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Setup recall
Let G be a countable group of isometries of a δ-hyperbolic metric
space X ,

such that the semigroup generated by the support of µ is
non-elementary. Consider

wn := g1g2 . . . gn.
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Today’s results
Theorem (Maher-T. ’18)
Let G be a countable group of isometries of a δ-hyperbolic metric
space X,

such that the semigroup generated by the support of µ is
non-elementary. Then:

1. (Positive drift) ∃L > 0 s.t.

lim inf
n→∞

d(wnx , x)

n
= L > 0.

If µ has finite 1st moment then

lim
n→∞

d(wnx , x)

n
= L > 0 exists a.s.

2. (Growth of translation length) For any ε > 0 we have

P(τ(wn) ≥ n(L− ε))→ 1 as n→∞.

Corollary.
P(wn is loxodromic )→ 1
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Hyperbolic isometries

Definition
Given an isometry g of X and x ∈ X , we define its translation
length as

τ(g) := lim
n→∞

d(gnx , x)

n

Lemma (Classification of isometries of hyperbolic spaces)
Let g be an isometry of a δ-hyperbolic metric space X (not
necessarily proper). Then either:

1. g has bounded orbits. Then g is called elliptic.
2. g has unbounded orbits and τ(g) = 0. Then g is called

parabolic.
3. τ(g) > 0. Then g is called hyperbolic or loxodromic, and

has precisely two fixed points on ∂X, one attracting and
one repelling.
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Shadows
We define a shadow as

Sx (y ,R) := {z ∈ X : (y · z)x ≥ d(x , y)− R}.

We call r = d(x , y)− R the distance parameter.
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Decay of shadows - I
Let us define

Sh(x , r) := {Sx (gx ,R) : g ∈ G, d(x ,gx)− R ≥ r}

the set of shadows based at x , with centers on Gx and distance
parameter ≥ r .

Proposition
Let G be a countable group of isometries of a separable Gromov
hyperbolic space X. Let µ be a non-elementary probability
distribution on G, and let ν be the hitting measure on ∂X. Then

lim
r→∞

sup
S∈Sh(x,r)

ν(S) = 0.

Proof.
A shadow centered at gx of distance parameter r is contained in a
ball of radius ≈ e−εr in the metric dε on ∂X . As ν is non-atomic, the
measure of a ball of radius e−εr tends to zero uniformly as r → 0.
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Decay of shadows - II

For U a subset of X , let

H+
x (U) := P(∃ n ≥ 0 : wnx ∈ U)

the probability of ever hitting the shadow.

Proposition
Let G be a countable group which acts by isometries on a
separable Gromov hyperbolic space X, and µ a
non-elementary probability distribution on G. Then

sup
S∈Sh(x ,r)

H+
x (S)→ 0 as r →∞.

Note: the decay is uniform in r ! (But we do not know the rate)
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Persistent segments
Let xi := wkix .

Given R, we say a subsegment [xi , xi+1] of the sample
path is persistent if:

d(xi , xi+1) ≥ 2R + C0 (1)
xn ∈ Sxi+1 (xi ,R) for all n ≤ i (2)
xn ∈ Sxi (xi+1,R) for all n ≥ i + 1 (3)

xi

xi+1

Sxi (xi+1,R)Sxi+1 (xi ,R)
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Persistent segments exist
Lemma
Given ε > 0, there are R and k such that for any i each of (1), (2), (3)
holds with probability at least 1− ε.

The probability of (2) equals the prob. that wknx never hits the
complement of Sxi+1 (xi ,R) for any n ≤ i .
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Lemma
Given ε > 0, there are R and k such that for any i each of (1), (2), (3)
holds with probability at least 1− ε.
The probability of (2) equals the prob. that wknx never hits the
complement of Sxi+1 (xi ,R) for any n ≤ i . As the complement of this
shadow is contained in a shadow

Si = Sxi (xi+1,Ri )

where Ri = d(xi , xi+1)− R + O(δ), the prob. that (2) holds is at least

1− P(∃ n ≤ ki : wnx ∈ Si )

which equals by the Markov property

1− H−x (w−1
ki Si ). (5)

The distance parameter of w−1
ki Si , is R + O(δ); hence, by decay of

shadows, we may choose R sufficiently large such that (5) is at least
1− ε.
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Lemma
For some C > 0,

d(x ,wknx) ≥ C#{0 ≤ i ≤ n − 1 : [xi , xi+1] is persistent}

Proof.
Let γ be a geodesic from x to xn = wknx .

I If [xi , xi+1] is persistent, γ has a subsegment γi of length ≥ C
which fellow travels [xi , xi+1], and is disjoint from both
Sxi+1 (xi ,R + C) and Sxi (xi+1,R + C).

