Random walks on weakly hyperbolic groups

Giulio Tiozzo
University of Toronto

Random and Arithmetic Structures in Topology
MSRI - Fall 2020

Random walks on weakly hyperbolic groups Summary

- Lecture 1 (Aug 31, 10.30): Introduction to random walks on groups

Random walks on weakly hyperbolic groups Summary

- Lecture 1 (Aug 31, 10.30): Introduction to random walks on groups
- Lecture 2 (Sep 1, 10.30): Horofunctions + convergence to the boundary

Random walks on weakly hyperbolic groups Summary

- Lecture 1 (Aug 31, 10.30): Introduction to random walks on groups
- Lecture 2 (Sep 1, 10.30): Horofunctions + convergence to the boundary
- Lecture 3 (Sep 3, 9.00): Positive drift + genericity of loxodromics

Random walks on weakly hyperbolic groups Summary

- Lecture 1 (Aug 31, 10.30): Introduction to random walks on groups
- Lecture 2 (Sep 1, 10.30): Horofunctions + convergence to the boundary
- Lecture 3 (Sep 3, 9.00): Positive drift + genericity of loxodromics

Main references:

Random walks on weakly hyperbolic groups Summary

- Lecture 1 (Aug 31, 10.30): Introduction to random walks on groups
- Lecture 2 (Sep 1, 10.30): Horofunctions + convergence to the boundary
- Lecture 3 (Sep 3, 9.00): Positive drift + genericity of loxodromics

Main references:
J. Maher and G. T.,

Random walks on weakly hyperbolic groups Summary

- Lecture 1 (Aug 31, 10.30): Introduction to random walks on groups
- Lecture 2 (Sep 1, 10.30): Horofunctions + convergence to the boundary
- Lecture 3 (Sep 3, 9.00): Positive drift + genericity of loxodromics

Main references:
J. Maher and G. T.,

Random walks on weakly hyperbolic groups
Random walks, WPD actions, and the Cremona group

Setup recall

Let G be a countable group of isometries of a δ-hyperbolic metric space X,

Setup recall

Let G be a countable group of isometries of a δ-hyperbolic metric space X, such that the semigroup generated by the support of μ is non-elementary.

Setup recall

Let G be a countable group of isometries of a δ-hyperbolic metric space X, such that the semigroup generated by the support of μ is non-elementary. Consider

$$
w_{n}:=g_{1} g_{2} \ldots g_{n} .
$$

Setup recall

Let G be a countable group of isometries of a δ-hyperbolic metric space X, such that the semigroup generated by the support of μ is non-elementary. Consider

$$
w_{n}:=g_{1} g_{2} \ldots g_{n}
$$

Setup recall

Let G be a countable group of isometries of a δ-hyperbolic metric space X, such that the semigroup generated by the support of μ is non-elementary. Consider

$$
w_{n}:=g_{1} g_{2} \ldots g_{n}
$$

Setup recall

Let G be a countable group of isometries of a δ-hyperbolic metric space X, such that the semigroup generated by the support of μ is non-elementary. Consider

$$
w_{n}:=g_{1} g_{2} \ldots g_{n}
$$

Setup recall

Let G be a countable group of isometries of a δ-hyperbolic metric space X, such that the semigroup generated by the support of μ is non-elementary. Consider

$$
w_{n}:=g_{1} g_{2} \ldots g_{n}
$$

Setup recall

Let G be a countable group of isometries of a δ-hyperbolic metric space X, such that the semigroup generated by the support of μ is non-elementary. Consider

$$
w_{n}:=g_{1} g_{2} \ldots g_{n}
$$

Setup recall

Let G be a countable group of isometries of a δ-hyperbolic metric space X, such that the semigroup generated by the support of μ is non-elementary. Consider

$$
w_{n}:=g_{1} g_{2} \ldots g_{n}
$$

Setup recall

Let G be a countable group of isometries of a δ-hyperbolic metric space X, such that the semigroup generated by the support of μ is non-elementary. Consider

$$
w_{n}:=g_{1} g_{2} \ldots g_{n}
$$

Setup recall

Let G be a countable group of isometries of a δ-hyperbolic metric space X, such that the semigroup generated by the support of μ is non-elementary. Consider

$$
w_{n}:=g_{1} g_{2} \ldots g_{n}
$$

Setup recall

Let G be a countable group of isometries of a δ-hyperbolic metric space X, such that the semigroup generated by the support of μ is non-elementary. Consider

$$
w_{n}:=g_{1} g_{2} \ldots g_{n}
$$

Setup recall

Let G be a countable group of isometries of a δ-hyperbolic metric space X, such that the semigroup generated by the support of μ is non-elementary. Consider

$$
w_{n}:=g_{1} g_{2} \ldots g_{n}
$$

Today's results

Theorem (Maher-T. '18)
Let G be a countable group of isometries of a δ-hyperbolic metric space X,

Today's results

Theorem (Maher-T. '18)
Let G be a countable group of isometries of a δ-hyperbolic metric space X, such that the semigroup generated by the support of μ is non-elementary.

Today's results

Theorem (Maher-T. '18)
Let G be a countable group of isometries of a δ-hyperbolic metric space X, such that the semigroup generated by the support of μ is non-elementary. Then:

Today's results

Theorem (Maher-T. '18)

Let G be a countable group of isometries of a δ-hyperbolic metric space X, such that the semigroup generated by the support of μ is non-elementary. Then:

1. (Positive drift) $\exists L>0$ s.t.

$$
\liminf _{n \rightarrow \infty} \frac{d\left(w_{n} x, x\right)}{n}=L>0
$$

Today's results

Theorem (Maher-T. '18)

Let G be a countable group of isometries of a δ-hyperbolic metric space X, such that the semigroup generated by the support of μ is non-elementary. Then:

1. (Positive drift) $\exists L>0$ s.t.

$$
\liminf _{n \rightarrow \infty} \frac{d\left(w_{n} x, x\right)}{n}=L>0
$$

If μ has finite $1^{\text {st }}$ moment then

$$
\lim _{n \rightarrow \infty} \frac{d\left(w_{n} x, x\right)}{n}=L>0 \text { exists a.s. }
$$

Today's results

Theorem (Maher-T. '18)

Let G be a countable group of isometries of a δ-hyperbolic metric space X, such that the semigroup generated by the support of μ is non-elementary. Then:

1. (Positive drift) $\exists L>0$ s.t.

$$
\liminf _{n \rightarrow \infty} \frac{d\left(w_{n} x, x\right)}{n}=L>0
$$

If μ has finite $1^{\text {st }}$ moment then

$$
\lim _{n \rightarrow \infty} \frac{d\left(w_{n} x, x\right)}{n}=L>0 \text { exists a.s. }
$$

2. (Growth of translation length) For any $\epsilon>0$ we have

$$
\mathbb{P}\left(\tau\left(w_{n}\right) \geq n(L-\epsilon)\right) \rightarrow 1 \quad \text { as } n \rightarrow \infty
$$

Today's results

Theorem (Maher-T. '18)

Let G be a countable group of isometries of a δ-hyperbolic metric space X, such that the semigroup generated by the support of μ is non-elementary. Then:

1. (Positive drift) $\exists L>0$ s.t.

$$
\liminf _{n \rightarrow \infty} \frac{d\left(w_{n} x, x\right)}{n}=L>0
$$

If μ has finite $1^{\text {st }}$ moment then

$$
\lim _{n \rightarrow \infty} \frac{d\left(w_{n} x, x\right)}{n}=L>0 \text { exists a.s. }
$$

2. (Growth of translation length) For any $\epsilon>0$ we have

$$
\mathbb{P}\left(\tau\left(w_{n}\right) \geq n(L-\epsilon)\right) \rightarrow 1 \quad \text { as } n \rightarrow \infty
$$

Corollary.

$$
\mathbb{P}\left(w_{n} \text { is loxodromic }\right) \rightarrow 1
$$

Hyperbolic isometries

Definition
Given an isometry g of X and $x \in X$, we define its translation length as

Hyperbolic isometries

Definition
Given an isometry g of X and $x \in X$, we define its translation length as

$$
\tau(g):=\lim _{n \rightarrow \infty} \frac{d\left(g^{n} x, x\right)}{n}
$$

Hyperbolic isometries

Definition
Given an isometry g of X and $x \in X$, we define its translation length as

$$
\tau(g):=\lim _{n \rightarrow \infty} \frac{d\left(g^{n} x, x\right)}{n}
$$

Lemma (Classification of isometries of hyperbolic spaces)
Let g be an isometry of a δ-hyperbolic metric space X (not necessarily proper).

