Random walks on weakly hyperbolic groups

Giulio Tiozzo University of Toronto

Random and Arithmetic Structures in Topology MSRI - Fall 2020

> Lecture 1 (Aug 31, 10.30): Introduction to random walks on groups

- Lecture 1 (Aug 31, 10.30): Introduction to random walks on groups
- Lecture 2 (Sep 1, 10.30): Horofunctions + convergence to the boundary

- Lecture 1 (Aug 31, 10.30): Introduction to random walks on groups
- Lecture 2 (Sep 1, 10.30): Horofunctions + convergence to the boundary
- Lecture 3 (Sep 3, 9.00): Positive drift + genericity of loxodromics

- Lecture 1 (Aug 31, 10.30): Introduction to random walks on groups
- Lecture 2 (Sep 1, 10.30): Horofunctions + convergence to the boundary
- Lecture 3 (Sep 3, 9.00): Positive drift + genericity of loxodromics

Main references:

- Lecture 1 (Aug 31, 10.30): Introduction to random walks on groups
- Lecture 2 (Sep 1, 10.30): Horofunctions + convergence to the boundary
- Lecture 3 (Sep 3, 9.00): Positive drift + genericity of loxodromics

Main references: J. Maher and G. T.,

- Lecture 1 (Aug 31, 10.30): Introduction to random walks on groups
- Lecture 2 (Sep 1, 10.30): Horofunctions + convergence to the boundary
- Lecture 3 (Sep 3, 9.00): Positive drift + genericity of loxodromics

Main references:

J. Maher and G. T.,

Random walks on weakly hyperbolic groups Random walks, WPD actions, and the Cremona group

Theorem (Maher-T.)

Let G be a countable group of isometries of a geodesic δ -hyperbolic space X,

Theorem (Maher-T.)

Let G be a countable group of isometries of a geodesic δ -hyperbolic space X, and let μ be a non-elementary probability measure on G.

Theorem (Maher-T.)

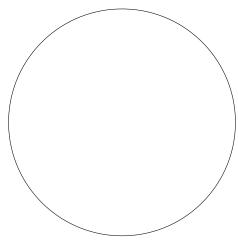
Let G be a countable group of isometries of a geodesic δ -hyperbolic space X, and let μ be a non-elementary probability measure on G. Then for each $x_0 \in X$,

Theorem (Maher-T.)

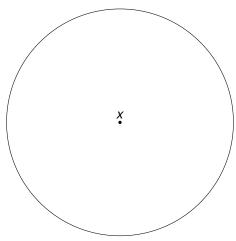
Let *G* be a countable group of isometries of a geodesic δ -hyperbolic space *X*, and let μ be a non-elementary probability measure on *G*. Then for each $x_0 \in X$, almost every sample path $(w_n x_0)$ converges

Theorem (Maher-T.)

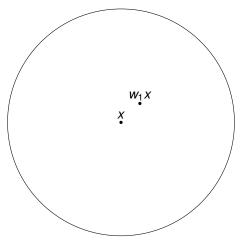
Theorem (Maher-T.)



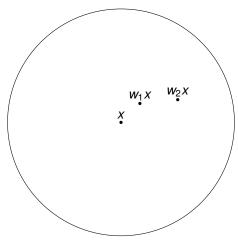
Theorem (Maher-T.)



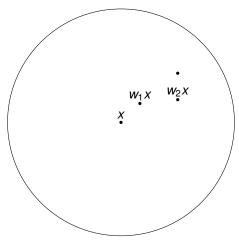
Theorem (Maher-T.)



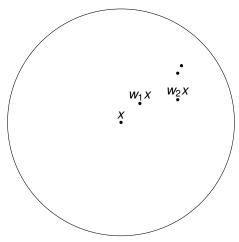
Theorem (Maher-T.)



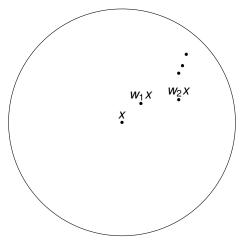
Theorem (Maher-T.)



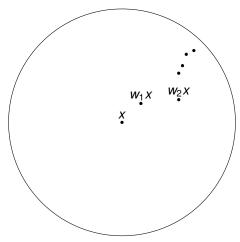
Theorem (Maher-T.)



