum_{k=0}^{r(x)-1} \phi(x, k)$.

Let $S: (\mathcal{X}, \lambda) \to (\mathcal{X}, \lambda)$, and let $r: \mathcal{X} \to \mathbb{N}$ be a <u>roof function</u>. Then the discrete suspension flow of *S* with roof function *r* is $\widehat{S}: \widehat{\mathcal{X}} \to \overline{\widehat{\mathcal{X}}}$ where

$$\widehat{\mathcal{X}} := \{ (x, n) \in \mathcal{X} \times \mathbb{N} : 0 \le n \le r(x) - 1 \}$$

Then, the map \widehat{S} is defined as

$$\widehat{S}(x,n) = \begin{cases} (x,n+1) & \text{if } n \le r(x) - 2\\ (S(x),0) & \text{if } n = r(x) - 1. \end{cases}$$

Theorem (Melbourne-Törok)

Let $S: (\mathcal{X}, \lambda) \to (\mathcal{X}, \lambda)$ be ergodic, and let $\widehat{S}: (\widehat{\mathcal{X}}, \widehat{\lambda}) \to (\widehat{\mathcal{X}}, \widehat{\lambda})$ be the suspension flow with roof function *r*. Let $\phi: \widehat{\mathcal{X}} \to \mathbb{R}$ and define $\Phi(x) := \sum_{k=0}^{r(x)-1} \phi(x, k)$. Suppose that Φ and *r* satisfy a CLT.

Let $S: (\mathcal{X}, \lambda) \to (\mathcal{X}, \lambda)$, and let $r: \mathcal{X} \to \mathbb{N}$ be a <u>roof function</u>. Then the discrete suspension flow of *S* with roof function *r* is $\widehat{S}: \widehat{\mathcal{X}} \to \overline{\widehat{\mathcal{X}}}$ where

$$\widehat{\mathcal{X}} := \{ (x, n) \in \mathcal{X} \times \mathbb{N} : 0 \le n \le r(x) - 1 \}$$

Then, the map \widehat{S} is defined as

$$\widehat{S}(x,n) = \begin{cases} (x,n+1) & \text{if } n \le r(x) - 2\\ (S(x),0) & \text{if } n = r(x) - 1. \end{cases}$$

Theorem (Melbourne-Törok)

Let $S: (\mathcal{X}, \lambda) \to (\mathcal{X}, \lambda)$ be ergodic, and let $\widehat{S}: (\widehat{\mathcal{X}}, \widehat{\lambda}) \to (\widehat{\mathcal{X}}, \widehat{\lambda})$ be the suspension flow with roof function *r*. Let $\phi: \widehat{\mathcal{X}} \to \mathbb{R}$ and define $\Phi(x) := \sum_{k=0}^{r(x)-1} \phi(x, k)$. Suppose that Φ and *r* satisfy a CLT. Then ϕ satisfies a CLT.

Recall that if *M* is primitive

Recall that if *M* is primitive (i.e. $M^n > 0$)

Recall that if *M* is primitive (i.e. $M^n > 0$)

$$\lim_{n} \frac{M^{n}}{\lambda^{n}} = \rho u^{T}$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Recall that if *M* is primitive (i.e. $M^n > 0$)

$$\lim_{n} \frac{M^{n}}{\lambda^{n}} = \rho u^{T}$$

Define Markov chain

Starting probabilities

 $\pi_i := \rho_i U_i$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Recall that if *M* is primitive (i.e. $M^n > 0$)

$$\lim_{n} \frac{M^{n}}{\lambda^{n}} = \rho u^{T}$$

Define Markov chain

Starting probabilities

$$\pi_i := \rho_i U_i$$

Transition probabilities

$$p_{ij} := \frac{\rho_j}{\lambda \rho_i}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Recall that if *M* is primitive (i.e. $M^n > 0$)

$$\lim_{n} \frac{M^{n}}{\lambda^{n}} = \rho u^{T}$$

Define Markov chain

Starting probabilities

$$\pi_i := \rho_i U_i$$

Transition probabilities

$$p_{ij} := \frac{\rho_j}{\lambda \rho_i}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Let
$$\Omega = \boldsymbol{G}^{\mathbb{N}}, \, \Omega_{\boldsymbol{v}} = \boldsymbol{\Gamma}_{\boldsymbol{v}}^{\mathbb{N}}.$$

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ▶

Let $\Omega = G^{\mathbb{N}}$, $\Omega_{\nu} = \Gamma_{\nu}^{\mathbb{N}}$. Consider skew product $T : \Omega \times \mathcal{M} \to \mathbb{R}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Two versions: $T : \Omega \times \mathcal{M} \to \mathbb{R}$ and $T_{\nu} : \Omega_{\nu} \times \mathcal{M} \to \mathbb{R}$.