Hyperbolic isometries

Definition
Given an isometry g of X and $x \in X$, we define its translation length as

$$
\tau(g):=\lim _{n \rightarrow \infty} \frac{d\left(g^{n} x, x\right)}{n}
$$

Lemma (Classification of isometries of hyperbolic spaces)
Let g be an isometry of a δ-hyperbolic metric space X (not necessarily proper). Then either:

Hyperbolic isometries

Definition
Given an isometry g of X and $x \in X$, we define its translation length as

$$
\tau(g):=\lim _{n \rightarrow \infty} \frac{d\left(g^{n} x, x\right)}{n}
$$

Lemma (Classification of isometries of hyperbolic spaces)
Let g be an isometry of a δ-hyperbolic metric space X (not necessarily proper). Then either:

1. g has bounded orbits. Then g is called elliptic.

Hyperbolic isometries

Definition
Given an isometry g of X and $x \in X$, we define its translation length as

$$
\tau(g):=\lim _{n \rightarrow \infty} \frac{d\left(g^{n} x, x\right)}{n}
$$

Lemma (Classification of isometries of hyperbolic spaces)
Let g be an isometry of a δ-hyperbolic metric space X (not necessarily proper). Then either:

1. g has bounded orbits. Then g is called elliptic.
2. g has unbounded orbits and $\tau(g)=0$. Then g is called parabolic.

Hyperbolic isometries

Definition
Given an isometry g of X and $x \in X$, we define its translation length as

$$
\tau(g):=\lim _{n \rightarrow \infty} \frac{d\left(g^{n} x, x\right)}{n}
$$

Lemma (Classification of isometries of hyperbolic spaces)

Let g be an isometry of a δ-hyperbolic metric space X (not necessarily proper). Then either:

1. g has bounded orbits. Then g is called elliptic.
2. g has unbounded orbits and $\tau(g)=0$. Then g is called parabolic.
3. $\tau(g)>0$. Then g is called hyperbolic or loxodromic, and has precisely two fixed points on ∂X, one attracting and one repelling.

Shadows

We define a shadow as

Shadows

We define a shadow as

$$
S_{x}(y, R):=\left\{z \in X:(y \cdot z)_{x} \geq d(x, y)-R\right\} .
$$

Shadows

We define a shadow as

$$
S_{x}(y, R):=\left\{z \in X:(y \cdot z)_{x} \geq d(x, y)-R\right\} .
$$

Shadows

We define a shadow as

$$
S_{x}(y, R):=\left\{z \in X:(y \cdot z)_{x} \geq d(x, y)-R\right\} .
$$

We call $r=d(x, y)-R$ the distance parameter.

Decay of shadows - I

Let us define

$$
\operatorname{Sh}(x, r):=\left\{S_{x}(g x, R): g \in G, d(x, g x)-R \geq r\right\}
$$

the set of shadows based at x, with centers on $G x$ and distance parameter $\geq r$.

Decay of shadows - I

Let us define

$$
\operatorname{Sh}(x, r):=\left\{S_{x}(g x, R): g \in G, d(x, g x)-R \geq r\right\}
$$

the set of shadows based at x, with centers on $G x$ and distance parameter $\geq r$.

Proposition

Let G be a countable group of isometries of a separable Gromov hyperbolic space X.

Decay of shadows - I

Let us define

$$
\operatorname{Sh}(x, r):=\left\{S_{x}(g x, R): g \in G, d(x, g x)-R \geq r\right\}
$$

the set of shadows based at x, with centers on $G x$ and distance parameter $\geq r$.

Proposition

Let G be a countable group of isometries of a separable Gromov hyperbolic space X. Let μ be a non-elementary probability distribution on G, and let ν be the hitting measure on ∂X.

Decay of shadows - I

Let us define

$$
\operatorname{Sh}(x, r):=\left\{S_{x}(g x, R): g \in G, d(x, g x)-R \geq r\right\}
$$

the set of shadows based at x, with centers on $G x$ and distance parameter $\geq r$.

Proposition

Let G be a countable group of isometries of a separable Gromov hyperbolic space X. Let μ be a non-elementary probability distribution on G, and let ν be the hitting measure on ∂X. Then

$$
\lim _{r \rightarrow \infty} \sup _{S \in S h(x, r)} \nu(\bar{S})=0
$$

Decay of shadows - I

Let us define

$$
\operatorname{Sh}(x, r):=\left\{S_{x}(g x, R): g \in G, d(x, g x)-R \geq r\right\}
$$

the set of shadows based at x, with centers on $G x$ and distance parameter $\geq r$.

Proposition

Let G be a countable group of isometries of a separable Gromov hyperbolic space X. Let μ be a non-elementary probability distribution on G, and let ν be the hitting measure on ∂X. Then

$$
\lim _{r \rightarrow \infty} \sup _{S \in S h(x, r)} \nu(\bar{S})=0
$$

Proof.

A shadow centered at $g x$ of distance parameter r is contained in a ball of radius $\approx e^{-\epsilon r}$ in the metric d_{ϵ} on ∂X.

Decay of shadows - I

Let us define

$$
\operatorname{Sh}(x, r):=\left\{S_{x}(g x, R): g \in G, d(x, g x)-R \geq r\right\}
$$

the set of shadows based at x, with centers on $G x$ and distance parameter $\geq r$.

Proposition

Let G be a countable group of isometries of a separable Gromov hyperbolic space X. Let μ be a non-elementary probability distribution on G, and let ν be the hitting measure on ∂X. Then

$$
\lim _{r \rightarrow \infty} \sup _{S \in S h(x, r)} \nu(\bar{S})=0
$$

Proof.

A shadow centered at $g x$ of distance parameter r is contained in a ball of radius $\approx e^{-\epsilon r}$ in the metric d_{ϵ} on ∂X. As ν is non-atomic,

Decay of shadows - I

Let us define

$$
\operatorname{Sh}(x, r):=\left\{S_{x}(g x, R): g \in G, d(x, g x)-R \geq r\right\}
$$

the set of shadows based at x, with centers on $G x$ and distance parameter $\geq r$.

Proposition

Let G be a countable group of isometries of a separable Gromov hyperbolic space X. Let μ be a non-elementary probability distribution on G, and let ν be the hitting measure on ∂X. Then

$$
\lim _{r \rightarrow \infty} \sup _{S \in S h(x, r)} \nu(\bar{S})=0
$$

Proof.

A shadow centered at $g x$ of distance parameter r is contained in a ball of radius $\approx e^{-\epsilon r}$ in the metric d_{ϵ} on ∂X. As ν is non-atomic, the measure of a ball of radius $e^{-\epsilon r}$ tends to zero

Decay of shadows - I

Let us define

$$
\operatorname{Sh}(x, r):=\left\{S_{x}(g x, R): g \in G, d(x, g x)-R \geq r\right\}
$$

the set of shadows based at x, with centers on $G x$ and distance parameter $\geq r$.

Proposition

Let G be a countable group of isometries of a separable Gromov hyperbolic space X. Let μ be a non-elementary probability distribution on G, and let ν be the hitting measure on ∂X. Then

$$
\lim _{r \rightarrow \infty} \sup _{S \in S h(x, r)} \nu(\bar{S})=0
$$

Proof.

A shadow centered at $g x$ of distance parameter r is contained in a ball of radius $\approx e^{-\epsilon r}$ in the metric d_{ϵ} on ∂X. As ν is non-atomic, the measure of a ball of radius $e^{-\epsilon r}$ tends to zero uniformly as $r \rightarrow 0$.

