Central limit theorems for counting measures in coarse negative curvature

Giulio Tiozzo
University of Toronto

May 27, 2020

Summary

1. Experimental results - geometric length

Summary

1. Experimental results - geometric length
2. The CLM conjecture

Summary

1. Experimental results - geometric length
2. The CLM conjecture
3. History

Summary

1. Experimental results - geometric length
2. The CLM conjecture
3. History
4. Main result

Summary

1. Experimental results - geometric length
2. The CLM conjecture
3. History
4. Main result
5. Applications

Summary

1. Experimental results - geometric length
2. The CLM conjecture
3. History
4. Main result
5. Applications
6. Proof techniques

Summary

1. Experimental results - geometric length
2. The CLM conjecture
3. History
4. Main result
5. Applications
6. Proof techniques
joint with Ilya Gekhtman and Sam Taylor

Distribution of geometric lengths - notation

Let us consider a pair of pants Σ of cuff lengths A, B, C.

Distribution of geometric lengths

Distribution of geometric lengths - notation

- Then $G:=\pi_{1}(\Sigma)$ is a free group, fix a standard generating set.

Distribution of geometric lengths - notation

- Then $G:=\pi_{1}(\Sigma)$ is a free group, fix a standard generating set.
- Each closed geodesic on Σ is represented by a conjugacy class γ.

Distribution of geometric lengths - notation

- Then $G:=\pi_{1}(\Sigma)$ is a free group, fix a standard generating set.
- Each closed geodesic on Σ is represented by a conjugacy class γ.
- The word length of $g \in G$ is

$$
\|g\|:=\min \left\{k: g=s_{1} \ldots s_{k}: s_{i} \in S\right\}
$$

Distribution of geometric lengths - notation

- Then $G:=\pi_{1}(\Sigma)$ is a free group, fix a standard generating set.
- Each closed geodesic on Σ is represented by a conjugacy class γ.
- The word length of $g \in G$ is

$$
\|g\|:=\min \left\{k: g=s_{1} \ldots s_{k}: s_{i} \in S\right\}
$$

and for a conjugacy class γ is $\|\gamma\|:=\min _{[g]=\gamma}\|g\|$.

Distribution of geometric lengths - notation

- Then $G:=\pi_{1}(\Sigma)$ is a free group, fix a standard generating set.
- Each closed geodesic on Σ is represented by a conjugacy class γ.
- The word length of $g \in G$ is

$$
\|g\|:=\min \left\{k: g=s_{1} \ldots s_{k}: s_{i} \in S\right\}
$$

and for a conjugacy class γ is $\|\gamma\|:=\min _{[g]=\gamma}\|g\|$.

- Denote as $\tau(\gamma)$ the hyperbolic length of the closed geodesic in Σ corresponding to γ.

Distribution of geometric lengths

Distribution of geometric lengths (Chas-Li-Maskit, '13)

Figure 1. Histograms of the geometric length of a sample of 100,000 words of word length 100 . The parameters are $(A, B, C) ;(1,1,1)$ top left, $(0.1,1,1)$ top right, ($1,10,0.1$) bottom right; $(0.1,1,10)$ bottom left

Distribution of geometric lengths (Chas-Li-Maskit, '13)

Figure 2. Top left: Histogram of all words of word length 14 , with metric ($1,1,5$). Top right, bottom left and bottom right respectively, are histograms of the geometric length of a sample of 100,000 words with parameters $(1,1,5)$ and word length 20,50 and 100 respectively.

Distribution of self-intersections (Chas-Lalley, 2011)

Fig. 2 A histogram showing the distribution of self-intersection numbers over all reduced cyclic words of length 19 in the doubly punctured plane. The horizontal coordinate shows the self-intersection count k; the vertical coordinate shows the number of cyclic reduced words for which the self-intersection number is k

The conjecture

Let us consider a pair of pants Σ of cuff lengths A, B, C.

The conjecture

Let us consider a pair of pants Σ of cuff lengths A, B, C. Fix a standard generating set S for $G:=\pi_{1}(\Sigma)$.

The conjecture

Let us consider a pair of pants Σ of cuff lengths A, B, C. Fix a standard generating set S for $G:=\pi_{1}(\Sigma)$. Each closed geodesic on Σ is represented by a conjugacy class γ.

The conjecture

Let us consider a pair of pants Σ of cuff lengths A, B, C. Fix a standard generating set S for $G:=\pi_{1}(\Sigma)$. Each closed geodesic on Σ is represented by a conjugacy class γ. Denote

- $\|\gamma\|$ the word length of γ

The conjecture

Let us consider a pair of pants Σ of cuff lengths A, B, C. Fix a standard generating set S for $G:=\pi_{1}(\Sigma)$. Each closed geodesic on Σ is represented by a conjugacy class γ. Denote

- $\|\gamma\|$ the word length of γ
- $\tau(\gamma)$ the hyperbolic length of the closed geodesic corresponding to γ

The conjecture

Let us consider a pair of pants Σ of cuff lengths A, B, C. Fix a standard generating set S for $G:=\pi_{1}(\Sigma)$. Each closed geodesic on Σ is represented by a conjugacy class γ. Denote

- $\|\gamma\|$ the word length of γ
- $\tau(\gamma)$ the hyperbolic length of the closed geodesic corresponding to γ

Conjecture (Chas-Li-Maskit, '13)
Let λ_{n} be the uniform distribution on the set of conjugacy classes of length n.

The conjecture

Let us consider a pair of pants Σ of cuff lengths A, B, C. Fix a standard generating set S for $G:=\pi_{1}(\Sigma)$. Each closed geodesic on Σ is represented by a conjugacy class γ. Denote

- $\|\gamma\|$ the word length of γ
- $\tau(\gamma)$ the hyperbolic length of the closed geodesic corresponding to γ
Conjecture (Chas-Li-Maskit, '13)
Let λ_{n} be the uniform distribution on the set of conjugacy classes of length n. Then there exists $L=L(A, B, C)>0$ and $\sigma=\sigma(A, B, C)>0$ such that for any $a<b$

$$
\lambda_{n}\left(\gamma: a \leq \frac{\tau(\gamma)-n L}{\sigma \sqrt{n}} \leq b\right) \rightarrow \frac{1}{\sqrt{2 \pi}} \int_{a}^{b} e^{-\frac{t^{2}}{2}} d t
$$

as $n \rightarrow \infty$.

Distribution of closed geodesics

Let us consider a pair of pants Σ of cuff lengths A, B, C. Fix a standard generating set for $G:=\pi_{1}(\Sigma)$. Each closed geodesic on Σ is represented by a conjugacy class γ. Denote

- $\|\gamma\|$ the word length of γ
- $\tau(\gamma)$ the hyperbolic length of the closed geodesic corresponding to γ
Conjecture (Gekhtman-Taylor-T, '18)
Let λ_{n} be the uniform distribution on the set of conjugacy classes of length n. Then there exists $L=L(A, B, C)>0$ and $\sigma=\sigma(A, B, C)>0$ such that for any $a<b$

$$
\lambda_{n}\left(\gamma: a \leq \frac{\tau(\gamma)-n L}{\sigma \sqrt{n}} \leq b\right) \rightarrow \frac{1}{\sqrt{2 \pi}} \int_{a}^{b} e^{-\frac{t^{2}}{2}} d t
$$

as $n \rightarrow \infty$.

History

- Sinai (1960) - CLT for geodesic flow in constant negative curvature

History

- Sinai (1960) - CLT for geodesic flow in constant negative curvature
- Ratner (1973) - CLT for geodesic flow in variable negative curvature

History

- Sinai (1960) - CLT for geodesic flow in constant negative curvature
- Ratner (1973) - CLT for geodesic flow in variable negative curvature
- Bowen (1975)

History

- Sinai (1960) - CLT for geodesic flow in constant negative curvature
- Ratner (1973) - CLT for geodesic flow in variable negative curvature
- Bowen (1975), Lalley (1987)

History

- Sinai (1960) - CLT for geodesic flow in constant negative curvature
- Ratner (1973) - CLT for geodesic flow in variable negative curvature
- Bowen (1975), Lalley (1987), Parry-Pollicott (1990)

History

- Sinai (1960) - CLT for geodesic flow in constant negative curvature
- Ratner (1973) - CLT for geodesic flow in variable negative curvature
- Bowen (1975), Lalley (1987), Parry-Pollicott (1990)

For the word metric:

- Pollicott-Sharp (1998)

History

- Sinai (1960) - CLT for geodesic flow in constant negative curvature
- Ratner (1973) - CLT for geodesic flow in variable negative curvature
- Bowen (1975), Lalley (1987), Parry-Pollicott (1990)

For the word metric:

- Pollicott-Sharp (1998)
- For quasimorphisms: Horsham-Sharp (2009)

History

- Sinai (1960) - CLT for geodesic flow in constant negative curvature
- Ratner (1973) - CLT for geodesic flow in variable negative curvature
- Bowen (1975), Lalley (1987), Parry-Pollicott (1990)

For the word metric:

- Pollicott-Sharp (1998)
- For quasimorphisms: Horsham-Sharp (2009), Calegari-Fujiwara (2010)

History

- Sinai (1960) - CLT for geodesic flow in constant negative curvature
- Ratner (1973) - CLT for geodesic flow in variable negative curvature
- Bowen (1975), Lalley (1987), Parry-Pollicott (1990)

For the word metric:

- Pollicott-Sharp (1998)
- For quasimorphisms: Horsham-Sharp (2009), Calegari-Fujiwara (2010), Björklund-Hartnick (2011)

History

- Sinai (1960) - CLT for geodesic flow in constant negative curvature
- Ratner (1973) - CLT for geodesic flow in variable negative curvature
- Bowen (1975), Lalley (1987), Parry-Pollicott (1990)

For the word metric:

- Pollicott-Sharp (1998)
- For quasimorphisms: Horsham-Sharp (2009), Calegari-Fujiwara (2010), Björklund-Hartnick (2011)
- Cantrell (2019)

Basic definitions

A metric space is δ-hyperbolic if triangles are δ-thin.