I If [xj , xj+1] is also persistent, then γi and γj are disjoint by
(weak)-convexity of shadows.

I Therefore d(x ,wknx) is at least C times the number of persistent
subsegments between x and wknx .



Convergence of subadditive processes

We will now apply Kingman’s subadditive ergodic theorem.

Theorem
Let (Ω,P) be a probability space and U : Ω→ Ω a measure
preserving transformation. If:

I Wn : Ω→ R≥0 is a subadditive sequence of random variables,
i.e.

Wn+m ≤Wn + Wm ◦ Un

for all m,n ∈ N

I and W1 has finite first moment,

then there is a U-invariant random variable W∞ such that

lim
n→∞

1
n Wn = W∞

P-almost surely, and in L1(Ω,P).
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Positive drift - proof
Let us define for each n

Zn :=
n−1∑
i=0

Yi = #{0 ≤ i ≤ n − 1 : [xi , xi+1] is persistent}

the number of persistent subsegments along [x , xn = wknx ].
The random variables (Zn)n∈N are non-negative and have finite
expectation, and subadditive by the Markov property. Moreover,

E(Zn) =
n−1∑
i=0

E(Yi ) ≥ nη

with η > 0.

We now apply the Theorem to get

1
n

Zn → A

in L1; finally, since E(Z∞) = limn E( 1
n Zn) ≥ η > 0, we have A > 0.
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Positive drift - end of proof

Since Zn is a lower bound for d(x ,wknx),

we get almost surely

lim inf
n→∞

d(x ,wknx)

kn
≥ C

k
lim inf
n→∞

1
n

Zn =
AC
k

> 0

which proves the first part of the Theorem.
(Note: we made no assumptions on the moments of µ.)

For the second part, if µ has finite first moment with respect to d , we
apply Kingman’s Theorem to d(x ,wknx), to get existence of the limit.



Positive drift - end of proof

Since Zn is a lower bound for d(x ,wknx), we get almost surely

lim inf
n→∞

d(x ,wknx)

kn
≥ C

k
lim inf
n→∞

1
n

Zn =
AC
k

> 0

which proves the first part of the Theorem.
(Note: we made no assumptions on the moments of µ.)

For the second part, if µ has finite first moment with respect to d , we
apply Kingman’s Theorem to d(x ,wknx), to get existence of the limit.



Positive drift - end of proof

Since Zn is a lower bound for d(x ,wknx), we get almost surely

lim inf
n→∞

d(x ,wknx)

kn

≥ C
k

lim inf
n→∞

1
n

Zn =
AC
k

> 0

which proves the first part of the Theorem.
(Note: we made no assumptions on the moments of µ.)

For the second part, if µ has finite first moment with respect to d , we
apply Kingman’s Theorem to d(x ,wknx), to get existence of the limit.



Positive drift - end of proof

Since Zn is a lower bound for d(x ,wknx), we get almost surely

lim inf
n→∞

d(x ,wknx)

kn
≥ C

k
lim inf
n→∞

1
n

Zn

=
AC
k

> 0

which proves the first part of the Theorem.
(Note: we made no assumptions on the moments of µ.)

For the second part, if µ has finite first moment with respect to d , we
apply Kingman’s Theorem to d(x ,wknx), to get existence of the limit.



Positive drift - end of proof

Since Zn is a lower bound for d(x ,wknx), we get almost surely

lim inf
n→∞

d(x ,wknx)

kn
≥ C

k
lim inf
n→∞

1
n

Zn =
AC
k

> 0

which proves the first part of the Theorem.
(Note: we made no assumptions on the moments of µ.)

For the second part, if µ has finite first moment with respect to d , we
apply Kingman’s Theorem to d(x ,wknx), to get existence of the limit.



Positive drift - end of proof

Since Zn is a lower bound for d(x ,wknx), we get almost surely

lim inf
n→∞

d(x ,wknx)

kn
≥ C

k
lim inf
n→∞

1
n

Zn =
AC
k

> 0

which proves the first part of the Theorem.

(Note: we made no assumptions on the moments of µ.)

For the second part, if µ has finite first moment with respect to d , we
apply Kingman’s Theorem to d(x ,wknx), to get existence of the limit.



Positive drift - end of proof

Since Zn is a lower bound for d(x ,wknx), we get almost surely

lim inf
n→∞

d(x ,wknx)

kn
≥ C

k
lim inf
n→∞

1
n

Zn =
AC
k

> 0

which proves the first part of the Theorem.
(Note: we made no assumptions on the moments of µ.)