Decay of shadows - II

For U a subset of X, let

$$
H_{x}^{+}(U):=\mathbb{P}\left(\exists n \geq 0: w_{n} x \in U\right)
$$

Decay of shadows - II

For U a subset of X, let

$$
H_{x}^{+}(U):=\mathbb{P}\left(\exists n \geq 0: w_{n} x \in U\right)
$$

the probability of ever hitting the shadow.

Decay of shadows - II

For U a subset of X, let

$$
H_{x}^{+}(U):=\mathbb{P}\left(\exists n \geq 0: w_{n} x \in U\right)
$$

the probability of ever hitting the shadow.

Proposition

Let G be a countable group which acts by isometries on a separable Gromov hyperbolic space X, and μ a non-elementary probability distribution on G.

Decay of shadows - II

For U a subset of X, let

$$
H_{x}^{+}(U):=\mathbb{P}\left(\exists n \geq 0: w_{n} x \in U\right)
$$

the probability of ever hitting the shadow.

Proposition

Let G be a countable group which acts by isometries on a separable Gromov hyperbolic space X, and μ a non-elementary probability distribution on G. Then

$$
\sup _{S \in S h(x, r)} H_{x}^{+}(S) \rightarrow 0 \quad \text { as } r \rightarrow \infty
$$

Decay of shadows - II

For U a subset of X, let

$$
H_{x}^{+}(U):=\mathbb{P}\left(\exists n \geq 0: w_{n} x \in U\right)
$$

the probability of ever hitting the shadow.

Proposition

Let G be a countable group which acts by isometries on a separable Gromov hyperbolic space X, and μ a non-elementary probability distribution on G. Then

$$
\sup _{S \in S h(x, r)} H_{x}^{+}(S) \rightarrow 0 \quad \text { as } r \rightarrow \infty
$$

Note: the decay is uniform in r !

Decay of shadows - II

For U a subset of X, let

$$
H_{x}^{+}(U):=\mathbb{P}\left(\exists n \geq 0: w_{n} x \in U\right)
$$

the probability of ever hitting the shadow.

Proposition

Let G be a countable group which acts by isometries on a separable Gromov hyperbolic space X, and μ a non-elementary probability distribution on G. Then

$$
\sup _{S \in S h(x, r)} H_{x}^{+}(S) \rightarrow 0 \quad \text { as } r \rightarrow \infty
$$

Note: the decay is uniform in r ! (But we do not know the rate)

Decay of shadows - II

For U a subset of X, let

$$
H_{x}^{+}(U):=\mathbb{P}\left(\exists n \geq 0: w_{n} x \in U\right)
$$

the probability of ever hitting the shadow.

Proposition

Let G be a countable group which acts by isometries on a separable Gromov hyperbolic space X, and μ a non-elementary probability distribution on G. Then

$$
\sup _{S \in S h(x, r)} H_{x}^{+}(S) \leq \varphi(r)
$$

for some $\varphi(r) \rightarrow 0$ as $r \rightarrow \infty$.
Note: the decay is uniform in r ! (But we do not know the rate)

Persistent segments

Let $x_{i}:=w_{k i} x$.

Persistent segments

Let $x_{i}:=w_{k i} x$. Given R, we say a subsegment $\left[x_{i}, x_{i+1}\right]$ of the sample path is persistent if:

Persistent segments

Let $x_{i}:=w_{k i} x$. Given R, we say a subsegment $\left[x_{i}, x_{i+1}\right]$ of the sample path is persistent if:

$$
\begin{align*}
& d\left(x_{i}, x_{i+1}\right) \geq 2 R+C_{0} \tag{1}\\
& x_{n} \in S_{x_{i+1}}\left(x_{i}, R\right) \text { for all } n \leq i \tag{2}\\
& x_{n} \in S_{x_{i}}\left(x_{i+1}, R\right) \text { for all } n \geq i+1 \tag{3}
\end{align*}
$$

Persistent segments

Let $x_{i}:=w_{k i} x$. Given R, we say a subsegment $\left[x_{i}, x_{i+1}\right]$ of the sample path is persistent if:

$$
\begin{align*}
& d\left(x_{i}, x_{i+1}\right) \geq 2 R+C_{0} \tag{1}\\
& x_{n} \in S_{x_{i+1}}\left(x_{i}, R\right) \text { for all } n \leq i \tag{2}\\
& x_{n} \in S_{x_{i}}\left(x_{i+1}, R\right) \text { for all } n \geq i+1 \tag{3}
\end{align*}
$$

Persistent segments exist

Lemma

Given $\epsilon>0$, there are R and k such that for any i each of (1), (2), (3) holds with probability at least $1-\epsilon$.

Persistent segments exist

Lemma

Given $\epsilon>0$, there are R and k such that for any i each of (1), (2), (3) holds with probability at least $1-\epsilon$.
The probability of (2) equals the prob. that $w_{k n} x$ never hits the complement of $S_{x_{i+1}}\left(x_{i}, R\right)$ for any $n \leq i$.

Persistent segments exist

Lemma

Given $\epsilon>0$, there are R and k such that for any i each of (1), (2), (3) holds with probability at least $1-\epsilon$.
The probability of (2) equals the prob. that $w_{k n} x$ never hits the complement of $S_{x_{i+1}}\left(x_{i}, R\right)$ for any $n \leq i$.

Persistent segments exist

Lemma

Given $\epsilon>0$, there are R and k such that for any i each of (1), (2), (3) holds with probability at least $1-\epsilon$.
The probability of (2) equals the prob. that $w_{k n} x$ never hits the complement of $S_{x_{i+1}}\left(x_{i}, R\right)$ for any $n \leq i$.

Persistent segments exist

Lemma
Given $\epsilon>0$, there are R and k such that for any i each of (1), (2), (3) holds with probability at least $1-\epsilon$.
The probability of (2) equals the prob. that $w_{k n} x$ never hits the complement of $S_{x_{i+1}}\left(x_{i}, R\right)$ for any $n \leq i$. As the complement of this shadow is contained in a shadow

$$
S_{i}=S_{x_{i}}\left(x_{i+1}, R_{i}\right)
$$

where $R_{i}=d\left(x_{i}, x_{i+1}\right)-R+O(\delta)$,

Persistent segments exist

Lemma
Given $\epsilon>0$, there are R and k such that for any i each of (1), (2), (3) holds with probability at least $1-\epsilon$.
The probability of (2) equals the prob. that $w_{k n} x$ never hits the complement of $S_{x_{i+1}}\left(x_{i}, R\right)$ for any $n \leq i$. As the complement of this shadow is contained in a shadow

$$
S_{i}=S_{x_{i}}\left(x_{i+1}, R_{i}\right)
$$

where $R_{i}=d\left(x_{i}, x_{i+1}\right)-R+O(\delta)$, the prob. that (2) holds is at least

$$
1-\mathbb{P}\left(\exists n \leq k i: w_{n} x \in S_{i}\right)
$$

Persistent segments exist

Lemma
Given $\epsilon>0$, there are R and k such that for any i each of (1), (2), (3) holds with probability at least $1-\epsilon$.
The probability of (2) equals the prob. that $w_{k n} x$ never hits the complement of $S_{x_{i+1}}\left(x_{i}, R\right)$ for any $n \leq i$. As the complement of this shadow is contained in a shadow

$$
S_{i}=S_{x_{i}}\left(x_{i+1}, R_{i}\right)
$$

where $R_{i}=d\left(x_{i}, x_{i+1}\right)-R+O(\delta)$, the prob. that (2) holds is at least

$$
1-\mathbb{P}\left(\exists n \leq k i: w_{n} x \in S_{i}\right)
$$

which equals by the Markov property

$$
\begin{equation*}
1-H_{x}^{-}\left(w_{k i}^{-1} S_{i}\right) \tag{4}
\end{equation*}
$$

Persistent segments exist

Lemma

Given $\epsilon>0$, there are R and k such that for any i each of (1), (2), (3) holds with probability at least $1-\epsilon$.
The probability of (2) equals the prob. that $w_{k n} x$ never hits the complement of $S_{x_{i+1}}\left(x_{i}, R\right)$ for any $n \leq i$.