Definitions

Let (X, d) be a geodesic, δ-hyperbolic, metric space, $o \in X$ a base point.

Definitions

Let (X, d) be a geodesic, δ-hyperbolic, metric space, $o \in X$ a base point.

Definitions

Let (X, d) be a geodesic, δ-hyperbolic, metric space, $o \in X$ a base point.
Let $G<\operatorname{Isom}(X, d)$. Let S be a finite generating set.

Definitions

Let (X, d) be a geodesic, δ-hyperbolic, metric space, $o \in X$ a base point.
Let $G<\operatorname{Isom}(X, d)$. Let S be a finite generating set. Then the word length is

$$
\|g\|_{s}:=\min \left\{k: g=s_{i} \ldots s_{k}, s_{i} \in S\right\}
$$

Definitions

Let (X, d) be a geodesic, δ-hyperbolic, metric space, $o \in X$ a base point.
Let $G<\operatorname{Isom}(X, d)$. Let S be a finite generating set. Then the word length is

$$
\|g\|_{s}:=\min \left\{k: g=s_{i} \ldots s_{k}, s_{i} \in S\right\}
$$

and the sphere of radius n is

$$
S_{n}:=\left\{g \in G:\|g\|_{S}=n\right\}
$$

Definitions

Let (X, d) be a geodesic, δ-hyperbolic, metric space, $o \in X$ a base point.
Let $G<\operatorname{Isom}(X, d)$. Let S be a finite generating set. Then the word length is

$$
\|g\|_{s}:=\min \left\{k: g=s_{i} \ldots s_{k}, s_{i} \in S\right\}
$$

and the sphere of radius n is

$$
S_{n}:=\left\{g \in G:\|g\|_{S}=n\right\}
$$

The (stable) translation length of g is

$$
\tau(g):=\lim _{n \rightarrow \infty} \frac{d\left(o, g^{n} o\right)}{n}
$$

Definitions

Let (X, d) be a geodesic, δ-hyperbolic, metric space, $o \in X$ a base point.
Let $G<\operatorname{Isom}(X, d)$. Let S be a finite generating set. Then the word length is

$$
\|g\|_{s}:=\min \left\{k: g=s_{i} \ldots s_{k}, s_{i} \in S\right\}
$$

and the sphere of radius n is

$$
S_{n}:=\left\{g \in G:\|g\|_{S}=n\right\}
$$

The (stable) translation length of g is

$$
\tau(g):=\lim _{n \rightarrow \infty} \frac{d\left(o, g^{n} o\right)}{n}
$$

An element is loxodromic (hyperbolic) if $\tau(g)>0$.

Main result

Theorem (Gekhtman-Taylor-T. '20)
Let (G, S) be a finitely generated group admitting a thick bicombing for S.

Main result

Theorem (Gekhtman-Taylor-T. '20)
Let (G, S) be a finitely generated group admitting a thick bicombing for S. Let $G \curvearrowright X$ be a non-elementary isometric action on a hyperbolic metric space.

Main result

Theorem (Gekhtman-Taylor-T. '20)
Let (G, S) be a finitely generated group admitting a thick bicombing for S. Let $G \curvearrowright X$ be a non-elementary isometric action on a hyperbolic metric space.

1. Then there exists $\ell>0, \sigma \geq 0$ such that

$$
\lim _{n \rightarrow \infty} \frac{1}{\# S_{n}} \#\left\{g \in S_{n}: \frac{d(o, g o)-n \ell}{\sqrt{n}} \in[a, b]\right\}=\int_{a}^{b} e^{-\frac{t^{2}}{2 \sigma^{2}}} d t
$$

Main result

Theorem (Gekhtman-Taylor-T. '20)
Let (G, S) be a finitely generated group admitting a thick bicombing for S. Let $G \curvearrowright X$ be a non-elementary isometric action on a hyperbolic metric space.

1. Then there exists $\ell>0, \sigma \geq 0$ such that

$$
\lim _{n \rightarrow \infty} \frac{1}{\# S_{n}} \#\left\{g \in S_{n}: \frac{d(o, g o)-n \ell}{\sqrt{n}} \in[a, b]\right\}=\int_{a}^{b} e^{-\frac{t^{2}}{2 \sigma^{2}}} d t
$$

2. Moreover,

$$
\lim _{n \rightarrow \infty} \frac{1}{\# S_{n}} \#\left\{g \in S_{n}: \frac{\tau(g)-n \ell}{\sqrt{n}} \in[a, b]\right\}=\int_{a}^{b} e^{-\frac{t^{2}}{2 \sigma^{2}}} d t
$$

Main result

Theorem (Gekhtman-Taylor-T. '20)
Let (G, S) be a finitely generated group admitting a thick bicombing for S. Let $G \curvearrowright X$ be a non-elementary isometric action on a hyperbolic metric space.

1. Then there exists $\ell>0, \sigma \geq 0$ such that

$$
\lim _{n \rightarrow \infty} \frac{1}{\# S_{n}} \#\left\{g \in S_{n}: \frac{d(o, g o)-n \ell}{\sqrt{n}} \in[a, b]\right\}=\int_{a}^{b} e^{-\frac{t^{2}}{2 \sigma^{2}}} d t
$$

2. Moreover,

$$
\lim _{n \rightarrow \infty} \frac{1}{\# S_{n}} \#\left\{g \in S_{n}: \frac{\tau(g)-n \ell}{\sqrt{n}} \in[a, b]\right\}=\int_{a}^{b} e^{-\frac{t^{2}}{2 \sigma^{2}}} d t
$$

3. Further, $\sigma=0$ if and only if exists $C>0$ s.t.

$$
|d(o, g o)-\ell\|g\|| \leq C
$$

for all $g \in G$.

Applications (I) Geodesic lengths in geometrically finite manifolds

Theorem
Let $M=\mathbb{H}^{n} / \Gamma$ be a geometrically finite hyperbolic manifold.

Applications (I) Geodesic lengths in geometrically finite manifolds

Theorem
Let $M=\mathbb{H}^{n} / \Gamma$ be a geometrically finite hyperbolic manifold. For $\gamma \in \Gamma=\pi_{1}(M)$, let $\ell(\gamma)$ be the length of the geodesic in the free homotopy class of γ.

Applications (I) Geodesic lengths in geometrically finite manifolds

Theorem
Let $M=\mathbb{H}^{n} / \Gamma$ be a geometrically finite hyperbolic manifold. For $\gamma \in \Gamma=\pi_{1}(M)$, let $\ell(\gamma)$ be the length of the geodesic in the free homotopy class of γ. Then for any S there exists $S^{\prime} \supseteq S$ such that for S^{\prime} we have

Applications (I) Geodesic lengths in geometrically finite manifolds

Theorem

Let $M=\mathbb{H}^{n} / \Gamma$ be a geometrically finite hyperbolic manifold. For $\gamma \in \Gamma=\pi_{1}(M)$, let $\ell(\gamma)$ be the length of the geodesic in the free homotopy class of γ. Then for any S there exists $S^{\prime} \supseteq S$ such that for S^{\prime} we have

$$
\frac{\ell(\gamma)-n \ell}{\sqrt{n}} \rightarrow \mathcal{N}_{\sigma}
$$

where γ is chosen uniformly at random in the sphere of radius n with respect to S^{\prime}.