For the second part, if µ has finite first moment with respect to d , we
apply Kingman’s Theorem to d(x ,wknx), to get existence of the limit.



Positive drift - end of proof

Since Zn is a lower bound for d(x ,wknx), we get almost surely

lim inf
n→∞

d(x ,wknx)

kn
≥ C

k
lim inf
n→∞

1
n

Zn =
AC
k

> 0

which proves the first part of the Theorem.
(Note: we made no assumptions on the moments of µ.)

For the second part, if µ has finite first moment with respect to d ,

we
apply Kingman’s Theorem to d(x ,wknx), to get existence of the limit.



Positive drift - end of proof

Since Zn is a lower bound for d(x ,wknx), we get almost surely

lim inf
n→∞

d(x ,wknx)

kn
≥ C

k
lim inf
n→∞

1
n

Zn =
AC
k

> 0

which proves the first part of the Theorem.
(Note: we made no assumptions on the moments of µ.)

For the second part, if µ has finite first moment with respect to d , we
apply Kingman’s Theorem to d(x ,wknx),

to get existence of the limit.



Positive drift - end of proof

Since Zn is a lower bound for d(x ,wknx), we get almost surely

lim inf
n→∞

d(x ,wknx)

kn
≥ C

k
lim inf
n→∞

1
n

Zn =
AC
k

> 0

which proves the first part of the Theorem.
(Note: we made no assumptions on the moments of µ.)

For the second part, if µ has finite first moment with respect to d , we
apply Kingman’s Theorem to d(x ,wknx), to get existence of the limit.



Translation length
Proposition
There exists C0 = C0(δ), such that,

If an isometry g of a δ-hyperbolic
space X satisfies the inequality d(x ,gx) ≥ 2(gx · g−1x)x + C0, then
the translation length of g is

τ(g) = d(x ,gx)− 2(g−1x · gx)x + O(δ). (6)
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Growth of translation length

Strategy of proof:

τ(wn) = d(x ,wnx)− 2(w−1
n x · wnx)x + O(δ).

1. Displacement term

d(x ,wnx) ≥ Ln

is large (by positive drift)
2. Need to show:

(w−1
n x · wnx)x = o(n)

is small
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Splitting the RW in two

We shall introduce the notation

un := w−1
n w2n = gn+1gn+2 · · · g2n

Key point: Note that for each m, the G-valued processes

wn = g1g2 . . . gn

and
un := gn+1gn+2 · · · g2n

are independent.
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Fellow traveling is contagious

Lemma
For any four points a,b, c and d in a Gromov hyperbolic space X, if
(a · b)x ≥ A,

(c · d)x ≥ A and (a · c)x ≤ A−O(δ) then
(a · c)x = (b · d)x + O(δ).
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Fellow traveling is contagious

Lemma
For any four points a,b, c and d in a Gromov hyperbolic space X, if
(a · b)x ≥ A, (c · d)x ≥ A and (a · c)x ≤ A−O(δ) then
(a · c)x = (b · d)x + O(δ).

x wnx

w2nx

u−1
n x

w−1
2n x



Lemma (Lemma A)
If f : N→ N is any function such that f (n)→∞ as n→∞,

then

P
(
(u−1

n x · wnx)x ≤ f (n)
)
→ 1

as n→∞.

Proof.
By definition of shadows,

P
(
(u−1

n x · wnx)x ≤ f (n)
)

= P(u−1
n x 6∈ Sx (wnx ,R))

where R = d(x ,wnx)− f (n).
As wn and u−1

n are independent and the distribution of u−1
n is µ̌n,

P
(
(u−1

n x · wnx)x ≤ f (n)
)

= 1−
∑
g∈G

µ̌n(Sx (gx ,R))µn(g)

As the distance parameter of the shadows on the RHS is f (n),
decay of shadows gives

P
(
(u−1

n x · wnx)x ≤ f (n)
)
≥ 1− ϕ(f (n))→ 1
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Lemma (Lemma B)
For any ` < L/2 we have

P ((wnx · w2nx)x ≥ `n)→ 1, as n→∞,

The same argument applied to w−1
2n x shows

P
(

(u−1
n x · w−1

2n x)x ≥ `n
)
→ 1

as n→∞.
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Proof: growth of translation lengths
I By Lemma A,

(u−1
n x · wnx)x = o(n)

I By Lemma B,

(wnx · w2nx)x ≥ `n, (u−1
n x · w−1

2n x)x ≥ `n

I Fellow traveling is contagious⇒

(w−1
2n x · w2nx)x = o(n)

I By translation length formula,

τ(w2n) = d(x ,w2nx)−2(w−1
2n x · w2nx)x +O(δ) ≥ (L−ε)(2n)

which completes the proof.
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