Persistent segments exist

Lemma
Given $\epsilon>0$, there are R and k such that for any i each of (1), (2), (3) holds with probability at least $1-\epsilon$.
The probability of (2) equals the prob. that $w_{k n} x$ never hits the complement of $S_{x_{i+1}}\left(x_{i}, R\right)$ for any $n \leq i$. As the complement of this shadow is contained in a shadow

$$
S_{i}=S_{x_{i}}\left(x_{i+1}, R_{i}\right)
$$

where $R_{i}=d\left(x_{i}, x_{i+1}\right)-R+O(\delta)$, the prob. that (2) holds is at least

$$
1-\mathbb{P}\left(\exists n \leq k i: w_{n} x \in S_{i}\right)
$$

which equals by the Markov property

$$
\begin{equation*}
1-H_{x}^{-}\left(w_{k i}^{-1} S_{i}\right) \tag{5}
\end{equation*}
$$

The distance parameter of $w_{k i}^{-1} S_{i}$, is $R+O(\delta)$; hence, by decay of shadows, we may choose R sufficiently large such that (5) is at least $1-\epsilon$.

Persistent segments are disjoint

Lemma
For some $C>0$,

$$
d\left(x, w_{k n} x\right) \geq C \#\left\{0 \leq i \leq n-1:\left[x_{i}, x_{i+1}\right] \text { is persistent }\right\}
$$

Persistent segments are disjoint

Lemma
For some $C>0$,

$$
d\left(x, w_{k n} x\right) \geq C \#\left\{0 \leq i \leq n-1:\left[x_{i}, x_{i+1}\right] \text { is persistent }\right\}
$$

Persistent segments are disjoint

Lemma
For some $C>0$,

$$
d\left(x, w_{k n} x\right) \geq C \#\left\{0 \leq i \leq n-1:\left[x_{i}, x_{i+1}\right] \text { is persistent }\right\}
$$

Persistent segments are disjoint

Lemma
For some $C>0$,

$$
d\left(x, w_{k n} x\right) \geq C \#\left\{0 \leq i \leq n-1:\left[x_{i}, x_{i+1}\right] \text { is persistent }\right\}
$$

Proof.
Let γ be a geodesic from x to $x_{n}=w_{k n} x$.

Persistent segments are disjoint

Lemma
For some $C>0$,

$$
d\left(x, w_{k n} x\right) \geq C \#\left\{0 \leq i \leq n-1:\left[x_{i}, x_{i+1}\right] \text { is persistent }\right\}
$$

Proof.
Let γ be a geodesic from x to $x_{n}=w_{k n} x$.

- If $\left[x_{i}, x_{i+1}\right]$ is persistent,

Persistent segments are disjoint

Lemma
For some $C>0$,

$$
d\left(x, w_{k n} x\right) \geq C \#\left\{0 \leq i \leq n-1:\left[x_{i}, x_{i+1}\right] \text { is persistent }\right\}
$$

Proof.

Let γ be a geodesic from x to $x_{n}=w_{k n} x$.

- If $\left[x_{i}, x_{i+1}\right]$ is persistent, γ has a subsegment γ_{i} of length $\geq \boldsymbol{C}$ which fellow travels $\left[x_{i}, x_{i+1}\right.$],

Persistent segments are disjoint

Lemma
For some $C>0$,

$$
d\left(x, w_{k n} x\right) \geq C \#\left\{0 \leq i \leq n-1:\left[x_{i}, x_{i+1}\right] \text { is persistent }\right\}
$$

Proof.

Let γ be a geodesic from x to $x_{n}=w_{k n} x$.

- If $\left[x_{i}, x_{i+1}\right]$ is persistent, γ has a subsegment γ_{i} of length $\geq \boldsymbol{C}$ which fellow travels [x_{i}, x_{i+1}], and is disjoint from both $S_{x_{i+1}}\left(x_{i}, R+C\right)$ and $S_{x_{i}}\left(x_{i+1}, R+C\right)$.

Persistent segments are disjoint

Lemma
For some $C>0$,

$$
d\left(x, w_{k n} x\right) \geq C \#\left\{0 \leq i \leq n-1:\left[x_{i}, x_{i+1}\right] \text { is persistent }\right\}
$$

Proof.

Let γ be a geodesic from x to $x_{n}=w_{k n} x$.

- If $\left[x_{i}, x_{i+1}\right]$ is persistent, γ has a subsegment γ_{i} of length $\geq \boldsymbol{C}$ which fellow travels [x_{i}, x_{i+1}], and is disjoint from both $S_{x_{i+1}}\left(x_{i}, R+C\right)$ and $S_{x_{i}}\left(x_{i+1}, R+C\right)$.
- If $\left[x_{j}, x_{j+1}\right]$ is also persistent, then γ_{i} and γ_{j} are disjoint

Persistent segments are disjoint

Lemma
For some $C>0$,

$$
d\left(x, w_{k n} x\right) \geq C \#\left\{0 \leq i \leq n-1:\left[x_{i}, x_{i+1}\right] \text { is persistent }\right\}
$$

Proof.

Let γ be a geodesic from x to $x_{n}=w_{k n} x$.

- If $\left[x_{i}, x_{i+1}\right]$ is persistent, γ has a subsegment γ_{i} of length $\geq \boldsymbol{C}$ which fellow travels [x_{i}, x_{i+1}], and is disjoint from both $S_{x_{i+1}}\left(x_{i}, R+C\right)$ and $S_{x_{i}}\left(x_{i+1}, R+C\right)$.
- If $\left[x_{j}, x_{j+1}\right]$ is also persistent, then γ_{i} and γ_{j} are disjoint by (weak)-convexity of shadows.

Persistent segments are disjoint

Lemma
For some $C>0$,

$$
d\left(x, w_{k n} x\right) \geq C \#\left\{0 \leq i \leq n-1:\left[x_{i}, x_{i+1}\right] \text { is persistent }\right\}
$$

Persistent segments are disjoint

Lemma
For some $C>0$,

$$
d\left(x, w_{k n} x\right) \geq C \#\left\{0 \leq i \leq n-1:\left[x_{i}, x_{i+1}\right] \text { is persistent }\right\}
$$

Proof.

Let γ be a geodesic from x to $x_{n}=w_{k n} x$.

- If $\left[x_{i}, x_{i+1}\right]$ is persistent, γ has a subsegment γ_{i} of length $\geq \boldsymbol{C}$ which fellow travels $\left[x_{i}, x_{i+1}\right.$], and is disjoint from both $S_{x_{i+1}}\left(x_{i}, R+C\right)$ and $S_{x_{i}}\left(x_{i+1}, R+C\right)$.
- If $\left[x_{j}, x_{j+1}\right]$ is also persistent, then γ_{i} and γ_{j} are disjoint by (weak)-convexity of shadows.
- Therefore $d\left(x, w_{k n} x\right)$ is at least C times the number of persistent subsegments between x and $w_{k n} x$.

Convergence of subadditive processes

We will now apply Kingman's subadditive ergodic theorem.

Convergence of subadditive processes

We will now apply Kingman's subadditive ergodic theorem.
Theorem
Let (Ω, \mathbb{P}) be a probability space and $U: \Omega \rightarrow \Omega$ a measure preserving transformation.