Applications (I) Geodesic lengths in geometrically finite manifolds

Theorem

Let $M=\mathbb{H}^{n} / \Gamma$ be a geometrically finite hyperbolic manifold. For $\gamma \in \Gamma=\pi_{1}(M)$, let $\ell(\gamma)$ be the length of the geodesic in the free homotopy class of γ. Then for any S there exists $S^{\prime} \supseteq S$ such that for S^{\prime} we have

$$
\frac{\ell(\gamma)-n \ell}{\sqrt{n}} \rightarrow \mathcal{N}_{\sigma}
$$

where γ is chosen uniformly at random in the sphere of radius n with respect to S^{\prime}.

- If $\pi_{1}(M)$ is word hyperbolic, then we can take $S^{\prime}=S$.

Applications (I) Geodesic lengths in geometrically finite manifolds

Theorem

Let $M=\mathbb{H}^{n} / \Gamma$ be a geometrically finite hyperbolic manifold. For $\gamma \in \Gamma=\pi_{1}(M)$, let $\ell(\gamma)$ be the length of the geodesic in the free homotopy class of γ. Then for any S there exists $S^{\prime} \supseteq S$ such that for S^{\prime} we have

$$
\frac{\ell(\gamma)-n \ell}{\sqrt{n}} \rightarrow \mathcal{N}_{\sigma}
$$

where γ is chosen uniformly at random in the sphere of radius n with respect to S^{\prime}.

- If $\pi_{1}(M)$ is word hyperbolic, then we can take $S^{\prime}=S$.
- Already new for finite volume surfaces with cusps

Applications (I) Geodesic lengths in geometrically finite manifolds

Theorem

Let $M=\mathbb{H}^{n} / \Gamma$ be a geometrically finite hyperbolic manifold. For $\gamma \in \Gamma=\pi_{1}(M)$, let $\ell(\gamma)$ be the length of the geodesic in the free homotopy class of γ. Then for any S there exists $S^{\prime} \supseteq S$ such that for S^{\prime} we have

$$
\frac{\ell(\gamma)-n \ell}{\sqrt{n}} \rightarrow \mathcal{N}_{\sigma}
$$

where γ is chosen uniformly at random in the sphere of radius n with respect to S^{\prime}.

- If $\pi_{1}(M)$ is word hyperbolic, then we can take $S^{\prime}=S$.
- Already new for finite volume surfaces with cusps
- $\ell(\gamma)$ is not Hölder

Applications (I) Geodesic lengths in geometrically finite manifolds

Theorem

Let $M=\mathbb{H}^{n} / \Gamma$ be a geometrically finite hyperbolic manifold. For $\gamma \in \Gamma=\pi_{1}(M)$, let $\ell(\gamma)$ be the length of the geodesic in the free homotopy class of γ. Then for any S there exists $S^{\prime} \supseteq S$ such that for S^{\prime} we have

$$
\frac{\ell(\gamma)-n \ell}{\sqrt{n}} \rightarrow \mathcal{N}_{\sigma}
$$

where γ is chosen uniformly at random in the sphere of radius n with respect to S^{\prime}.

- If $\pi_{1}(M)$ is word hyperbolic, then we can take $S^{\prime}=S$.
- Already new for finite volume surfaces with cusps
- $\ell(\gamma)$ is not Hölder
- $\sigma>0$ (length spectrum is not arithmetic)

Applications (l') Geodesic lengths in geometrically infinite 3-manifolds

Theorem
Let $M=\mathbb{H}^{3} / \Gamma$ be a hyperbolic 3-manifold

Applications (l') Geodesic lengths in geometrically infinite 3-manifolds

Theorem
Let $M=\mathbb{H}^{3} / \Gamma$ be a hyperbolic 3-manifold (possibly geometrically infinite).

Applications (l') Geodesic lengths in geometrically infinite 3-manifolds

Theorem
Let $M=\mathbb{H}^{3} / \Gamma$ be a hyperbolic 3-manifold (possibly geometrically infinite). For $\gamma \in \Gamma=\pi_{1}(M)$, let $\ell(\gamma)$ be the length of the geodesic in the free homotopy class of γ.

Applications (l') Geodesic lengths in geometrically infinite 3-manifolds

Theorem
Let $M=\mathbb{H}^{3} / \Gamma$ be a hyperbolic 3-manifold (possibly geometrically infinite). For $\gamma \in \Gamma=\pi_{1}(M)$, let $\ell(\gamma)$ be the length of the geodesic in the free homotopy class of γ.

- If M has no rank 2 cusps, for any S we have

Applications (l') Geodesic lengths in geometrically infinite 3-manifolds

Theorem
Let $M=\mathbb{H}^{3} / \Gamma$ be a hyperbolic 3-manifold (possibly geometrically infinite). For $\gamma \in \Gamma=\pi_{1}(M)$, let $\ell(\gamma)$ be the length of the geodesic in the free homotopy class of γ.

- If M has no rank 2 cusps, for any S we have

$$
\frac{\ell(\gamma)-n \ell}{\sqrt{n}} \rightarrow \mathcal{N}_{\sigma}
$$

where γ is chosen uniformly at random in the sphere of radius n with respect to S.

Applications (l') Geodesic lengths in geometrically infinite 3-manifolds

Theorem
Let $M=\mathbb{H}^{3} / \Gamma$ be a hyperbolic 3-manifold (possibly geometrically infinite). For $\gamma \in \Gamma=\pi_{1}(M)$, let $\ell(\gamma)$ be the length of the geodesic in the free homotopy class of γ.

- If M has no rank 2 cusps, for any S we have

$$
\frac{\ell(\gamma)-n \ell}{\sqrt{n}} \rightarrow \mathcal{N}_{\sigma}
$$

where γ is chosen uniformly at random in the sphere of radius n with respect to S.

- If M has rank 2 cusps, for any S there is $S^{\prime} \supseteq S$ such that the CLT holds for S^{\prime}.

Applications (l') Geodesic lengths in geometrically infinite 3-manifolds

Theorem

Let $M=\mathbb{H}^{3} / \Gamma$ be a hyperbolic 3-manifold (possibly geometrically infinite). For $\gamma \in \Gamma=\pi_{1}(M)$, let $\ell(\gamma)$ be the length of the geodesic in the free homotopy class of γ.

- If M has no rank 2 cusps, for any S we have

$$
\frac{\ell(\gamma)-n \ell}{\sqrt{n}} \rightarrow \mathcal{N}_{\sigma}
$$

where γ is chosen uniformly at random in the sphere of radius n with respect to S.

- If M has rank 2 cusps, for any S there is $S^{\prime} \supseteq S$ such that the CLT holds for S^{\prime}.

Proof (1): [Tameness] + [Thurston's hyperbolization] $\Rightarrow \pi_{1}(M)$ hyperbolic

Applications (II) Intersection with submanifolds

Let M be a hyperbolic manifold and let S be any generating set for $\pi_{1}(M)$.

Applications (II) Intersection with submanifolds

Let M be a hyperbolic manifold and let S be any generating set for $\pi_{1}(M)$. Let Σ be a (smooth, orientable) codimension-1 submanifold, and let $i(\gamma, \Sigma)$ be the intersection number.

Applications (II) Intersection with submanifolds

Let M be a hyperbolic manifold and let S be any generating set for $\pi_{1}(M)$. Let Σ be a (smooth, orientable) codimension-1 submanifold, and let $i(\gamma, \Sigma)$ be the intersection number.
Theorem
Suppose that $\Sigma \rightarrow M$ is π_{1}-injective but not fiber-like.

Applications (II) Intersection with submanifolds

Let M be a hyperbolic manifold and let S be any generating set for $\pi_{1}(M)$. Let Σ be a (smooth, orientable) codimension-1 submanifold, and let $i(\gamma, \Sigma)$ be the intersection number.

Theorem

Suppose that $\Sigma \rightarrow M$ is π_{1}-injective but not fiber-like. Then there are $\ell, \sigma>0$ such that

$$
\frac{i(\gamma, \Sigma)-\ell n}{\sqrt{n}} \longrightarrow \mathcal{N}_{\sigma}
$$

where γ is chosen uniformly at random in the sphere of radius n with respect to S.

Applications (II) Intersection with submanifolds

Let M be a hyperbolic manifold and let S be any generating set for $\pi_{1}(M)$. Let Σ be a (smooth, orientable) codimension-1 submanifold, and let $i(\gamma, \Sigma)$ be the intersection number.

Theorem

Suppose that $\Sigma \rightarrow M$ is π_{1}-injective but not fiber-like. Then there are $\ell, \sigma>0$ such that

$$
\frac{i(\gamma, \Sigma)-\ell n}{\sqrt{n}} \longrightarrow \mathcal{N}_{\sigma}
$$

where γ is chosen uniformly at random in the sphere of radius n with respect to S.

- Example. M compact surface of genus $g \geq 2, \Sigma$ an essential simple closed curve.

Applications (II) Intersection with submanifolds

Let M be a hyperbolic manifold and let S be any generating set for $\pi_{1}(M)$. Let Σ be a (smooth, orientable) codimension-1 submanifold, and let $i(\gamma, \Sigma)$ be the intersection number.

