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Convergence to the boundary
Theorem (Maher-T.)
Let G be a countable group of isometries of a geodesic δ-hyperbolic
space X,

and let µ be a non-elementary probability measure on G.
Then for each x0 ∈ X, almost every sample path (wnx0) converges to
a point of the Gromov boundary ∂X.
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Hyperbolic spaces

Let (X ,d) be a geodesic, metric space, and let x0 ∈ X be a basepoint.

Define the Gromov product of x , y as :

(x · y)x0 :=
1
2
(d(x0, x) + d(x0, y)− d(x , y))

If X is δ-hyperbolic =⇒ (x · y)x0 = d(x0, [x , y ]) + O(δ)
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The Gromov boundary - Definition 1
Let X be a δ-hyperbolic, proper, metric space.

Fix a base point x0 ∈ X . Two geodesic rays γ1, γ2 based at x0
are equivalent if

sup
t≥0

d(γ1(t), γ2(t)) <∞.

Definition
We define the Gromov boundary of X as

∂X := {γ geodesic rays based at x0}/ ∼

Example
Examples of Gromov boundaries.

I X = R and ∂X = {−∞,+∞}.
I X = ladder and ∂X = {−∞,+∞}.
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The Gromov boundary - Definition 1
Let X be a δ-hyperbolic, non-proper, metric space.
Fix a base point x0 ∈ X . Two geodesic rays γ1, γ2 based at x0
are equivalent if

sup
t≥0

d(γ1(t), γ2(t)) <∞.

Definition
We define the Gromov boundary of X as

∂X := {γ quasi-geodesic rays based at x0}/ ∼

Example
Examples of Gromov boundaries.

I X = R and ∂X = {−∞,+∞}.
I X = ladder and ∂X = {−∞,+∞}.



The Gromov boundary - Definition 2

A sequence (xn) ⊂ X is a Gromov sequence if

lim inf
m,n→∞

(xn · xm)x0 =∞.

Two Gromov sequences (xn), (yn) are equivalent if

lim inf
n→∞

(xn · yn)x0 =∞.

We define the boundary of X as

∂X := {(xn) Gromov sequence }/ ∼

Theorem
∂X is a metric space.
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Metric on the hyperbolic boundary

Theorem
∂X is a metric space.

Proof.
Let η, ξ ∈ ∂X . Then η = [xn], ξ = [yn] for two Gromov sequences (xn),
(yn). Then

(η · ξ)x0 := sup
xn→η,yn→ξ

lim inf
m,n

(xm · yn)x0

Pick ε > 0, and set
ρ(ξ, η) := e−ε(η·ξ)x0 .

This is not yet a metric (no triangle inequality). To get an actual
metric,

d(ξ, η) := inf
n−1∑
i=1

ρ(ξi , ξi+1)

where the inf is among all finite chains ξ = ξ0, ξ1, · · · , ξn−1, η = ξn.
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Gromov boundary of non-proper spaces

X proper

⇒ ∂X compact metric space

BUT

X not proper⇒ ∂X need NOT be compact

Example
X = N× R≥0

/
(n,0) ∼ (m,0) . Then ∂X ' N is not compact.
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The horofunction boundary
Pick a base point x0 ∈ X .

For any z ∈ X we define ρz : X → R:

ρz(x) := d(x , z)− d(x0, z).

Then ρz(x) is 1-Lipschitz and ρz(x0) = 0. Consider

Lip1
x0
(X ) = {f : X → R s.t. |f (x)− f (y)| ≤ d(x , y), f (x0) = 0}

with the topology of pointwise convergence.
Consider ρ : X → Lip1

x0
(X ) given by

z 7→ ρz .

Definition
The horofunction compactification of (X ,d) is the closure

X
h
:= ρ(X ) in Lip1

x0
(X ).
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Examples of horofunctions - I

Example
X = R with the euclidean metric, and x0 = 0.