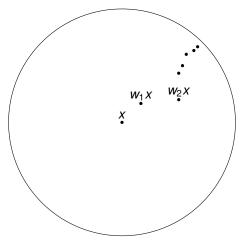
Theorem (Maher-T.)



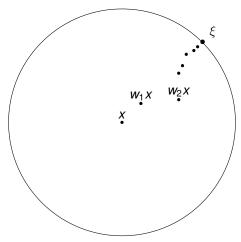
Theorem (Maher-T.)



Theorem (Maher-T.)



Theorem (Maher-T.)



Hyperbolic spaces

Let (X, d) be a geodesic, metric space, and let $x_0 \in X$ be a basepoint.

Let (X, d) be a geodesic, metric space, and let $x_0 \in X$ be a basepoint. Define the Gromov product of x, y as :

$$(x \cdot y)_{x_0} := \frac{1}{2} \left(d(x_0, x) + d(x_0, y) - d(x, y) \right)$$

Let (X, d) be a geodesic, metric space, and let $x_0 \in X$ be a basepoint. Define the Gromov product of x, y as :

$$(x \cdot y)_{x_0} := \frac{1}{2} \left(d(x_0, x) + d(x_0, y) - d(x, y) \right)$$

If X is δ -hyperbolic $\implies (x \cdot y)_{x_0} = d(x_0, [x, y]) + O(\delta)$

Let *X* be a δ -hyperbolic, proper, metric space.

Let *X* be a δ -hyperbolic, proper, metric space. Fix a base point $x_0 \in X$.

Let X be a δ -hyperbolic, proper, metric space. Fix a base point $x_0 \in X$. Two geodesic rays γ_1 , γ_2 based at x_0 are equivalent if

 $\sup_{t\geq 0} d(\gamma_1(t),\gamma_2(t))<\infty.$

Let X be a δ -hyperbolic, proper, metric space. Fix a base point $x_0 \in X$. Two geodesic rays γ_1 , γ_2 based at x_0 are equivalent if

 $\sup_{t\geq 0} d(\gamma_1(t),\gamma_2(t)) < \infty.$

Definition We define the Gromov boundary of *X* as

 $\partial X := \{\gamma \text{ geodesic rays based at } x_0\} / \sim$

Let X be a δ -hyperbolic, proper, metric space. Fix a base point $x_0 \in X$. Two geodesic rays γ_1 , γ_2 based at x_0 are equivalent if

 $\sup_{t\geq 0} d(\gamma_1(t),\gamma_2(t)) < \infty.$

Definition We define the Gromov boundary of *X* as

 $\partial X := \{\gamma \text{ geodesic rays based at } x_0\} / \sim$

Example

Let X be a δ -hyperbolic, proper, metric space. Fix a base point $x_0 \in X$. Two geodesic rays γ_1 , γ_2 based at x_0 are equivalent if

 $\sup_{t\geq 0} d(\gamma_1(t),\gamma_2(t)) < \infty.$

Definition We define the Gromov boundary of *X* as

 $\partial X := \{\gamma \text{ geodesic rays based at } x_0\} / \sim$

Example

•
$$X = \mathbb{R}$$
 and $\partial X = \{-\infty, +\infty\}.$

Let X be a δ -hyperbolic, proper, metric space. Fix a base point $x_0 \in X$. Two geodesic rays γ_1 , γ_2 based at x_0 are equivalent if

 $\sup_{t\geq 0} d(\gamma_1(t),\gamma_2(t)) < \infty.$

Definition We define the Gromov boundary of *X* as

 $\partial X := \{\gamma \text{ geodesic rays based at } x_0\} / \sim$

Example

•
$$X = \mathbb{R}$$
 and $\partial X = \{-\infty, +\infty\}$.

•
$$X =$$
ladder and $\partial X = \{-\infty, +\infty\}.$

Let X be a δ -hyperbolic, non-proper, metric space. Fix a base point $x_0 \in X$. Two geodesic rays γ_1 , γ_2 based at x_0 are equivalent if

 $\sup_{t\geq 0} d(\gamma_1(t),\gamma_2(t))<\infty.$

Definition We define the Gromov boundary of *X* as

 $\partial X := \{\gamma \text{ quasi-geodesic rays based at } x_0\} / \sim$

Example

•
$$X = \mathbb{R}$$
 and $\partial X = \{-\infty, +\infty\}$.