Convergence of subadditive processes

We will now apply Kingman's subadditive ergodic theorem.
Theorem
Let (Ω, \mathbb{P}) be a probability space and $U: \Omega \rightarrow \Omega$ a measure preserving transformation. If:

- $W_{n}: \Omega \rightarrow \mathbb{R}^{\geq 0}$ is a subadditive sequence of random variables, i.e.

$$
W_{n+m} \leq W_{n}+W_{m} \circ U^{n}
$$

for all $m, n \in \mathbb{N}$

Convergence of subadditive processes

We will now apply Kingman's subadditive ergodic theorem.
Theorem
Let (Ω, \mathbb{P}) be a probability space and $U: \Omega \rightarrow \Omega$ a measure preserving transformation. If:

- $W_{n}: \Omega \rightarrow \mathbb{R}^{\geq 0}$ is a subadditive sequence of random variables, i.e.

$$
W_{n+m} \leq W_{n}+W_{m} \circ U^{n}
$$

for all $m, n \in \mathbb{N}$

- and W_{1} has finite first moment,

Convergence of subadditive processes

We will now apply Kingman's subadditive ergodic theorem.
Theorem
Let (Ω, \mathbb{P}) be a probability space and $U: \Omega \rightarrow \Omega$ a measure preserving transformation. If:

- $W_{n}: \Omega \rightarrow \mathbb{R}^{\geq 0}$ is a subadditive sequence of random variables, i.e.

$$
W_{n+m} \leq W_{n}+W_{m} \circ U^{n}
$$

for all $m, n \in \mathbb{N}$

- and W_{1} has finite first moment,
then there is a U-invariant random variable W_{∞} such that

$$
\lim _{n \rightarrow \infty} \frac{1}{n} W_{n}=W_{\infty}
$$

\mathbb{P}-almost surely, and in $L^{1}(\Omega, \mathbb{P})$.

Positive drift - proof

Let us define for each n

Positive drift - proof

Let us define for each n

$$
Z_{n}:=\sum_{i=0}^{n-1} Y_{i}=\#\left\{0 \leq i \leq n-1:\left[x_{i}, x_{i+1}\right] \text { is persistent }\right\}
$$

Positive drift - proof

Let us define for each n

$$
Z_{n}:=\sum_{i=0}^{n-1} Y_{i}=\#\left\{0 \leq i \leq n-1:\left[x_{i}, x_{i+1}\right] \text { is persistent }\right\}
$$

the number of persistent subsegments along $\left[x, x_{n}=w_{k n} x\right]$.

Positive drift - proof

Let us define for each n

$$
Z_{n}:=\sum_{i=0}^{n-1} Y_{i}=\#\left\{0 \leq i \leq n-1:\left[x_{i}, x_{i+1}\right] \text { is persistent }\right\}
$$

the number of persistent subsegments along $\left[x, x_{n}=w_{k n} x\right]$. The random variables $\left(Z_{n}\right)_{n \in \mathbb{N}}$ are non-negative and have finite expectation, and subadditive by the Markov property.

Positive drift - proof

Let us define for each n

$$
Z_{n}:=\sum_{i=0}^{n-1} Y_{i}=\#\left\{0 \leq i \leq n-1:\left[x_{i}, x_{i+1}\right] \text { is persistent }\right\}
$$

the number of persistent subsegments along $\left[x, x_{n}=w_{k n} x\right]$. The random variables $\left(Z_{n}\right)_{n \in \mathbb{N}}$ are non-negative and have finite expectation, and subadditive by the Markov property. Moreover,

$$
\mathbb{E}\left(Z_{n}\right)=\sum_{i=0}^{n-1} \mathbb{E}\left(Y_{i}\right) \geq n \eta
$$

with $\eta>0$.

Positive drift - proof

Let us define for each n

$$
Z_{n}:=\sum_{i=0}^{n-1} Y_{i}=\#\left\{0 \leq i \leq n-1:\left[x_{i}, x_{i+1}\right] \text { is persistent }\right\}
$$

the number of persistent subsegments along $\left[x, x_{n}=w_{k n} x\right]$. The random variables $\left(Z_{n}\right)_{n \in \mathbb{N}}$ are non-negative and have finite expectation, and subadditive by the Markov property. Moreover,

$$
\mathbb{E}\left(Z_{n}\right)=\sum_{i=0}^{n-1} \mathbb{E}\left(Y_{i}\right) \geq n \eta
$$

with $\eta>0$.
We now apply the Theorem to get

$$
\frac{1}{n} Z_{n} \rightarrow A
$$

in L^{1};

Positive drift - proof

Let us define for each n

$$
Z_{n}:=\sum_{i=0}^{n-1} Y_{i}=\#\left\{0 \leq i \leq n-1:\left[x_{i}, x_{i+1}\right] \text { is persistent }\right\}
$$

the number of persistent subsegments along $\left[x, x_{n}=w_{k n} x\right]$.
The random variables $\left(Z_{n}\right)_{n \in \mathbb{N}}$ are non-negative and have finite expectation, and subadditive by the Markov property. Moreover,

$$
\mathbb{E}\left(Z_{n}\right)=\sum_{i=0}^{n-1} \mathbb{E}\left(Y_{i}\right) \geq n \eta
$$

with $\eta>0$.
We now apply the Theorem to get

$$
\frac{1}{n} Z_{n} \rightarrow A
$$

in L^{1}; finally, since $\mathbb{E}\left(Z_{\infty}\right)=\lim _{n} \mathbb{E}\left(\frac{1}{n} Z_{n}\right) \geq \eta>0$, we have $A>0$.

Positive drift - end of proof

Since Z_{n} is a lower bound for $d\left(x, w_{k n} x\right)$,

Positive drift - end of proof

Since Z_{n} is a lower bound for $d\left(x, w_{k n} x\right)$, we get almost surely

Positive drift - end of proof

Since Z_{n} is a lower bound for $d\left(x, w_{k n} x\right)$, we get almost surely

$$
\liminf _{n \rightarrow \infty} \frac{d\left(x, w_{k n} x\right)}{k n}
$$

Positive drift - end of proof

Since Z_{n} is a lower bound for $d\left(x, w_{k n} x\right)$, we get almost surely

$$
\liminf _{n \rightarrow \infty} \frac{d\left(x, w_{k n} x\right)}{k n} \geq \frac{C}{k} \liminf _{n \rightarrow \infty} \frac{1}{n} Z_{n}
$$

Positive drift - end of proof

Since Z_{n} is a lower bound for $d\left(x, w_{k n} x\right)$, we get almost surely

$$
\liminf _{n \rightarrow \infty} \frac{d\left(x, w_{k n} x\right)}{k n} \geq \frac{C}{k} \liminf _{n \rightarrow \infty} \frac{1}{n} Z_{n}=\frac{A C}{k}>0
$$

Positive drift - end of proof

Since Z_{n} is a lower bound for $d\left(x, w_{k n} x\right)$, we get almost surely

$$
\liminf _{n \rightarrow \infty} \frac{d\left(x, w_{k n} x\right)}{k n} \geq \frac{C}{k} \liminf _{n \rightarrow \infty} \frac{1}{n} Z_{n}=\frac{A C}{k}>0
$$

which proves the first part of the Theorem.

Positive drift - end of proof

Since Z_{n} is a lower bound for $d\left(x, w_{k n} x\right)$, we get almost surely

$$
\liminf _{n \rightarrow \infty} \frac{d\left(x, w_{k n} x\right)}{k n} \geq \frac{C}{k} \liminf _{n \rightarrow \infty} \frac{1}{n} Z_{n}=\frac{A C}{k}>0
$$

which proves the first part of the Theorem.
(Note: we made no assumptions on the moments of μ.)