Theorem

Suppose that $\Sigma \rightarrow M$ is π_{1}-injective but not fiber-like. Then there are $\ell, \sigma>0$ such that

$$
\frac{i(\gamma, \Sigma)-\ell n}{\sqrt{n}} \longrightarrow \mathcal{N}_{\sigma}
$$

where γ is chosen uniformly at random in the sphere of radius n with respect to S.

- Example. M compact surface of genus $g \geq 2, \Sigma$ an essential simple closed curve.
- The action is on a non-proper metric space

Applications (II) Intersection with submanifolds

Applications (II) Intersection with submanifolds

Applications (II) Intersection with submanifolds

Applications (II) Intersection with submanifolds

Let M be a hyperbolic manifold and let S be any generating set for $\pi_{1}(M)$. Let Σ be a (smooth, orientable) codimension-1 submanifold, and let $i(\gamma, \Sigma)$ be the intersection number.

Theorem

Suppose that $\Sigma \rightarrow M$ is π_{1}-injective but not fiber-like. Then there are $\ell, \sigma>0$ such that

$$
\frac{i(\gamma, \Sigma)-\ell n}{\sqrt{n}} \longrightarrow \mathcal{N}_{\sigma}
$$

where γ is chosen uniformly at random in the sphere of radius n with respect to S.

Distribution of self-intersections (Chas-Lalley, 2011)

Fig. 2 A histogram showing the distribution of self-intersection numbers over all reduced cyclic words of length 19 in the doubly punctured plane. The horizontal coordinate shows the self-intersection count k; the vertical coordinate shows the number of cyclic reduced words for which the self-intersection number is k

Applications (III) Homomorphisms between hyperbolic groups

Theorem
Let $\phi: G \rightarrow G^{\prime}$ be a homomorphism between hyperbolic groups.

Applications (III) Homomorphisms between hyperbolic groups

Theorem
Let $\phi: G \rightarrow G^{\prime}$ be a homomorphism between hyperbolic groups. Let S, S^{\prime} be generating sets.

Applications (III) Homomorphisms between hyperbolic groups

Theorem
Let $\phi: G \rightarrow G^{\prime}$ be a homomorphism between hyperbolic groups. Let S, S^{\prime} be generating sets. Then there exist $\ell>0, \sigma \geq 0$ such that

$$
\frac{\|\phi(g)\|_{S^{\prime}}-\ell\|g\|_{S}}{\sqrt{\|g\|_{S}}} \rightarrow \mathcal{N}_{\sigma}
$$

for $g \in G$ chosen uniformly at random in the sphere of radius n with respect to S.

Applications (III) Homomorphisms between hyperbolic groups

Theorem
Let $\phi: G \rightarrow G^{\prime}$ be a homomorphism between hyperbolic groups. Let S, S^{\prime} be generating sets. Then there exist $\ell>0, \sigma \geq 0$ such that

$$
\frac{\|\phi(g)\|_{S^{\prime}}-\ell\|g\|_{S}}{\sqrt{\|g\|_{S}}} \rightarrow \mathcal{N}_{\sigma}
$$

for $g \in G$ chosen uniformly at random in the sphere of radius n with respect to S.

Applications (III) Homomorphisms between hyperbolic groups
 Let $\phi: G \rightarrow G^{\prime}$ be a homomorphism between hyperbolic groups. Recall $\partial G:=\{$ geodesic rays based at 0$\} / \sim$.

Applications (III) Homomorphisms between hyperbolic groups

Let $\phi: G \rightarrow G^{\prime}$ be a homomorphism between hyperbolic groups. Recall $\partial G:=\{$ geodesic rays based at 0$\} / \sim$.

Let $v=\lim \sup _{n \rightarrow \infty} \frac{1}{n} \log \#\{g: d(o, g o) \leq n\}$.

Applications (III) Homomorphisms between hyperbolic groups

Let $\phi: G \rightarrow G^{\prime}$ be a homomorphism between hyperbolic groups. Recall $\partial G:=\{$ geodesic rays based at 0$\} / \sim$.

Let $v=\limsup _{n \rightarrow \infty} \frac{1}{n} \log \#\{g: d(o, g o) \leq n\}$. Moreover, for $s>v$

$$
\nu_{s}:=\frac{\sum_{g} e^{-s d(o, g o)} \delta_{g o}}{\sum_{g} e^{-s d(0, g o)}}
$$

Applications (III) Homomorphisms between hyperbolic groups

Let $\phi: G \rightarrow G^{\prime}$ be a homomorphism between hyperbolic groups. Recall $\partial G:=\{$ geodesic rays based at 0$\} / \sim$.

Let $v=\lim \sup _{n \rightarrow \infty} \frac{1}{n} \log \#\{g: d(o, g o) \leq n\}$. Moreover, for $s>v$

$$
\nu_{s}:=\frac{\sum_{g} e^{-s d(0, g o)} \delta_{g o}}{\sum_{g} e^{-s d(0, g o)}}
$$

and the Patterson-Sullivan (PS) measure is

$$
\nu_{P S}:=\lim _{s \rightarrow V} \nu_{s}
$$

Applications (III) Homomorphisms between hyperbolic groups

Let $\phi: G \rightarrow G^{\prime}$ be a homomorphism between hyperbolic groups. Recall $\partial G:=\{$ geodesic rays based at $o\} / \sim$.

Let $v=\lim \sup _{n \rightarrow \infty} \frac{1}{n} \log \#\{g: d(o, g o) \leq n\}$.
Moreover, for $s>v$

$$
\nu_{s}:=\frac{\sum_{g} e^{-s d(o, g o)} \delta_{g o}}{\sum_{g} e^{-s d(0, g o)}}
$$

and the Patterson-Sullivan (PS) measure is

$$
\nu_{P S}:=\lim _{s \rightarrow V} \nu_{s}
$$

Theorem
In the CLT we have $\sigma=0$ if and only if ϕ has finite kernel and $\partial \phi: \partial G \rightarrow \partial G^{\prime}$ pushes the PS measure class for (G, S) to the PS measure class for $\left(\phi(G), S^{\prime}\right)$.

Techniques - Graph structures

A graph structure is $\left(\Gamma, v_{0}, \mathrm{ev}\right)$ with:

- Γ is a finite graph

Techniques - Graph structures

A graph structure is $\left(\Gamma, v_{0}, \mathrm{ev}\right)$ with:

- Γ is a finite graph
- v_{0} is a vertex of Γ (initial vertex)

Techniques - Graph structures

A graph structure is $\left(\Gamma, v_{0}, e v\right)$ with:

- Γ is a finite graph
- v_{0} is a vertex of Γ (initial vertex)
- ev : $E(\Gamma) \rightarrow G$ the evaluation map

Techniques - Graph structures

A graph structure is $\left(\Gamma, v_{0}, e v\right)$ with:

- Γ is a finite graph
- v_{0} is a vertex of Γ (initial vertex)
- ev : $E(\Gamma) \rightarrow G$ the evaluation map

If v is a vertex, Γ_{v} is the loop semigroup

Techniques - Graph structures

A graph structure is $\left(\Gamma, v_{0}, e v\right)$ with:

- Γ is a finite graph
- v_{0} is a vertex of Γ (initial vertex)
- ev : $E(\Gamma) \rightarrow G$ the evaluation map

If v is a vertex, Γ_{v} is the loop semigroup

- M : adjacency matrix

Techniques - Graph structures

A graph structure is $\left(\Gamma, v_{0}, \mathrm{ev}\right)$ with:

- Γ is a finite graph
- v_{0} is a vertex of Γ (initial vertex)
- ev : $E(\Gamma) \rightarrow G$ the evaluation map

If v is a vertex, Γ_{v} is the loop semigroup

- M : adjacency matrix
- λ : leading eigenvalue

Techniques - Graph structures

A graph structure is $\left(\Gamma, v_{0}, \mathrm{ev}\right)$ with:

- Γ is a finite graph
- v_{0} is a vertex of Γ (initial vertex)
- ev : $E(\Gamma) \rightarrow G$ the evaluation map

If v is a vertex, Γ_{v} is the loop semigroup

- M: adjacency matrix
- λ : leading eigenvalue

A component is maximal if its growth rate is λ.