•
$$X =$$
ladder and $\partial X = \{-\infty, +\infty\}.$

A sequence $(x_n) \subset X$ is a Gromov sequence if

 $\liminf_{m,n\to\infty}(x_n\cdot x_m)_{x_0}=\infty.$

A sequence $(x_n) \subset X$ is a Gromov sequence if

 $\liminf_{m,n\to\infty}(x_n\cdot x_m)_{x_0}=\infty.$

Two Gromov sequences $(x_n), (y_n)$ are equivalent if

 $\liminf_{n\to\infty}(x_n\cdot y_n)_{x_0}=\infty.$

A sequence $(x_n) \subset X$ is a Gromov sequence if

 $\liminf_{m,n\to\infty}(x_n\cdot x_m)_{x_0}=\infty.$

Two Gromov sequences $(x_n), (y_n)$ are equivalent if

 $\liminf_{n\to\infty}(x_n\cdot y_n)_{x_0}=\infty.$

We define the boundary of X as

 $\partial X := \{(x_n) \text{ Gromov sequence }\} / \sim$

The Gromov boundary - Definition 2

A sequence $(x_n) \subset X$ is a Gromov sequence if

 $\liminf_{m,n\to\infty}(x_n\cdot x_m)_{x_0}=\infty.$

Two Gromov sequences $(x_n), (y_n)$ are equivalent if

 $\liminf_{n\to\infty}(x_n\cdot y_n)_{x_0}=\infty.$

We define the boundary of X as

 $\partial X := \{(x_n) \text{ Gromov sequence }\} / \sim$

Theorem ∂X is a metric space.

Theorem ∂X is a metric space.

Theorem ∂X is a metric space.

Proof.

Let $\eta, \xi \in \partial X$. Then $\eta = [x_n], \xi = [y_n]$ for two Gromov sequences (x_n) , (y_n) .

Theorem ∂X is a metric space.

Proof.

Let $\eta, \xi \in \partial X$. Then $\eta = [x_n], \xi = [y_n]$ for two Gromov sequences (x_n) , (y_n) . Then

$$(\eta \cdot \xi)_{x_0} := \sup_{x_n \to \eta, y_n \to \xi} \liminf_{m, n} (x_m \cdot y_n)_{x_0}$$

Theorem ∂X is a metric space.

Proof.

Let $\eta, \xi \in \partial X$. Then $\eta = [x_n], \xi = [y_n]$ for two Gromov sequences (x_n) , (y_n) . Then

$$(\eta \cdot \xi)_{x_0} := \sup_{x_n \to \eta, y_n \to \xi} \liminf_{m, n} (x_m \cdot y_n)_{x_0}$$

Pick $\epsilon > 0$, and set

$$\rho(\xi,\eta) := \boldsymbol{e}^{-\epsilon(\eta\cdot\xi)_{x_0}}.$$

Theorem ∂X is a metric space.

Proof.

Let $\eta, \xi \in \partial X$. Then $\eta = [x_n], \xi = [y_n]$ for two Gromov sequences (x_n) , (y_n) . Then

$$(\eta \cdot \xi)_{x_0} := \sup_{x_n \to \eta, y_n \to \xi} \liminf_{m, n} (x_m \cdot y_n)_{x_0}$$

Pick $\epsilon > 0$, and set

$$\rho(\xi,\eta) := \boldsymbol{e}^{-\epsilon(\eta\cdot\xi)_{x_0}}.$$

This is not yet a metric (no triangle inequality).

Theorem ∂X is a metric space.

Proof.

Let $\eta, \xi \in \partial X$. Then $\eta = [x_n], \xi = [y_n]$ for two Gromov sequences (x_n) , (y_n) . Then

$$(\eta \cdot \xi)_{x_0} := \sup_{x_n \to \eta, y_n \to \xi} \liminf_{m, n} (x_m \cdot y_n)_{x_0}$$

Pick $\epsilon > 0$, and set

$$\rho(\xi,\eta) := \boldsymbol{e}^{-\epsilon(\eta\cdot\xi)_{x_0}}.$$

This is not yet a metric (no triangle inequality). To get an actual metric,

$$d(\xi,\eta) := \inf \sum_{i=1}^{n-1} \rho(\xi_i,\xi_{i+1})$$

Theorem ∂X is a metric space.

Proof.