Then all
horofunctions for X are either:

I ρ(x) = |x − p| − |p| for some p ∈ R; or
I ρ(x) = ±x .

hence ∂hX = X
h \ X = {−∞,+∞}.
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Examples of horofunctions - II

Example
In the hyperbolic plane X = H2, pick ξ ∈ ∂H2

and consider a
geodesic ray γ : [0,∞)→ H2 with γ(0) = x0 and
limt→+∞ γ(t) = ξ. Then if zn := γ(n) we get for any x ∈ H2

hξ(x) = lim
zn→ξ

ρzn(x) = lim
t→∞

(d(γ(t), x)− t)

the usual definition of horofunction, and level sets are
horoballs.
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Examples of horofunctions - III

Example
Let X = “infinite tree” defined as X = Z× R≥0

/
(n,0) ∼ (m,0) .

I The Gromov boundary is ∂X = Z.
I If zn = [(n,n)] then in the horofunction compactification

one has
lim

n
ρzn = ρz0 .

(Note: the set of infinite horofunctions is NOT closed.)
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Classification of horofunctions

Proposition
Let h be a horofunction in X

h
,

and let γ be a geodesic in X. Then
there is p on γ such that the restriction of h to γ is equal to:

I either
h(x) = h(p) + d(p, x) + O(δ)

I or
h(x) = h(p) + d+

γ (p, x) + O(δ)

where d+ is the oriented distance along the geodesic, for some
choice of orientation of γ.
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Finite and infinite horofunctions

For any horofunction h ∈ X
h
, let us consider

inf(h) := inf
y∈X

h(y).

Definition
The set of finite horofunctions is the set

X
h
F := {h ∈ X

h
: inf h > −∞}

and the set of infinite horofunctions is the set

X
h
∞ := {h ∈ X

h
: inf h = −∞}
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Comparing the horofunction and Gromov boundaries
Lemma
For each base point x0 ∈ X,

each horofunction h ∈ X
h

and each
x , y ∈ X we have:

min{−h(x),−h(y)} ≤ (x · y)x0 + O(δ)

Proof.
By definition,

(x · z)x0 =
dX (x0, x) + dX (x0, z)− dX (x , z)

2
= −ρz(x)

By δ-hyperbolicity,

(x · y)x0 > min{(x · z)x0 , (y · z)x0} − δ

hence
(x · y)x0 > min{−ρz(x),−ρz(y)} − δ.

Since every horofunction is the pointwise limit of functions ρz , the
claim follows.
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The local minimum map ϕ : X

h → X ∪ ∂X is defined as follows.

I If h ∈ X
h
F , then

ϕ(h) := {x ∈ X : h(x) ≤ inf h + 1}

I If h ∈ X
h
∞, then choose a sequence (yn) with h(yn)→ −∞

and set
ϕ(h) := lim

n→∞
yn

be the limit point in the Gromov boundary.
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The local minimum map
Lemma
There exists K , which depends only on δ, such that for each finite
horofunction h,

diam ϕ(h) ≤ K .

Proof.
Let x , y ∈ φ(h), for some h ∈ X

h
, and consider the restriction of h

along a geodesic segment from x to y . By the Proposition, the
restriction has at most one coarse local minimum: hence, since x and
y are coarse local minima of h, the distance between x and y is
universally bounded in terms of δ.

Corollary
The local minimum map ϕ : X

h → X ∪ ∂X is well-defined and
G-equivariant.

Note: ϕ is not continuous but ϕ|
X h

∞
is continuous.

E.g., in the “infinite tree” case, if zn := (n,n) then ρzn → ρx0 but
φ(ρzn) = zn 6→ x0.
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Stationary measures

Definition
Let µ be a probability measure on a group G, and let M be a
metric space on which G acts by homeomorphisms.

A
probability measure ν on M is µ-stationary (or just stationary) if∫

G
gν dµ(g) = ν

The pair (M, ν) is then called a (G, µ)-space.

Problem: Since ∂X need not be compact, you may not be able
to find a stationary measure in P(∂X ).
Trick: Consider the horofunction compactification (which is
always compact and metrizable).