Techniques - Graph structures

A graph structure is $\left(\Gamma, v_{0}, e v\right)$ with:

- Γ is a finite graph
- v_{0} is a vertex of Γ (initial vertex)
- ev : $E(\Gamma) \rightarrow G$ the evaluation map

If v is a vertex, Γ_{v} is the loop semigroup

- M : adjacency matrix
- λ : leading eigenvalue

A component is maximal if its growth rate is λ.
Definition
A graph structure is thick if for any v in a maximal component there exists $B \subseteq G$ finite such that

$$
G=B \cdot \mathrm{ev}\left(\Gamma_{v}\right) \cdot B
$$

Techniques - Graph structures

A graph structure is $\left(\Gamma, v_{0}, \mathrm{ev}\right)$ with:

- Γ is a finite graph
- v_{0} is a vertex of Γ (initial vertex)
- ev: $E(\Gamma) \rightarrow G$ the evaluation map

If v is a vertex, Γ_{v} is the loop semigroup

- M: adjacency matrix
- λ : leading eigenvalue

A component is maximal if its growth rate is λ.
Definition
A graph structure is thick if for any v in a maximal component there exists $B \subseteq G$ finite such that

$$
G=B \cdot e v\left(\Gamma_{v}\right) \cdot B
$$

Thick \Rightarrow almost semisimple: for every maximal eigenvalue, its algebraic and geometric multiplicities agree

Techniques - Graph structures

A graph structure is $\left(\Gamma, v_{0}, \mathrm{ev}\right)$ with:

- Γ is a finite graph
- v_{0} is a vertex of Γ (initial vertex)
- ev: $E(\Gamma) \rightarrow G$ the evaluation map

If v is a vertex, Γ_{v} is the loop semigroup

- M: adjacency matrix
- λ : leading eigenvalue

A component is maximal if its growth rate is λ.
Definition
A graph structure is thick if for any v in a maximal component there exists $B \subseteq G$ finite such that

$$
G=B \cdot \mathrm{ev}\left(\Gamma_{v}\right) \cdot B
$$

Thick \Rightarrow almost semisimple: for every maximal eigenvalue, its algebraic and geometric multiplicities agree Note. M need not be irreducible and not aperiodic.

Techniques - Graph structures

Definition
A graph structure is biautomatic if

Techniques - Graph structures

Definition

A graph structure is biautomatic if for any $B \subseteq G$ finite $\exists C \geq 0$ such that if g, h are finite length paths with

$$
\operatorname{ev}(g)=b_{1} \cdot \operatorname{ev}(h) \cdot b_{2}
$$

Techniques - Graph structures

Definition

A graph structure is biautomatic if for any $B \subseteq G$ finite $\exists C \geq 0$ such that if g, h are finite length paths with

$$
\operatorname{ev}(g)=b_{1} \cdot \operatorname{ev}(h) \cdot b_{2}
$$

then

$$
d_{G}\left(g_{1} \ldots g_{i}, b_{1} h_{1} \ldots h_{i}\right) \leq C
$$

for all $i \leq \max \{\|g\|,\|h\|\}$.

Techniques - Graph structures

Definition
A graph structure is biautomatic if for any $B \subseteq G$ finite $\exists C \geq 0$ such that if g, h are finite length paths with

$$
\operatorname{ev}(g)=b_{1} \cdot \operatorname{ev}(h) \cdot b_{2}
$$

then

$$
d_{G}\left(g_{1} \ldots g_{i}, b_{1} h_{1} \ldots h_{i}\right) \leq C
$$

for all $i \leq \max \{\|g\|,\|h\|\}$.
Definition
A group has a thick bicombing for S if it has a thick, biautomatic graph structure for S such that paths are geodesic for the word length $\|\cdot\| s$.

Graph structures - examples

1. Hyperbolic groups have thick bicombings for every generating set S (Cannon)

Graph structures - examples

1. Hyperbolic groups have thick bicombings for every generating set S (Cannon)
2. If $G=\pi_{1}(M)$ with M a geometrically finite hyperbolic manifold, then for any S there exists S^{\prime} which admits a thick bicombing (Antolin-Ciobanu)

Graph structures - examples

1. Hyperbolic groups have thick bicombings for every generating set S (Cannon)
2. If $G=\pi_{1}(M)$ with M a geometrically finite hyperbolic manifold, then for any S there exists S^{\prime} which admits a thick bicombing (Antolin-Ciobanu)
More generally, relatively hyperbolic groups with virtually abelian parabolic subgroups.

Graph structures - examples

1. Hyperbolic groups have thick bicombings for every generating set S (Cannon)
2. If $G=\pi_{1}(M)$ with M a geometrically finite hyperbolic manifold, then for any S there exists S^{\prime} which admits a thick bicombing (Antolin-Ciobanu)
More generally, relatively hyperbolic groups with virtually abelian parabolic subgroups.
3. Right-angled Artin/Coxeter groups (Hermiller-Meier)

Structure of the proof

1. Central limit theorem for centerable cocycles (Benoist-Quint, Horbez)

Structure of the proof

1. Central limit theorem for centerable cocycles (Benoist-Quint, Horbez) + Busemann cocycle for the loop semigroup

Structure of the proof

1. Central limit theorem for centerable cocycles (Benoist-Quint, Horbez) + Busemann cocycle for the loop semigroup \Rightarrow CLT for the random walk on the loop semigroup

Structure of the proof

1. Central limit theorem for centerable cocycles (Benoist-Quint, Horbez) + Busemann cocycle for the loop semigroup \Rightarrow CLT for the random walk on the loop semigroup
2. CLT for suspensions (Melbourne-Török)

Structure of the proof

1. Central limit theorem for centerable cocycles (Benoist-Quint, Horbez) + Busemann cocycle for the loop semigroup \Rightarrow CLT for the random walk on the loop semigroup
2. CLT for suspensions (Melbourne-Török) \Rightarrow CLT for the Markov chain

Structure of the proof

1. Central limit theorem for centerable cocycles (Benoist-Quint, Horbez) + Busemann cocycle for the loop semigroup \Rightarrow CLT for the random walk on the loop semigroup
2. CLT for suspensions (Melbourne-Török) \Rightarrow CLT for the Markov chain
3. Biautomaticity \Rightarrow Uniqueness of drift and variance

Structure of the proof

1. Central limit theorem for centerable cocycles (Benoist-Quint, Horbez) + Busemann cocycle for the loop semigroup \Rightarrow CLT for the random walk on the loop semigroup
2. CLT for suspensions (Melbourne-Török) \Rightarrow CLT for the Markov chain
3. Biautomaticity \Rightarrow Uniqueness of drift and variance
4. For semisimple structures, approximate counting measure by Markov chain measure

Structure of the proof

1. Central limit theorem for centerable cocycles (Benoist-Quint, Horbez) + Busemann cocycle for the loop semigroup \Rightarrow CLT for the random walk on the loop semigroup
2. CLT for suspensions (Melbourne-Török) \Rightarrow CLT for the Markov chain
3. Biautomaticity \Rightarrow Uniqueness of drift and variance
4. For semisimple structures, approximate counting measure by Markov chain measure \Rightarrow CLT for counting measure

Step 1: CLT for cocycles

Let \mathcal{M} a metric space on which G acts continuously.

Step 1: CLT for cocycles

Let \mathcal{M} a metric space on which G acts continuously. A cocycle is $\eta: G \times \mathcal{M} \rightarrow \mathbb{R}$ with

$$
\sigma(g h, x)=\sigma(g, h x)+\sigma(h, x)
$$

Step 1: CLT for cocycles

Let \mathcal{M} a metric space on which G acts continuously. A cocycle is $\eta: G \times \mathcal{M} \rightarrow \mathbb{R}$ with

$$
\sigma(g h, x)=\sigma(g, h x)+\sigma(h, x)
$$

A measure ν on \mathcal{M} is μ-stationary if

$$
\int g_{*} \nu d \mu(g)=\nu
$$

Step 1: CLT for cocycles

Let \mathcal{M} a metric space on which G acts continuously. A cocycle is $\eta: G \times \mathcal{M} \rightarrow \mathbb{R}$ with

$$
\sigma(g h, x)=\sigma(g, h x)+\sigma(h, x)
$$

A measure ν on \mathcal{M} is μ-stationary if

$$
\int g_{*} \nu d \mu(g)=\nu
$$

A cocycle η has constant drift λ if

$$
\int \eta(g, x) d \mu(g)=\lambda \quad \text { for all } x \in \mathcal{M}
$$

Step 1: CLT for cocycles

Let \mathcal{M} a metric space on which G acts continuously. A cocycle is $\eta: G \times \mathcal{M} \rightarrow \mathbb{R}$ with

$$
\sigma(g h, x)=\sigma(g, h x)+\sigma(h, x)
$$

A measure ν on \mathcal{M} is μ-stationary if

$$
\int g_{*} \nu d \mu(g)=\nu
$$

A cocycle η has constant drift λ if

$$
\int \eta(g, x) d \mu(g)=\lambda \quad \text { for all } x \in \mathcal{M}
$$

A cocycle η is centerable if it can be written as

$$
\eta(g, x)=\eta_{0}(g, x)+\psi(x)-\psi(g \cdot x)
$$

where η_{0} is a cocycle with constant drift and $\psi: \mathcal{M} \rightarrow \mathbb{R}$ a bounded, measurable function.