Let $\eta, \xi \in \partial X$. Then $\eta = [x_n], \xi = [y_n]$ for two Gromov sequences (x_n) , (y_n) . Then

$$(\eta \cdot \xi)_{x_0} := \sup_{x_n \to \eta, y_n \to \xi} \liminf_{m, n} (x_m \cdot y_n)_{x_0}$$

Pick $\epsilon > 0$, and set

$$\rho(\xi,\eta) := \boldsymbol{e}^{-\epsilon(\eta\cdot\xi)_{x_0}}.$$

This is not yet a metric (no triangle inequality). To get an actual metric,

$$d(\xi,\eta) := \inf \sum_{i=1}^{n-1} \rho(\xi_i,\xi_{i+1})$$

where the inf is among all finite chains $\xi = \xi_0, \xi_1, \cdots, \xi_{n-1}, \eta = \xi_n$. \Box

X proper

X proper $\Rightarrow \partial X$ compact metric space

X proper $\Rightarrow \partial X$ compact metric space

BUT

X proper $\Rightarrow \partial X$ compact metric space

BUT

X not proper

X proper $\Rightarrow \partial X$ compact metric space

BUT

X not proper $\Rightarrow \partial X$ need NOT be compact

X proper $\Rightarrow \partial X$ compact metric space

BUT

X not proper $\Rightarrow \partial X$ need NOT be compact

Example
$$X = \mathbb{N} \times \mathbb{R}^{\geq 0} / (n, 0) \sim (m, 0)$$
.

X proper $\Rightarrow \partial X$ compact metric space

BUT

X not proper $\Rightarrow \partial X$ need NOT be compact

Example $X = \mathbb{N} \times \mathbb{R}^{\geq 0} / (n, 0) \sim (m, 0)$. Then $\partial X \simeq \mathbb{N}$ is not compact.

Pick a base point $x_0 \in X$.

Pick a base point $x_0 \in X$. For any $z \in X$ we define $\rho_z : X \to \mathbb{R}$:

Pick a base point $x_0 \in X$. For any $z \in X$ we define $\rho_z : X \to \mathbb{R}$:

$$\rho_z(x) := d(x,z) - d(x_0,z).$$

Pick a base point $x_0 \in X$. For any $z \in X$ we define $\rho_z : X \to \mathbb{R}$:

$$\rho_z(x) := d(x,z) - d(x_0,z).$$

Then $\rho_z(x)$ is 1-Lipschitz and $\rho_z(x_0) = 0$.

Pick a base point $x_0 \in X$. For any $z \in X$ we define $\rho_z : X \to \mathbb{R}$:

$$\rho_z(x) := d(x,z) - d(x_0,z).$$

Then $\rho_z(x)$ is 1-Lipschitz and $\rho_z(x_0) = 0$. Consider

$$\mathsf{Lip}_{x_0}^1(X) = \{f : X \to \mathbb{R} \text{ s.t. } |f(x) - f(y)| \le d(x, y), f(x_0) = 0\}$$

Pick a base point $x_0 \in X$. For any $z \in X$ we define $\rho_z : X \to \mathbb{R}$:

$$\rho_z(x) := d(x,z) - d(x_0,z).$$

Then $\rho_z(x)$ is 1-Lipschitz and $\rho_z(x_0) = 0$. Consider

 $\mathsf{Lip}^{1}_{x_{0}}(X) = \{f : X \to \mathbb{R} \text{ s.t. } |f(x) - f(y)| \le d(x, y), f(x_{0}) = 0\}$

with the topology of pointwise convergence.

Pick a base point $x_0 \in X$. For any $z \in X$ we define $\rho_z : X \to \mathbb{R}$:

$$\rho_z(x) := d(x,z) - d(x_0,z).$$

Then $\rho_z(x)$ is 1-Lipschitz and $\rho_z(x_0) = 0$. Consider

 $Lip_{x_0}^1(X) = \{f : X \to \mathbb{R} \text{ s.t. } |f(x) - f(y)| \le d(x, y), f(x_0) = 0\}$

with the topology of pointwise convergence. Consider $\rho: X \to \text{Lip}_{X_0}^1(X)$ given by

 $z \mapsto \rho_z$.

Pick a base point $x_0 \in X$. For any $z \in X$ we define $\rho_z : X \to \mathbb{R}$:

$$\rho_z(x) := d(x,z) - d(x_0,z).$$

Then $\rho_z(x)$ is 1-Lipschitz and $\rho_z(x_0) = 0$. Consider

 $Lip_{x_0}^1(X) = \{f : X \to \mathbb{R} \text{ s.t. } |f(x) - f(y)| \le d(x, y), f(x_0) = 0\}$

with the topology of pointwise convergence. Consider $\rho: X \to \text{Lip}_{X_0}^1(X)$ given by

$$z \mapsto \rho_z$$
.