Positive drift - end of proof

Since Z_{n} is a lower bound for $d\left(x, w_{k n} x\right)$, we get almost surely

$$
\liminf _{n \rightarrow \infty} \frac{d\left(x, w_{k n} x\right)}{k n} \geq \frac{C}{k} \liminf _{n \rightarrow \infty} \frac{1}{n} Z_{n}=\frac{A C}{k}>0
$$

which proves the first part of the Theorem.
(Note: we made no assumptions on the moments of μ.)
For the second part, if μ has finite first moment with respect to d,

Positive drift - end of proof

Since Z_{n} is a lower bound for $d\left(x, w_{k n} x\right)$, we get almost surely

$$
\liminf _{n \rightarrow \infty} \frac{d\left(x, w_{k n} x\right)}{k n} \geq \frac{C}{k} \liminf _{n \rightarrow \infty} \frac{1}{n} Z_{n}=\frac{A C}{k}>0
$$

which proves the first part of the Theorem.
(Note: we made no assumptions on the moments of μ.)
For the second part, if μ has finite first moment with respect to d, we apply Kingman's Theorem to $d\left(x, w_{k n} x\right)$,

Positive drift - end of proof

Since Z_{n} is a lower bound for $d\left(x, w_{k n} x\right)$, we get almost surely

$$
\liminf _{n \rightarrow \infty} \frac{d\left(x, w_{k n} x\right)}{k n} \geq \frac{C}{k} \liminf _{n \rightarrow \infty} \frac{1}{n} Z_{n}=\frac{A C}{k}>0
$$

which proves the first part of the Theorem.
(Note: we made no assumptions on the moments of μ.)
For the second part, if μ has finite first moment with respect to d, we apply Kingman's Theorem to $d\left(x, w_{k n} x\right)$, to get existence of the limit.

Translation length

Proposition

There exists $C_{0}=C_{0}(\delta)$, such that,

Translation length

Proposition

There exists $C_{0}=C_{0}(\delta)$, such that, If an isometry g of a δ-hyperbolic space X satisfies the inequality $d(x, g x) \geq 2\left(g x \cdot g^{-1} x\right)_{x}+C_{0}$,

Translation length

Proposition

There exists $C_{0}=C_{0}(\delta)$, such that, If an isometry g of a δ-hyperbolic space X satisfies the inequality $d(x, g x) \geq 2\left(g x \cdot g^{-1} x\right)_{x}+C_{0}$, then the translation length of g is

$$
\begin{equation*}
\tau(g)=d(x, g x)-2\left(g^{-1} x \cdot g x\right)_{x}+O(\delta) \tag{6}
\end{equation*}
$$

Translation length

Proposition

There exists $C_{0}=C_{0}(\delta)$, such that, If an isometry g of a δ-hyperbolic space X satisfies the inequality $d(x, g x) \geq 2\left(g x \cdot g^{-1} x\right)_{x}+C_{0}$, then the translation length of g is

$$
\begin{equation*}
\tau(g)=d(x, g x)-2\left(g^{-1} x \cdot g x\right)_{x}+O(\delta) \tag{6}
\end{equation*}
$$

Growth of translation length

Strategy of proof:

$$
\tau\left(w_{n}\right)=d\left(x, w_{n} x\right)-2\left(w_{n}^{-1} x \cdot w_{n} x\right)_{x}+O(\delta)
$$

Growth of translation length

Strategy of proof:

$$
\tau\left(w_{n}\right)=d\left(x, w_{n} x\right)-2\left(w_{n}^{-1} x \cdot w_{n} x\right)_{x}+O(\delta)
$$

1. Displacement term

$$
d\left(x, w_{n} x\right) \geq L n
$$

is large

Growth of translation length

Strategy of proof:

$$
\tau\left(w_{n}\right)=d\left(x, w_{n} x\right)-2\left(w_{n}^{-1} x \cdot w_{n} x\right)_{x}+O(\delta)
$$

1. Displacement term

$$
d\left(x, w_{n} x\right) \geq L n
$$

is large (by positive drift)

Growth of translation length

Strategy of proof:

$$
\tau\left(w_{n}\right)=d\left(x, w_{n} x\right)-2\left(w_{n}^{-1} x \cdot w_{n} x\right)_{x}+O(\delta)
$$

1. Displacement term

$$
d\left(x, w_{n} x\right) \geq L n
$$

is large (by positive drift)
2. Need to show:

$$
\left(w_{n}^{-1} x \cdot w_{n} x\right)_{x}=o(n)
$$

is small

Splitting the RW in two

We shall introduce the notation

$$
u_{n}:=w_{n}^{-1} w_{2 n}=g_{n+1} g_{n+2} \cdots g_{2 n}
$$

Splitting the RW in two

We shall introduce the notation

$$
u_{n}:=w_{n}^{-1} w_{2 n}=g_{n+1} g_{n+2} \cdots g_{2 n}
$$

Key point: Note that for each m, the G-valued processes

$$
w_{n}=g_{1} g_{2} \ldots g_{n}
$$

and

$$
u_{n}:=g_{n+1} g_{n+2} \cdots g_{2 n}
$$

are independent.

Splitting the RW in two

We shall introduce the notation

$$
u_{n}:=w_{n}^{-1} w_{2 n}=g_{n+1} g_{n+2} \cdots g_{2 n}
$$

Key point: Note that for each m, the G-valued processes

$$
w_{n}=g_{1} g_{2} \ldots g_{n}
$$

and

$$
u_{n}:=g_{n+1} g_{n+2} \cdots g_{2 n}
$$

are independent.

Fellow traveling is contagious

Lemma
For any four points a, b, c and d in a Gromov hyperbolic space X, if $(a \cdot b)_{x} \geq A$,

Fellow traveling is contagious

Lemma
For any four points a, b, c and d in a Gromov hyperbolic space X, if $(a \cdot b)_{x} \geq A,(c \cdot d)_{x} \geq A$

Fellow traveling is contagious

Lemma
For any four points a, b, c and d in a Gromov hyperbolic space X, if $(a \cdot b)_{x} \geq A,(c \cdot d)_{x} \geq A$ and $(a \cdot c)_{x} \leq A-O(\delta)$

Fellow traveling is contagious

Lemma

For any four points a, b, c and d in a Gromov hyperbolic space X, if $(a \cdot b)_{x} \geq A,(c \cdot d)_{x} \geq A$ and $(a \cdot c)_{x} \leq A-O(\delta)$ then
$(a \cdot c)_{x}=(b \cdot d)_{x}+O(\delta)$.

Fellow traveling is contagious

Lemma

For any four points a, b, c and d in a Gromov hyperbolic space X, if $(a \cdot b)_{x} \geq A,(c \cdot d)_{x} \geq A$ and $(a \cdot c)_{x} \leq A-O(\delta)$ then
$(a \cdot c)_{x}=(b \cdot d)_{x}+O(\delta)$.

Fellow traveling is contagious

Lemma
For any four points a, b, c and d in a Gromov hyperbolic space X, if $(a \cdot b)_{x} \geq A,(c \cdot d)_{x} \geq A$ and $(a \cdot c)_{x} \leq A-O(\delta)$ then $(a \cdot c)_{x}=(b \cdot d)_{x}+O(\delta)$.

Lemma (Lemma A)
If $f: \mathbb{N} \rightarrow \mathbb{N}$ is any function such that $f(n) \rightarrow \infty$ as $n \rightarrow \infty$,

Lemma (Lemma A)
If $f: \mathbb{N} \rightarrow \mathbb{N}$ is any function such that $f(n) \rightarrow \infty$ as $n \rightarrow \infty$, then

$$
\mathbb{P}\left(\left(u_{n}^{-1} x \cdot w_{n} x\right)_{x} \leq f(n)\right) \rightarrow 1
$$

as $n \rightarrow \infty$.

Lemma (Lemma A)
If $f: \mathbb{N} \rightarrow \mathbb{N}$ is any function such that $f(n) \rightarrow \infty$ as $n \rightarrow \infty$, then

$$
\mathbb{P}\left(\left(u_{n}^{-1} x \cdot w_{n} x\right)_{x} \leq f(n)\right) \rightarrow 1
$$

as $n \rightarrow \infty$.
Proof.
By definition of shadows,

Lemma (Lemma A)
If $f: \mathbb{N} \rightarrow \mathbb{N}$ is any function such that $f(n) \rightarrow \infty$ as $n \rightarrow \infty$, then

$$
\mathbb{P}\left(\left(u_{n}^{-1} x \cdot w_{n} x\right)_{x} \leq f(n)\right) \rightarrow 1
$$

as $n \rightarrow \infty$.

Proof.