Central limit theorem for centerable cocycles

Theorem (Benoist-Quint + Horbez)
Let ν be a μ-ergodic, μ-stationary probability measure on \mathcal{M},

Central limit theorem for centerable cocycles

Theorem (Benoist-Quint + Horbez)
Let ν be a μ-ergodic, μ-stationary probability measure on \mathcal{M}, and let $\eta: G \times \mathcal{M} \rightarrow \mathbb{R}$ be a centerable cocycle with drift λ and finite second moment.

Central limit theorem for centerable cocycles

Theorem (Benoist-Quint + Horbez)

Let ν be a μ-ergodic, μ-stationary probability measure on \mathcal{M}, and let $\eta: G \times \mathcal{M} \rightarrow \mathbb{R}$ be a centerable cocycle with drift λ and finite second moment. Then there exist $\sigma \geq 0$ such that for any continuous $F: \mathbb{R} \rightarrow \mathbb{R}$ with compact support, we have for ν-a.e. $x \in \mathcal{M}$,

$$
\lim _{n \rightarrow \infty} \int_{G} F\left(\frac{\sigma(g, x)-n \lambda}{\sqrt{n}}\right) d \mu^{* n}(g)=\int_{\mathbb{R}} F(t) d \mathcal{N}_{\sigma}(t)
$$

The Busemann cocycle

Horofunction boundary. We have embedding
$\rho: X \rightarrow C(X, \mathbb{R})$

The Busemann cocycle

Horofunction boundary. We have embedding
$\rho: X \rightarrow C(X, \mathbb{R})$

$$
\rho_{x}(z):=d(x, z)-d(x, o)
$$

The Busemann cocycle

Horofunction boundary. We have embedding
$\rho: X \rightarrow C(X, \mathbb{R})$

$$
\rho_{x}(z):=d(x, z)-d(x, o)
$$

Then $\mathcal{M}=\bar{X}^{h}$ is the closure of $\rho(X)$ for the topology of pointwise convergence.

The Busemann cocycle

Horofunction boundary. We have embedding
$\rho: X \rightarrow C(X, \mathbb{R})$

$$
\rho_{x}(z):=d(x, z)-d(x, o)
$$

Then $\mathcal{M}=\bar{X}^{h}$ is the closure of $\rho(X)$ for the topology of pointwise convergence.
Definition
The Busemann cocycle

$$
\beta(g, \xi):=\lim _{z_{n} \rightarrow \xi}\left(d\left(o, z_{n}\right)-d\left(g^{-1} o, z_{n}\right)\right)
$$

The Busemann cocycle

Horofunction boundary. We have embedding
$\rho: X \rightarrow C(X, \mathbb{R})$

$$
\rho_{x}(z):=d(x, z)-d(x, o)
$$

Then $\mathcal{M}=\bar{X}^{h}$ is the closure of $\rho(X)$ for the topology of pointwise convergence.
Definition
The Busemann cocycle

$$
\beta(g, \xi):=\lim _{z_{n} \rightarrow \xi}\left(d\left(o, z_{n}\right)-d\left(g^{-1} o, z_{n}\right)\right)
$$

Proposition (Horbez)
The Busemann cocycle is centerable.

Step 1: Random walks on the loop semigroup

Fix a graph structure Γ and let v be a vertex in a maximal growth component.

Step 1: Random walks on the loop semigroup

Fix a graph structure Γ and let v be a vertex in a maximal growth component. Fix a measure μ on the set of edges of Γ.

Step 1: Random walks on the loop semigroup

Fix a graph structure Γ and let v be a vertex in a maximal growth component. Fix a measure μ on the set of edges of Γ. Definition
The loop semigroup Γ_{v} is the set of all loops from v to v.

Step 1: Random walks on the loop semigroup

Fix a graph structure Γ and let v be a vertex in a maximal growth component. Fix a measure μ on the set of edges of Γ. Definition
The loop semigroup Γ_{v} is the set of all loops from v to v. The first return measure is

$$
\mu_{v}(I)=\mu\left(g_{1}\right) \ldots \mu\left(g_{n}\right)
$$

if $I=g_{1} \ldots g_{n}$.

Step 1: Random walks on the loop semigroup

Fix a graph structure Γ and let v be a vertex in a maximal growth component. Fix a measure μ on the set of edges of Γ.
Definition
The loop semigroup Γ_{v} is the set of all loops from v to v. The first return measure is

$$
\mu_{v}(I)=\mu\left(g_{1}\right) \ldots \mu\left(g_{n}\right)
$$

if $I=g_{1} \ldots g_{n}$.
Theorem
Let ν_{v} be a μ_{v}-ergodic, μ_{v}-stationary measure on \bar{X}^{h}.

Step 1: Random walks on the loop semigroup

Fix a graph structure Γ and let v be a vertex in a maximal growth component. Fix a measure μ on the set of edges of Γ.
Definition
The loop semigroup Γ_{v} is the set of all loops from v to v. The first return measure is

$$
\mu_{v}(I)=\mu\left(g_{1}\right) \ldots \mu\left(g_{n}\right)
$$

if $I=g_{1} \ldots g_{n}$.

Theorem

Let ν_{v} be a μ_{v}-ergodic, μ_{v}-stationary measure on \bar{X}^{h}. Then there exist $\ell, \sigma \geq 0$ such that for ν_{v}-a.e. ξ

Step 1: Random walks on the loop semigroup

Fix a graph structure Γ and let v be a vertex in a maximal growth component. Fix a measure μ on the set of edges of Γ.
Definition
The loop semigroup Γ_{v} is the set of all loops from v to v. The first return measure is

$$
\mu_{v}(I)=\mu\left(g_{1}\right) \ldots \mu\left(g_{n}\right)
$$

if $I=g_{1} \ldots g_{n}$.

Theorem

Let ν_{v} be a μ_{v}-ergodic, μ_{v}-stationary measure on \bar{X}^{h}. Then there exist $\ell, \sigma \geq 0$ such that for ν_{v}-a.e. ξ

$$
\lim _{n \rightarrow \infty} \int_{G} F\left(\frac{\beta_{\xi}(o, g o)-\ell\|g\|}{\sqrt{n}}\right) d \mu_{v}^{* n}(g)=\int_{\mathbb{R}} F(t) d \mathcal{N}_{\sigma}(t)
$$

for any $F \in C_{C}(\mathbb{R})$.

Step 2: Suspension to the Markov chain

Let $S:(\mathcal{X}, \lambda) \rightarrow(\mathcal{X}, \lambda)$, and let $r: \mathcal{X} \rightarrow \mathbb{N}$ be a roof function. Then the discrete suspension flow of S with roof function r is $\widehat{S}: \widehat{\mathcal{X}} \rightarrow \widehat{\mathcal{X}}$ where

$$
\widehat{\mathcal{X}}:=\{(x, n) \in \mathcal{X} \times \mathbb{N}: 0 \leq n \leq r(x)-1\}
$$

Step 2: Suspension to the Markov chain

Let $S:(\mathcal{X}, \lambda) \rightarrow(\mathcal{X}, \lambda)$, and let $r: \mathcal{X} \rightarrow \mathbb{N}$ be a roof function. Then the discrete suspension flow of S with roof function r is $\widehat{S}: \widehat{\mathcal{X}} \rightarrow \widehat{\mathcal{X}}$ where

$$
\widehat{\mathcal{X}}:=\{(x, n) \in \mathcal{X} \times \mathbb{N}: 0 \leq n \leq r(x)-1\}
$$

Then, the map \widehat{S} is defined as

$$
\widehat{S}(x, n)= \begin{cases}(x, n+1) & \text { if } n \leq r(x)-2 \\ (S(x), 0) & \text { if } n=r(x)-1\end{cases}
$$

Step 2: Suspension to the Markov chain

Let $S:(\mathcal{X}, \lambda) \rightarrow(\mathcal{X}, \lambda)$, and let $r: \mathcal{X} \rightarrow \mathbb{N}$ be a roof function. Then the discrete suspension flow of S with roof function r is $\widehat{S}: \widehat{\mathcal{X}} \rightarrow \widehat{\mathcal{X}}$ where

$$
\widehat{\mathcal{X}}:=\{(x, n) \in \mathcal{X} \times \mathbb{N}: 0 \leq n \leq r(x)-1\}
$$

Then, the map \widehat{S} is defined as

$$
\widehat{S}(x, n)= \begin{cases}(x, n+1) & \text { if } n \leq r(x)-2 \\ (S(x), 0) & \text { if } n=r(x)-1\end{cases}
$$

Theorem (Melbourne-Törok)
Let $S:(\mathcal{X}, \lambda) \rightarrow(\mathcal{X}, \lambda)$ be ergodic,

Step 2: Suspension to the Markov chain

Let $S:(\mathcal{X}, \lambda) \rightarrow(\mathcal{X}, \lambda)$, and let $r: \mathcal{X} \rightarrow \mathbb{N}$ be a roof function.
Then the discrete suspension flow of S with roof function r is $\widehat{S}: \widehat{\mathcal{X}} \rightarrow \widehat{\widehat{\mathcal{X}}}$ where

$$
\widehat{\mathcal{X}}:=\{(x, n) \in \mathcal{X} \times \mathbb{N}: 0 \leq n \leq r(x)-1\}
$$

Then, the map \widehat{S} is defined as

$$
\widehat{S}(x, n)= \begin{cases}(x, n+1) & \text { if } n \leq r(x)-2 \\ (S(x), 0) & \text { if } n=r(x)-1\end{cases}
$$

Theorem (Melbourne-Törok)
Let $S:(\mathcal{X}, \lambda) \rightarrow(\mathcal{X}, \lambda)$ be ergodic, and let $\widehat{S}:(\widehat{\mathcal{X}}, \widehat{\lambda}) \rightarrow(\widehat{\mathcal{X}}, \widehat{\lambda})$ be the suspension flow with roof function r.