Two versions: $T : \Omega \times \mathcal{M} \to \mathbb{R}$ and $T_v : \Omega_v \times \mathcal{M} \to \mathbb{R}$.

Two versions: $T : \Omega \times \mathcal{M} \to \mathbb{R}$ and $T_{\nu} : \Omega_{\nu} \times \mathcal{M} \to \mathbb{R}$.

Consider observable

$$f(\omega,\xi) := \beta_{\xi}(o,g_1o)$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

$$f(\omega,\xi) := \beta_{\xi}(o,g_1o)$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

$$f(\omega,\xi) := \beta_{\xi}(o,g_1o)$$

Then

$$\beta_{\xi}(o, g_1 \dots g_n o) = \sum_{j=0}^{n-1} f \circ T^j(\omega, \xi)$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

hence

Theorem

Suppose that Γ is primitive and let μ_n be the n-th step distribution of the Markov chain on Γ .

$$f(\omega,\xi) := \beta_{\xi}(o,g_1o)$$

Then

$$eta_{\xi}(o,g_1\ldots g_n o) = \sum_{j=0}^{n-1} f \circ T^j(\omega,\xi)$$

hence

Theorem

Suppose that Γ is primitive and let μ_n be the n-th step distribution of the Markov chain on Γ . Then there are ℓ and σ such that

▲□▶▲□▶▲□▶▲□▶ □ のQ@

$$f(\omega,\xi) := \beta_{\xi}(o,g_1o)$$

Then

$$\beta_{\xi}(o,g_1\ldots g_n o) = \sum_{j=0}^{n-1} f \circ T^j(\omega,\xi)$$

hence

Theorem

Suppose that Γ is primitive and let μ_n be the n-th step distribution of the Markov chain on Γ . Then there are ℓ and σ such that

$$\lim_{n\to\infty}\int_{G} F\left(\frac{\beta_{\xi}(o,go)-n\ell}{\sqrt{n}}\right) \ d\mu_n(g) = \int_{\mathbb{R}} F(t) \ d\mathcal{N}_{\sigma}(t)$$

for any $F \in C_c(\mathbb{R})$.

$$f(\omega,\xi) := \beta_{\xi}(o,g_1o)$$

Then

$$\beta_{\xi}(o, g_1 \dots g_n o) = \sum_{j=0}^{n-1} f \circ T^j(\omega, \xi)$$

hence

Theorem

Suppose that Γ is primitive and let μ_n be the n-th step distribution of the Markov chain on Γ . Then there are ℓ and σ such that

$$\lim_{n\to\infty}\int_{G} F\left(\frac{d(o,go)-n\ell}{\sqrt{n}}\right) d\mu_n(g) = \int_{\mathbb{R}} F(t) d\mathcal{N}_{\sigma}(t)$$

for any $F \in C_c(\mathbb{R})$.

Suppose *M* is semisimple (there is only one maximal eigenvalue).

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Suppose M is semisimple (there is only one maximal eigenvalue).

Let λ_n be the uniform measure on all paths of length *n*, and let $\tilde{\lambda}_n$ be the distribution of the subpath of positions $[\log n, n - \log n]$.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Suppose M is semisimple (there is only one maximal eigenvalue).

Let λ_n be the uniform measure on all paths of length *n*, and let $\tilde{\lambda}_n$ be the distribution of the subpath of positions $[\log n, n - \log n]$.

Lemma

$$\|\mu_{n-2\log n} - \widetilde{\lambda}_n\|_{TV} \to 0$$

(ロ) (同) (三) (三) (三) (○) (○)

Suppose M is semisimple (there is only one maximal eigenvalue).

Let λ_n be the uniform measure on all paths of length *n*, and let $\tilde{\lambda}_n$ be the distribution of the subpath of positions $[\log n, n - \log n]$.