By definition of shadows,

$$
\mathbb{P}\left(\left(u_{n}^{-1} x \cdot w_{n} x\right)_{x} \leq f(n)\right)
$$

Lemma (Lemma A)
If $f: \mathbb{N} \rightarrow \mathbb{N}$ is any function such that $f(n) \rightarrow \infty$ as $n \rightarrow \infty$, then

$$
\mathbb{P}\left(\left(u_{n}^{-1} x \cdot w_{n} x\right)_{x} \leq f(n)\right) \rightarrow 1
$$

as $n \rightarrow \infty$.

Proof.

By definition of shadows,

$$
\mathbb{P}\left(\left(u_{n}^{-1} x \cdot w_{n} x\right)_{x} \leq f(n)\right)=\mathbb{P}\left(u_{n}^{-1} x \notin S_{x}\left(w_{n} x, R\right)\right)
$$

Lemma (Lemma A)
If $f: \mathbb{N} \rightarrow \mathbb{N}$ is any function such that $f(n) \rightarrow \infty$ as $n \rightarrow \infty$, then

$$
\mathbb{P}\left(\left(u_{n}^{-1} x \cdot w_{n} x\right)_{x} \leq f(n)\right) \rightarrow 1
$$

as $n \rightarrow \infty$.
Proof.
By definition of shadows,

$$
\mathbb{P}\left(\left(u_{n}^{-1} x \cdot w_{n} x\right)_{x} \leq f(n)\right)=\mathbb{P}\left(u_{n}^{-1} x \notin S_{x}\left(w_{n} x, R\right)\right)
$$

where $R=d\left(x, w_{n} x\right)-f(n)$.

Lemma (Lemma A)
If $f: \mathbb{N} \rightarrow \mathbb{N}$ is any function such that $f(n) \rightarrow \infty$ as $n \rightarrow \infty$, then

$$
\mathbb{P}\left(\left(u_{n}^{-1} x \cdot w_{n} x\right)_{x} \leq f(n)\right) \rightarrow 1
$$

as $n \rightarrow \infty$.
Proof.
By definition of shadows,

$$
\mathbb{P}\left(\left(u_{n}^{-1} x \cdot w_{n} x\right)_{x} \leq f(n)\right)=\mathbb{P}\left(u_{n}^{-1} x \notin S_{x}\left(w_{n} x, R\right)\right)
$$

where $R=d\left(x, w_{n} x\right)-f(n)$.
As w_{n} and u_{n}^{-1} are independent

Lemma (Lemma A)
If $f: \mathbb{N} \rightarrow \mathbb{N}$ is any function such that $f(n) \rightarrow \infty$ as $n \rightarrow \infty$, then

$$
\mathbb{P}\left(\left(u_{n}^{-1} x \cdot w_{n} x\right)_{x} \leq f(n)\right) \rightarrow 1
$$

as $n \rightarrow \infty$.
Proof.
By definition of shadows,

$$
\mathbb{P}\left(\left(u_{n}^{-1} x \cdot w_{n} x\right)_{x} \leq f(n)\right)=\mathbb{P}\left(u_{n}^{-1} x \notin S_{x}\left(w_{n} x, R\right)\right)
$$

where $R=d\left(x, w_{n} x\right)-f(n)$.
As w_{n} and u_{n}^{-1} are independent and the distribution of u_{n}^{-1} is $\check{\mu}_{n}$,

Lemma (Lemma A)
If $f: \mathbb{N} \rightarrow \mathbb{N}$ is any function such that $f(n) \rightarrow \infty$ as $n \rightarrow \infty$, then

$$
\mathbb{P}\left(\left(u_{n}^{-1} x \cdot w_{n} x\right)_{x} \leq f(n)\right) \rightarrow 1
$$

as $n \rightarrow \infty$.
Proof.
By definition of shadows,

$$
\mathbb{P}\left(\left(u_{n}^{-1} x \cdot w_{n} x\right)_{x} \leq f(n)\right)=\mathbb{P}\left(u_{n}^{-1} x \notin S_{x}\left(w_{n} x, R\right)\right)
$$

where $R=d\left(x, w_{n} x\right)-f(n)$.
As w_{n} and u_{n}^{-1} are independent and the distribution of u_{n}^{-1} is $\check{\mu}_{n}$,

$$
\mathbb{P}\left(\left(u_{n}^{-1} x \cdot w_{n} x\right)_{x} \leq f(n)\right)
$$

Lemma (Lemma A)
If $f: \mathbb{N} \rightarrow \mathbb{N}$ is any function such that $f(n) \rightarrow \infty$ as $n \rightarrow \infty$, then

$$
\mathbb{P}\left(\left(u_{n}^{-1} x \cdot w_{n} x\right)_{x} \leq f(n)\right) \rightarrow 1
$$

as $n \rightarrow \infty$.
Proof.
By definition of shadows,

$$
\mathbb{P}\left(\left(u_{n}^{-1} x \cdot w_{n} x\right)_{x} \leq f(n)\right)=\mathbb{P}\left(u_{n}^{-1} x \notin S_{x}\left(w_{n} x, R\right)\right)
$$

where $R=d\left(x, w_{n} x\right)-f(n)$.
As w_{n} and u_{n}^{-1} are independent and the distribution of u_{n}^{-1} is $\check{\mu}_{n}$,

$$
\mathbb{P}\left(\left(u_{n}^{-1} x \cdot w_{n} x\right)_{x} \leq f(n)\right)=1-\sum_{g \in G} \check{\mu}_{n}\left(S_{x}(g x, R)\right) \mu_{n}(g)
$$

Lemma (Lemma A)
If $f: \mathbb{N} \rightarrow \mathbb{N}$ is any function such that $f(n) \rightarrow \infty$ as $n \rightarrow \infty$, then

$$
\mathbb{P}\left(\left(u_{n}^{-1} x \cdot w_{n} x\right)_{x} \leq f(n)\right) \rightarrow 1
$$

as $n \rightarrow \infty$.
Proof.
By definition of shadows,

$$
\mathbb{P}\left(\left(u_{n}^{-1} x \cdot w_{n} x\right)_{x} \leq f(n)\right)=\mathbb{P}\left(u_{n}^{-1} x \notin S_{x}\left(w_{n} x, R\right)\right)
$$

where $R=d\left(x, w_{n} x\right)-f(n)$.
As w_{n} and u_{n}^{-1} are independent and the distribution of u_{n}^{-1} is $\check{\mu}_{n}$,

$$
\mathbb{P}\left(\left(u_{n}^{-1} x \cdot w_{n} x\right)_{x} \leq f(n)\right)=1-\sum_{g \in G} \check{\mu}_{n}\left(S_{x}(g x, R)\right) \mu_{n}(g)
$$

As the distance parameter of the shadows on the RHS is $f(n)$,

Lemma (Lemma A)
If $f: \mathbb{N} \rightarrow \mathbb{N}$ is any function such that $f(n) \rightarrow \infty$ as $n \rightarrow \infty$, then

$$
\mathbb{P}\left(\left(u_{n}^{-1} x \cdot w_{n} x\right)_{x} \leq f(n)\right) \rightarrow 1
$$

as $n \rightarrow \infty$.
Proof.
By definition of shadows,

$$
\mathbb{P}\left(\left(u_{n}^{-1} x \cdot w_{n} x\right)_{x} \leq f(n)\right)=\mathbb{P}\left(u_{n}^{-1} x \notin S_{x}\left(w_{n} x, R\right)\right)
$$

where $R=d\left(x, w_{n} x\right)-f(n)$.
As w_{n} and u_{n}^{-1} are independent and the distribution of u_{n}^{-1} is $\check{\mu}_{n}$,

$$
\mathbb{P}\left(\left(u_{n}^{-1} x \cdot w_{n} x\right)_{x} \leq f(n)\right)=1-\sum_{g \in G} \check{\mu}_{n}\left(S_{x}(g x, R)\right) \mu_{n}(g)
$$

As the distance parameter of the shadows on the RHS is $f(n)$, decay of shadows gives