Step 2: Suspension to the Markov chain

Let $S:(\mathcal{X}, \lambda) \rightarrow(\mathcal{X}, \lambda)$, and let $r: \mathcal{X} \rightarrow \mathbb{N}$ be a roof function. Then the discrete suspension flow of S with roof function r is $\widehat{S}: \widehat{\mathcal{X}} \rightarrow \widehat{\widehat{\mathcal{X}}}$ where

$$
\widehat{\mathcal{X}}:=\{(x, n) \in \mathcal{X} \times \mathbb{N}: 0 \leq n \leq r(x)-1\}
$$

Then, the map \widehat{S} is defined as

$$
\widehat{S}(x, n)= \begin{cases}(x, n+1) & \text { if } n \leq r(x)-2 \\ (S(x), 0) & \text { if } n=r(x)-1\end{cases}
$$

Theorem (Melbourne-Törok)
Let $S:(\mathcal{X}, \lambda) \rightarrow(\mathcal{X}, \lambda)$ be ergodic, and let $\widehat{S}:(\widehat{\mathcal{X}}, \widehat{\lambda}) \rightarrow(\widehat{\mathcal{X}}, \widehat{\lambda})$ be the suspension flow with roof function r.
Let $\phi: \widehat{\mathcal{X}} \rightarrow \mathbb{R}$ and define $\Phi(x):=\sum_{k=0}^{r(x)-1} \phi(x, k)$.

Step 2: Suspension to the Markov chain

Let $S:(\mathcal{X}, \lambda) \rightarrow(\mathcal{X}, \lambda)$, and let $r: \mathcal{X} \rightarrow \mathbb{N}$ be a roof function. Then the discrete suspension flow of S with roof function r is $\widehat{S}: \widehat{\mathcal{X}} \rightarrow \widehat{\mathcal{X}}$ where

$$
\widehat{\mathcal{X}}:=\{(x, n) \in \mathcal{X} \times \mathbb{N}: 0 \leq n \leq r(x)-1\}
$$

Then, the map \widehat{S} is defined as

$$
\widehat{S}(x, n)= \begin{cases}(x, n+1) & \text { if } n \leq r(x)-2 \\ (S(x), 0) & \text { if } n=r(x)-1\end{cases}
$$

Theorem (Melbourne-Törok)
Let $S:(\mathcal{X}, \lambda) \rightarrow(\mathcal{X}, \lambda)$ be ergodic, and let $\widehat{S}:(\widehat{\mathcal{X}}, \widehat{\lambda}) \rightarrow(\widehat{\mathcal{X}}, \widehat{\lambda})$ be the suspension flow with roof function r.
Let $\phi: \widehat{\mathcal{X}} \rightarrow \mathbb{R}$ and define $\Phi(x):=\sum_{k=0}^{r(x)-1} \phi(x, k)$. Suppose that Φ and r satisfy a CLT.

Step 2: Suspension to the Markov chain

Let $S:(\mathcal{X}, \lambda) \rightarrow(\mathcal{X}, \lambda)$, and let $r: \mathcal{X} \rightarrow \mathbb{N}$ be a roof function. Then the discrete suspension flow of S with roof function r is $\widehat{S}: \widehat{\mathcal{X}} \rightarrow \widehat{\mathcal{X}}$ where

$$
\widehat{\mathcal{X}}:=\{(x, n) \in \mathcal{X} \times \mathbb{N}: 0 \leq n \leq r(x)-1\}
$$

Then, the map \widehat{S} is defined as

$$
\widehat{S}(x, n)= \begin{cases}(x, n+1) & \text { if } n \leq r(x)-2 \\ (S(x), 0) & \text { if } n=r(x)-1\end{cases}
$$

Theorem (Melbourne-Törok)
Let $S:(\mathcal{X}, \lambda) \rightarrow(\mathcal{X}, \lambda)$ be ergodic, and let $\widehat{S}:(\widehat{\mathcal{X}}, \widehat{\lambda}) \rightarrow(\widehat{\mathcal{X}}, \widehat{\lambda})$ be the suspension flow with roof function r.
Let $\phi: \widehat{\mathcal{X}} \rightarrow \mathbb{R}$ and define $\Phi(x):=\sum_{k=0}^{r(x)-1} \phi(x, k)$. Suppose that Φ and r satisfy a CLT. Then ϕ satisfies a CLT.

CLT for Markov chain

Recall that if M is primitive

CLT for Markov chain

Recall that if M is primitive (i.e. $M^{n}>0$)

CLT for Markov chain

Recall that if M is primitive (i.e. $M^{n}>0$)

$$
\lim _{n} \frac{M^{n}}{\lambda^{n}}=\rho u^{T}
$$

CLT for Markov chain

Recall that if M is primitive (i.e. $M^{n}>0$)

$$
\lim _{n} \frac{M^{n}}{\lambda^{n}}=\rho u^{T}
$$

Define Markov chain

- Starting probabilities

$$
\pi_{i}:=\rho_{i} u_{i}
$$

CLT for Markov chain

Recall that if M is primitive (i.e. $M^{n}>0$)

$$
\lim _{n} \frac{M^{n}}{\lambda^{n}}=\rho u^{T}
$$

Define Markov chain

- Starting probabilities

$$
\pi_{i}:=\rho_{i} u_{i}
$$

- Transition probabilities

$$
p_{i j}:=\frac{\rho_{j}}{\lambda \rho_{i}}
$$

CLT for Markov chain

Recall that if M is primitive (i.e. $M^{n}>0$)

$$
\lim _{n} \frac{M^{n}}{\lambda^{n}}=\rho u^{T}
$$

Define Markov chain

- Starting probabilities

$$
\pi_{i}:=\rho_{i} u_{i}
$$

- Transition probabilities

$$
p_{i j}:=\frac{\rho_{j}}{\lambda \rho_{i}}
$$

Let $\Omega=G^{\mathbb{N}}, \Omega_{v}=\Gamma_{v}^{\mathbb{N}}$.

Let $\Omega=G^{\mathbb{N}}, \Omega_{v}=\Gamma_{v}^{\mathbb{N}}$. Consider skew product $T: \Omega \times \mathcal{M} \rightarrow \mathbb{R}$

Let $\Omega=G^{\mathbb{N}}, \Omega_{v}=\Gamma_{v}^{\mathbb{N}}$. Consider skew product $T: \Omega \times \mathcal{M} \rightarrow \mathbb{R}$

$$
T(\omega, \xi):=\left(\sigma(\omega), g_{1}^{-1} \xi\right)
$$

Let $\Omega=G^{\mathbb{N}}, \Omega_{v}=\Gamma_{v}^{\mathbb{N}}$. Consider skew product $T: \Omega \times \mathcal{M} \rightarrow \mathbb{R}$

$$
T(\omega, \xi):=\left(\sigma(\omega), g_{1}^{-1} \xi\right)
$$

Two versions: $T: \Omega \times \mathcal{M} \rightarrow \mathbb{R}$ and $T_{v}: \Omega_{v} \times \mathcal{M} \rightarrow \mathbb{R}$.

Let $\Omega=G^{\mathbb{N}}, \Omega_{v}=\Gamma_{v}^{\mathbb{N}}$. Consider skew product $T: \Omega \times \mathcal{M} \rightarrow \mathbb{R}$

$$
T(\omega, \xi):=\left(\sigma(\omega), g_{1}^{-1} \xi\right)
$$

Two versions: $T: \Omega \times \mathcal{M} \rightarrow \mathbb{R}$ and $T_{v}: \Omega_{v} \times \mathcal{M} \rightarrow \mathbb{R}$.