Definition

The horofunction compactification of (X, d) is the closure

$$\overline{X}^h := \overline{\rho(X)}$$
 in $\operatorname{Lip}^1_{X_0}(X)$.

Proposition

If X is separable, then the horofunction compactification \overline{X}^h is a compact metrizable space.

Proposition

If X is separable, then the horofunction compactification \overline{X}^h is a compact metrizable space.

Proof. If $h \in \operatorname{Lip}_{x_0}^1(X)$,

Proposition

If X is separable, then the horofunction compactification \overline{X}^h is a compact metrizable space.

Proof. If $h \in \text{Lip}^{1}_{x_{0}}(X)$, then

$$|h(x)| \leq |h(x) - h(x_0)| \leq d(x, x_0)$$

Proposition

If X is separable, then the horofunction compactification \overline{X}^h is a compact metrizable space.

Proof. If $h \in \operatorname{Lip}_{x_0}^1(X)$, then

$$|h(x)| \leq |h(x) - h(x_0)| \leq d(x, x_0)$$

hence $\operatorname{Lip}_{x_0}^1(X) \subset \otimes_{x \in X} [-d(x, x_0), d(x, x_0)]$

Proposition

If X is separable, then the horofunction compactification \overline{X}^h is a compact metrizable space.

Proof. If $h \in \operatorname{Lip}_{x_0}^1(X)$, then

$$|h(x)| \leq |h(x) - h(x_0)| \leq d(x, x_0)$$

hence $\operatorname{Lip}_{x_0}^1(X) \subset \bigotimes_{x \in X} [-d(x, x_0), d(x, x_0)]$ which is compact by Tychonoff's theorem.

Proposition

If X is separable, then the horofunction compactification \overline{X}^h is a compact metrizable space.

Proof. If $h \in \operatorname{Lip}_{x_0}^1(X)$, then

$$|h(x)| \leq |h(x) - h(x_0)| \leq d(x, x_0)$$

hence $\text{Lip}_{x_0}^1(X) \subset \bigotimes_{x \in X} [-d(x, x_0), d(x, x_0)]$ which is compact by Tychonoff's theorem.

Since X is separable, then C(X) is second countable,

Proposition

If X is separable, then the horofunction compactification \overline{X}^h is a compact metrizable space.

Proof. If $h \in \operatorname{Lip}_{x_0}^1(X)$, then

$$|h(x)| \leq |h(x) - h(x_0)| \leq d(x, x_0)$$

hence $\operatorname{Lip}_{x_0}^1(X) \subset \bigotimes_{x \in X} [-d(x, x_0), d(x, x_0)]$ which is compact by Tychonoff's theorem. Since X is separable, then C(X) is second countable, hence \overline{X}^h is second countable.

Proposition

If X is separable, then the horofunction compactification \overline{X}^h is a compact metrizable space.

Proof. If $h \in \operatorname{Lip}_{x_0}^1(X)$, then

$$|h(x)| \leq |h(x) - h(x_0)| \leq d(x, x_0)$$

hence $\operatorname{Lip}_{x_0}^1(X) \subset \bigotimes_{x \in X} [-d(x, x_0), d(x, x_0)]$ which is compact by Tychonoff's theorem.

Since X is separable, then C(X) is second countable,

hence $\overline{\underline{X}}^h$ is second countable.

Thus \overline{X}^h is compact, Hausdorff, and second countable, hence metrizable.

Proposition

If X is separable, then the horofunction compactification \overline{X}^h is a compact metrizable space.

Proof. If $h \in \operatorname{Lip}_{x_0}^1(X)$, then

$$|h(x)| \leq |h(x) - h(x_0)| \leq d(x, x_0)$$

hence $\operatorname{Lip}_{x_0}^1(X) \subset \bigotimes_{x \in X} [-d(x, x_0), d(x, x_0)]$ which is compact by Tychonoff's theorem.

Since X is separable, then C(X) is second countable,

hence \underline{X}_{h}^{h} is second countable.

Thus \overline{X}^h is compact, Hausdorff, and second countable, hence metrizable.

Definition

Define the action of G on \overline{X}^h as

Proposition

If X is separable, then the horofunction compactification \overline{X}^h is a compact metrizable space.