Lemma

$$\|\mu_{n-2\log n} - \widetilde{\lambda}_n\|_{TV} \to 0$$

(ロ) (同) (三) (三) (三) (○) (○)

Definition A function $f: \Omega^* \to \mathbb{R}$ is <u>uniformly bicontinuous</u>

A function $f: \Omega^* \to \mathbb{R}$ is <u>uniformly bicontinuous</u> if for any finite set $B \subseteq G$ and any $\eta > 0$,

A function $f: \Omega^* \to \mathbb{R}$ is <u>uniformly bicontinuous</u> if for any finite set $B \subseteq G$ and any $\eta > 0$, there exists $N \ge 0$ such that if $||g|| \ge N$ and

A function $f: \Omega^* \to \mathbb{R}$ is <u>uniformly bicontinuous</u> if for any finite set $B \subseteq G$ and any $\eta > 0$, there exists $N \ge 0$ such that if $||g|| \ge N$ and

$$b_1 \cdot \operatorname{ev}(g) \cdot b_2 = \operatorname{ev}(h)$$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

for $b_1, b_2 \in B$,

A function $f: \Omega^* \to \mathbb{R}$ is <u>uniformly bicontinuous</u> if for any finite set $B \subseteq G$ and any $\eta > 0$, there exists $N \ge 0$ such that if $||g|| \ge N$ and

$$b_1 \cdot \operatorname{ev}(g) \cdot b_2 = \operatorname{ev}(h)$$

for $b_1, b_2 \in B$, then

 $|f(g)-f(h)|<\eta.$

A function $f: \Omega^* \to \mathbb{R}$ is <u>uniformly bicontinuous</u> if for any finite set $B \subseteq G$ and any $\eta > 0$, there exists $N \ge 0$ such that if $||g|| \ge N$ and

$$b_1 \cdot \operatorname{ev}(g) \cdot b_2 = \operatorname{ev}(h)$$

for $b_1, b_2 \in B$, then

$$|f(g)-f(h)|<\eta.$$

Consider

$$arphi(oldsymbol{g}) := rac{d(o, oldsymbol{g} o) - \ell \|oldsymbol{g}\|}{\sqrt{\|oldsymbol{g}\|}}$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

A function $f: \Omega^* \to \mathbb{R}$ is <u>uniformly bicontinuous</u> if for any finite set $B \subseteq G$ and any $\eta > 0$, there exists $N \ge 0$ such that if $||g|| \ge N$ and

$$b_1 \cdot \operatorname{ev}(g) \cdot b_2 = \operatorname{ev}(h)$$

for $b_1, b_2 \in B$, then

$$|f(g)-f(h)|<\eta.$$

Consider

$$arphi(oldsymbol{g}) := rac{d(o, oldsymbol{g} o) - \ell \|oldsymbol{g}\|}{\sqrt{\|oldsymbol{g}\|}}$$

Then if $g = g_0 g_1 g_2$ we have

$$|\varphi(\boldsymbol{g}_1) - \varphi(\boldsymbol{g})| \leq \epsilon$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

A function $f: \Omega^* \to \mathbb{R}$ is <u>uniformly bicontinuous</u> if for any finite set $B \subseteq G$ and any $\eta > 0$, there exists $N \ge 0$ such that if $||g|| \ge N$ and

$$b_1 \cdot \operatorname{ev}(g) \cdot b_2 = \operatorname{ev}(h)$$

for $b_1, b_2 \in B$, then

$$|f(g)-f(h)|<\eta.$$

Consider

$$arphi(oldsymbol{g}) := rac{d(o, oldsymbol{g} o) - \ell \|oldsymbol{g}\|}{\sqrt{\|oldsymbol{g}\|}}$$

Then if $g = g_0 g_1 g_2$ we have

$$|\varphi(\boldsymbol{g}_1) - \varphi(\boldsymbol{g})| \leq \epsilon$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

 \Rightarrow CLT for the counting measure

A function $f: \Omega^* \to \mathbb{R}$ is <u>uniformly bicontinuous</u> if for any finite set $B \subseteq G$ and any $\eta > 0$, there exists $N \ge 0$ such that if $||g|| \ge N$ and

$$b_1 \cdot \operatorname{ev}(g) \cdot b_2 = \operatorname{ev}(h)$$

for $b_1, b_2 \in B$, then

$$|f(g)-f(h)|<\eta.$$

Theorem

(CLT for displacement) There exists $\ell > 0$, $\sigma \ge 0$ such that for any a < b we have

$$\lim_{n\to\infty}\frac{1}{\#S_n}\#\left\{g\in S_n\ :\ \frac{d(o,go)-n\ell}{\sqrt{n}}\in [a,b]\right\}=\int_a^b d\mathcal{N}_\sigma(t).$$

The end

감사합니다

Thank you!!!