Let $\Omega=G^{\mathbb{N}}, \Omega_{v}=\Gamma_{v}^{\mathbb{N}}$. Consider skew product $T: \Omega \times \mathcal{M} \rightarrow \mathbb{R}$

$$
T(\omega, \xi):=\left(\sigma(\omega), g_{1}^{-1} \xi\right)
$$

Two versions: $T: \Omega \times \mathcal{M} \rightarrow \mathbb{R}$ and $T_{v}: \Omega_{v} \times \mathcal{M} \rightarrow \mathbb{R}$.

Consider observable

$$
f(\omega, \xi):=\beta_{\xi}\left(o, g_{1} o\right)
$$

Consider observable

$$
f(\omega, \xi):=\beta_{\xi}\left(o, g_{1} 0\right)
$$

Consider observable

$$
f(\omega, \xi):=\beta_{\xi}\left(o, g_{1} o\right)
$$

Then

$$
\beta_{\xi}\left(o, g_{1} \ldots g_{n} o\right)=\sum_{j=0}^{n-1} f \circ T^{j}(\omega, \xi)
$$

hence
Theorem
Suppose that Γ is primitive and let μ_{n} be the n-th step distribution of the Markov chain on Γ.

Consider observable

$$
f(\omega, \xi):=\beta_{\xi}\left(o, g_{1} o\right)
$$

Then

$$
\beta_{\xi}\left(o, g_{1} \ldots g_{n} o\right)=\sum_{j=0}^{n-1} f \circ T^{j}(\omega, \xi)
$$

hence
Theorem
Suppose that Γ is primitive and let μ_{n} be the n-th step distribution of the Markov chain on Γ. Then there are ℓ and σ such that

Consider observable

$$
f(\omega, \xi):=\beta_{\xi}\left(o, g_{1} o\right)
$$

Then

$$
\beta_{\xi}\left(o, g_{1} \ldots g_{n} o\right)=\sum_{j=0}^{n-1} f \circ T^{j}(\omega, \xi)
$$

hence

Theorem

Suppose that Γ is primitive and let μ_{n} be the n-th step distribution of the Markov chain on Γ. Then there are ℓ and σ such that

$$
\lim _{n \rightarrow \infty} \int_{G} F\left(\frac{\beta_{\xi}(o, g o)-n \ell}{\sqrt{n}}\right) d \mu_{n}(g)=\int_{\mathbb{R}} F(t) d \mathcal{N}_{\sigma}(t)
$$

for any $F \in C_{c}(\mathbb{R})$.

Consider observable

$$
f(\omega, \xi):=\beta_{\xi}\left(o, g_{1} o\right)
$$

Then

$$
\beta_{\xi}\left(o, g_{1} \ldots g_{n} o\right)=\sum_{j=0}^{n-1} f \circ T^{j}(\omega, \xi)
$$

hence

Theorem

Suppose that Γ is primitive and let μ_{n} be the n-th step distribution of the Markov chain on Γ. Then there are ℓ and σ such that

$$
\lim _{n \rightarrow \infty} \int_{G} F\left(\frac{d(o, g o)-n \ell}{\sqrt{n}}\right) d \mu_{n}(g)=\int_{\mathbb{R}} F(t) d \mathcal{N}_{\sigma}(t)
$$

for any $F \in C_{c}(\mathbb{R})$.

Step 3: Approximating the counting measure

Suppose M is semisimple (there is only one maximal eigenvalue).

Step 3: Approximating the counting measure

Suppose M is semisimple (there is only one maximal eigenvalue).

Let λ_{n} be the uniform measure on all paths of length n, and let $\widetilde{\lambda}_{n}$ be the distribution of the subpath of positions
$[\log n, n-\log n]$.

Step 3: Approximating the counting measure

Suppose M is semisimple (there is only one maximal eigenvalue).

Let λ_{n} be the uniform measure on all paths of length n, and let $\widetilde{\lambda}_{n}$ be the distribution of the subpath of positions
$[\log n, n-\log n]$.
Lemma

$$
\left\|\mu_{n-2 \log n}-\widetilde{\lambda}_{n}\right\|_{T V} \rightarrow 0
$$

Step 3: Approximating the counting measure

Suppose M is semisimple (there is only one maximal eigenvalue).

Let λ_{n} be the uniform measure on all paths of length n, and let $\widetilde{\lambda}_{n}$ be the distribution of the subpath of positions
$[\log n, n-\log n]$.
Lemma

$$
\left\|\mu_{n-2 \log n}-\widetilde{\lambda}_{n}\right\|_{T V} \rightarrow 0
$$

Definition

A function $f: \Omega^{*} \rightarrow \mathbb{R}$ is uniformly bicontinuous

Definition

A function $f: \Omega^{*} \rightarrow \mathbb{R}$ is uniformly bicontinuous if for any finite set $B \subseteq G$ and any $\eta>0$,

Definition

A function $f: \Omega^{*} \rightarrow \mathbb{R}$ is uniformly bicontinuous if for any finite set $B \subseteq G$ and any $\eta>0$, there exists $N \geq 0$ such that if $\|g\| \geq N$ and

Definition

A function $f: \Omega^{*} \rightarrow \mathbb{R}$ is uniformly bicontinuous if for any finite set $B \subseteq G$ and any $\eta>0$, there exists $N \geq 0$ such that if $\|g\| \geq N$ and

$$
b_{1} \cdot \mathrm{ev}(g) \cdot b_{2}=\mathrm{ev}(h)
$$

for $b_{1}, b_{2} \in B$,

Definition

A function $f: \Omega^{*} \rightarrow \mathbb{R}$ is uniformly bicontinuous if for any finite set $B \subseteq G$ and any $\eta>0$, there exists $N \geq 0$ such that if $\|g\| \geq N$ and

$$
b_{1} \cdot \mathrm{ev}(g) \cdot b_{2}=\mathrm{ev}(h)
$$

for $b_{1}, b_{2} \in B$, then

$$
|f(g)-f(h)|<\eta
$$

Definition

A function $f: \Omega^{*} \rightarrow \mathbb{R}$ is uniformly bicontinuous if for any finite set $B \subseteq G$ and any $\eta>0$, there exists $N \geq 0$ such that if $\|g\| \geq N$ and

$$
b_{1} \cdot \mathrm{ev}(g) \cdot b_{2}=\mathrm{ev}(h)
$$

for $b_{1}, b_{2} \in B$, then

$$
|f(g)-f(h)|<\eta
$$

Consider

$$
\varphi(g):=\frac{d(o, g o)-\ell\|g\|}{\sqrt{\|g\|}}
$$

Definition

A function $f: \Omega^{*} \rightarrow \mathbb{R}$ is uniformly bicontinuous if for any finite set $B \subseteq G$ and any $\eta>0$, there exists $N \geq 0$ such that if $\|g\| \geq N$ and

$$
b_{1} \cdot \mathrm{ev}(g) \cdot b_{2}=\mathrm{ev}(h)
$$

for $b_{1}, b_{2} \in B$, then

$$
|f(g)-f(h)|<\eta
$$

Consider

$$
\varphi(g):=\frac{d(o, g o)-\ell\|g\|}{\sqrt{\|g\|}}
$$

Then if $g=g_{0} g_{1} g_{2}$ we have

$$
\left|\varphi\left(g_{1}\right)-\varphi(g)\right| \leq \epsilon
$$

Definition

A function $f: \Omega^{*} \rightarrow \mathbb{R}$ is uniformly bicontinuous if for any finite set $B \subseteq G$ and any $\eta>0$, there exists $N \geq 0$ such that if $\|g\| \geq N$ and

$$
b_{1} \cdot \mathrm{ev}(g) \cdot b_{2}=\mathrm{ev}(h)
$$

for $b_{1}, b_{2} \in B$, then

$$
|f(g)-f(h)|<\eta
$$

Consider

$$
\varphi(g):=\frac{d(o, g o)-\ell\|g\|}{\sqrt{\|g\|}}
$$

Then if $g=g_{0} g_{1} g_{2}$ we have

$$
\left|\varphi\left(g_{1}\right)-\varphi(g)\right| \leq \epsilon
$$

\Rightarrow CLT for the counting measure

Definition

A function $f: \Omega^{*} \rightarrow \mathbb{R}$ is uniformly bicontinuous if for any finite set $B \subseteq G$ and any $\eta>0$, there exists $N \geq 0$ such that if $\|g\| \geq N$ and

$$
b_{1} \cdot \mathrm{ev}(g) \cdot b_{2}=\operatorname{ev}(h)
$$

for $b_{1}, b_{2} \in B$, then

$$
|f(g)-f(h)|<\eta
$$

Theorem
(CLT for displacement) There exists $\ell>0, \sigma \geq 0$ such that for any $a<b$ we have

$$
\lim _{n \rightarrow \infty} \frac{1}{\# S_{n}} \#\left\{g \in S_{n}: \frac{d(o, g o)-n \ell}{\sqrt{n}} \in[a, b]\right\}=\int_{a}^{b} d \mathcal{N}_{\sigma}(t)
$$

The end

감사합니다

Thank you!!!