Lemma (Lemma A)
If $f: \mathbb{N} \rightarrow \mathbb{N}$ is any function such that $f(n) \rightarrow \infty$ as $n \rightarrow \infty$, then

$$
\mathbb{P}\left(\left(u_{n}^{-1} x \cdot w_{n} x\right)_{x} \leq f(n)\right) \rightarrow 1
$$

as $n \rightarrow \infty$.
Proof.
By definition of shadows,

$$
\mathbb{P}\left(\left(u_{n}^{-1} x \cdot w_{n} x\right)_{x} \leq f(n)\right)=\mathbb{P}\left(u_{n}^{-1} x \notin S_{x}\left(w_{n} x, R\right)\right)
$$

where $R=d\left(x, w_{n} x\right)-f(n)$.
As w_{n} and u_{n}^{-1} are independent and the distribution of u_{n}^{-1} is $\check{\mu}_{n}$,

$$
\mathbb{P}\left(\left(u_{n}^{-1} x \cdot w_{n} x\right)_{x} \leq f(n)\right)=1-\sum_{g \in G} \check{\mu}_{n}\left(S_{x}(g x, R)\right) \mu_{n}(g)
$$

As the distance parameter of the shadows on the RHS is $f(n)$, decay of shadows gives

$$
\mathbb{P}\left(\left(u_{n}^{-1} x \cdot w_{n} x\right)_{x} \leq f(n)\right) \geq 1-\varphi(f(n))
$$

Lemma (Lemma A)
If $f: \mathbb{N} \rightarrow \mathbb{N}$ is any function such that $f(n) \rightarrow \infty$ as $n \rightarrow \infty$, then

$$
\mathbb{P}\left(\left(u_{n}^{-1} x \cdot w_{n} x\right)_{x} \leq f(n)\right) \rightarrow 1
$$

as $n \rightarrow \infty$.
Proof.
By definition of shadows,

$$
\mathbb{P}\left(\left(u_{n}^{-1} x \cdot w_{n} x\right)_{x} \leq f(n)\right)=\mathbb{P}\left(u_{n}^{-1} x \notin S_{x}\left(w_{n} x, R\right)\right)
$$

where $R=d\left(x, w_{n} x\right)-f(n)$.
As w_{n} and u_{n}^{-1} are independent and the distribution of u_{n}^{-1} is $\check{\mu}_{n}$,

$$
\mathbb{P}\left(\left(u_{n}^{-1} x \cdot w_{n} x\right)_{x} \leq f(n)\right)=1-\sum_{g \in G} \check{\mu}_{n}\left(S_{x}(g x, R)\right) \mu_{n}(g)
$$

As the distance parameter of the shadows on the RHS is $f(n)$, decay of shadows gives

$$
\mathbb{P}\left(\left(u_{n}^{-1} x \cdot w_{n} x\right)_{x} \leq f(n)\right) \geq 1-\varphi(f(n)) \rightarrow 1
$$

Lemma (Lemma B)
For any $\ell<L / 2$ we have

$$
\mathbb{P}\left(\left(w_{n} x \cdot w_{2 n} x\right)_{x} \geq \ell n\right) \rightarrow 1, \text { as } n \rightarrow \infty
$$

Lemma (Lemma B)

For any $\ell<L / 2$ we have

$$
\mathbb{P}\left(\left(w_{n} x \cdot w_{2 n} x\right)_{x} \geq \ell n\right) \rightarrow 1, \text { as } n \rightarrow \infty
$$

The same argument applied to $w_{2 n}^{-1} x$ shows

$$
\mathbb{P}\left(\left(u_{n}^{-1} x \cdot w_{2 n}^{-1} x\right)_{x} \geq \ell n\right) \rightarrow 1
$$

as $n \rightarrow \infty$.

Proof: growth of translation lengths

- By Lemma A,

$$
\left(u_{n}^{-1} x \cdot w_{n} x\right)_{x}=o(n)
$$

Proof: growth of translation lengths

- By Lemma A,

$$
\left(u_{n}^{-1} x \cdot w_{n} x\right)_{x}=o(n)
$$

- By Lemma B,

$$
\left(w_{n} x \cdot w_{2 n} x\right)_{x} \geq \ell n, \quad\left(u_{n}^{-1} x \cdot w_{2 n}^{-1} x\right)_{x} \geq \ell n
$$

Proof: growth of translation lengths

- By Lemma A,

$$
\left(u_{n}^{-1} x \cdot w_{n} x\right)_{x}=o(n)
$$

- By Lemma B,

$$
\left(w_{n} x \cdot w_{2 n} x\right)_{x} \geq \ell n, \quad\left(u_{n}^{-1} x \cdot w_{2 n}^{-1} x\right)_{x} \geq \ell n
$$

- Fellow traveling is contagious \Rightarrow

$$
\left(w_{2 n}^{-1} x \cdot w_{2 n} x\right)_{x}=o(n)
$$

Proof: growth of translation lengths

- By Lemma A,

$$
\left(u_{n}^{-1} x \cdot w_{n} x\right)_{x}=o(n)
$$

- By Lemma B,

$$
\left(w_{n} x \cdot w_{2 n} x\right)_{x} \geq \ell n, \quad\left(u_{n}^{-1} x \cdot w_{2 n}^{-1} x\right)_{x} \geq \ell n
$$

- Fellow traveling is contagious \Rightarrow

$$
\left(w_{2 n}^{-1} x \cdot w_{2 n} x\right)_{x}=o(n)
$$

- By translation length formula,
$\tau\left(w_{2 n}\right)$

Proof: growth of translation lengths

- By Lemma A,

$$
\left(u_{n}^{-1} x \cdot w_{n} x\right)_{x}=o(n)
$$

- By Lemma B,

$$
\left(w_{n} x \cdot w_{2 n} x\right)_{x} \geq \ell n, \quad\left(u_{n}^{-1} x \cdot w_{2 n}^{-1} x\right)_{x} \geq \ell n
$$

- Fellow traveling is contagious \Rightarrow

$$
\left(w_{2 n}^{-1} x \cdot w_{2 n} x\right)_{x}=o(n)
$$

- By translation length formula,

$$
\tau\left(w_{2 n}\right)=d\left(x, w_{2 n} x\right)-2\left(w_{2 n}^{-1} x \cdot w_{2 n} x\right)_{x}+O(\delta)
$$

Proof: growth of translation lengths

- By Lemma A,

$$
\left(u_{n}^{-1} x \cdot w_{n} x\right)_{x}=o(n)
$$

- By Lemma B,

$$
\left(w_{n} x \cdot w_{2 n} x\right)_{x} \geq \ell n, \quad\left(u_{n}^{-1} x \cdot w_{2 n}^{-1} x\right)_{x} \geq \ell n
$$

- Fellow traveling is contagious \Rightarrow

$$
\left(w_{2 n}^{-1} x \cdot w_{2 n} x\right)_{x}=o(n)
$$

- By translation length formula,

$$
\tau\left(w_{2 n}\right)=d\left(x, w_{2 n} x\right)-2\left(w_{2 n}^{-1} x \cdot w_{2 n} x\right)_{x}+O(\delta) \geq(L-\epsilon)(2 n)
$$

Proof: growth of translation lengths

- By Lemma A,

$$
\left(u_{n}^{-1} x \cdot w_{n} x\right)_{x}=o(n)
$$

- By Lemma B,

$$
\left(w_{n} x \cdot w_{2 n} x\right)_{x} \geq \ell n, \quad\left(u_{n}^{-1} x \cdot w_{2 n}^{-1} x\right)_{x} \geq \ell n
$$

- Fellow traveling is contagious \Rightarrow

$$
\left(w_{2 n}^{-1} x \cdot w_{2 n} x\right)_{x}=o(n)
$$

- By translation length formula,

$$
\tau\left(w_{2 n}\right)=d\left(x, w_{2 n} x\right)-2\left(w_{2 n}^{-1} x \cdot w_{2 n} x\right)_{x}+O(\delta) \geq(L-\epsilon)(2 n)
$$

which completes the proof.