Lemma
P(X

h
) is compact, so it contains a µ-stationary measure.
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Convergence in the space of measures

Proposition
Let M be a compact metric space on which G acts
continuously,

and ν a µ-stationary probability measure on M.
Then for P-a.e. sequence (wn) the limit

νω := lim
n→∞

g1g2 . . . gnν

exists in the space P(M) of probability measures on M.

Proof.
Apply the martingale convergence theorem to

Xn :=

∫
M

f (wnξ) dν(ξ).

for any f ∈ C(M).
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Convergence of horofunctions

Proposition
Let µ be a non-elementary probability measure on G,

and let ν be a
µ-stationary measure on X

h
. Then

ν(X
h
F ) = 0.

Proposition
For P-a.e. (wn) there exists a subsequence (ρwnx0) which converges

to a horofunction in X
h
∞.

As a corollary, for P-a.e. sample path (wn) there exists a
subsequence (wnk x0) which converges to a point in the Gromov
boundary ∂X.



Convergence of horofunctions

Proposition
Let µ be a non-elementary probability measure on G, and let ν be a
µ-stationary measure on X

h
.

Then

ν(X
h
F ) = 0.

Proposition
For P-a.e. (wn) there exists a subsequence (ρwnx0) which converges

to a horofunction in X
h
∞.

As a corollary, for P-a.e. sample path (wn) there exists a
subsequence (wnk x0) which converges to a point in the Gromov
boundary ∂X.



Convergence of horofunctions

Proposition
Let µ be a non-elementary probability measure on G, and let ν be a
µ-stationary measure on X

h
. Then

ν(X
h
F ) = 0.

Proposition
For P-a.e. (wn) there exists a subsequence (ρwnx0) which converges

to a horofunction in X
h
∞.

As a corollary, for P-a.e. sample path (wn) there exists a
subsequence (wnk x0) which converges to a point in the Gromov
boundary ∂X.



Convergence of horofunctions

Proposition
Let µ be a non-elementary probability measure on G, and let ν be a
µ-stationary measure on X

h
. Then

ν(X
h
F ) = 0.

Proposition
For P-a.e. (wn) there exists a subsequence (ρwnx0) which converges

to a horofunction in X
h
∞.

As a corollary, for P-a.e. sample path (wn) there exists a
subsequence (wnk x0) which converges to a point in the Gromov
boundary ∂X.



Convergence of horofunctions

Proposition
Let µ be a non-elementary probability measure on G, and let ν be a
µ-stationary measure on X

h
. Then

ν(X
h
F ) = 0.

Proposition
For P-a.e. (wn) there exists a subsequence (ρwnx0) which converges

to a horofunction in X
h
∞.

As a corollary, for P-a.e. sample path (wn) there exists a
subsequence (wnk x0) which converges to a point in the Gromov
boundary ∂X.



A geometric lemma
Proposition
Let ν̃ be a µ-stationary measure on ∂X,

and suppose that the
sequence (wnx0) converges to λ ∈ ∂X.
Then there exists a subsequence (wnk ν̃) which converges to the
δ-measure δλ on ∂X.
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Boundary convergence: end of proof
Proof.

Let ν ∈ P(X
h
) a µ-stationary measure, and denote ν̃ := φ∗ν ∈ P(∂X ).

I By the martingale convergence theorem, for a.e. wn

(wn)∗ν −→ νw ∈ P(X
h
).

I Then by pushing forward by ϕ∗ one gets
(wn)∗(ν̃) −→ (ν̃)w ∈ P(∂X ).

I By δ-hyperbolicity, if wnx −→ ξ ∈ ∂X then wnν̃ −→ δξ.

I The sequence wnx has at least one limit point ξ in ∂X , and for
each limit point ξ , wnk ν̃ −→ δξ,

I BUT there can be only one limit point, as lim
n→∞

wnν̃ exists.

I Hence, limn→∞wnx = ξ ∈ ∂X exists.

Corollary
The hitting measure is the only µ-stationary measure on ∂X.
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