Proof. If $h \in \operatorname{Lip}_{x_0}^1(X)$, then

$$|h(x)| \leq |h(x) - h(x_0)| \leq d(x, x_0)$$

hence $\operatorname{Lip}_{x_0}^1(X) \subset \bigotimes_{x \in X} [-d(x, x_0), d(x, x_0)]$ which is compact by Tychonoff's theorem.

Since X is separable, then C(X) is second countable,

hence $\overline{\underline{X}}^h$ is second countable.

Thus \overline{X}^h is compact, Hausdorff, and second countable, hence metrizable.

Definition

Define the action of G on \overline{X}^h as

 $g.h(x) := h(g^{-1}x) - h(g^{-1}x_0)$ for all $g \in G, h \in \overline{X}^h$.

Examples of horofunctions - I

Example

 $X = \mathbb{R}$ with the euclidean metric, and $x_0 = 0$.

Examples of horofunctions - I

Example

 $X = \mathbb{R}$ with the euclidean metric, and $x_0 = 0$. Then all horofunctions for *X* are either:

Examples of horofunctions - I

Example

 $X = \mathbb{R}$ with the euclidean metric, and $x_0 = 0$. Then all horofunctions for *X* are either:

▶
$$\rho(\mathbf{x}) = |\mathbf{x} - \mathbf{p}| - |\mathbf{p}|$$
 for some $\mathbf{p} \in \mathbb{R}$;

Example

 $X = \mathbb{R}$ with the euclidean metric, and $x_0 = 0$. Then all horofunctions for *X* are either:

▶ $\rho(x) = |x - p| - |p|$ for some $p \in \mathbb{R}$; or

$$\blacktriangleright \rho(\mathbf{X}) = \pm \mathbf{X}.$$

Example

 $X = \mathbb{R}$ with the euclidean metric, and $x_0 = 0$. Then all horofunctions for *X* are either:

▶ $\rho(x) = |x - p| - |p|$ for some $p \in \mathbb{R}$; or

•
$$\rho(\mathbf{x}) = \pm \mathbf{x}$$
.

hence $\partial^h X = \overline{X}^h \setminus X = \{-\infty, +\infty\}.$

Example

In the hyperbolic plane $X = \mathbb{H}^2$, pick $\xi \in \partial \mathbb{H}^2$

Example

In the hyperbolic plane $X = \mathbb{H}^2$, pick $\xi \in \partial \mathbb{H}^2$ and consider a geodesic ray $\gamma : [0, \infty) \to \mathbb{H}^2$

Example

In the hyperbolic plane $X = \mathbb{H}^2$, pick $\xi \in \partial \mathbb{H}^2$ and consider a geodesic ray $\gamma : [0, \infty) \to \mathbb{H}^2$ with $\gamma(0) = x_0$ and $\lim_{t \to +\infty} \gamma(t) = \xi$.

Example

In the hyperbolic plane $X = \mathbb{H}^2$, pick $\xi \in \partial \mathbb{H}^2$ and consider a geodesic ray $\gamma : [0, \infty) \to \mathbb{H}^2$ with $\gamma(0) = x_0$ and $\lim_{t \to +\infty} \gamma(t) = \xi$. Then if $z_n := \gamma(n)$

Example

In the hyperbolic plane $X = \mathbb{H}^2$, pick $\xi \in \partial \mathbb{H}^2$ and consider a geodesic ray $\gamma : [0, \infty) \to \mathbb{H}^2$ with $\gamma(0) = x_0$ and $\lim_{t \to +\infty} \gamma(t) = \xi$. Then if $z_n := \gamma(n)$ we get for any $x \in \mathbb{H}^2$

Example

In the hyperbolic plane $X = \mathbb{H}^2$, pick $\xi \in \partial \mathbb{H}^2$ and consider a geodesic ray $\gamma : [0, \infty) \to \mathbb{H}^2$ with $\gamma(0) = x_0$ and $\lim_{t\to+\infty} \gamma(t) = \xi$. Then if $z_n := \gamma(n)$ we get for any $x \in \mathbb{H}^2$

$$h_{\xi}(x)$$

Example

In the hyperbolic plane $X = \mathbb{H}^2$, pick $\xi \in \partial \mathbb{H}^2$ and consider a geodesic ray $\gamma : [0, \infty) \to \mathbb{H}^2$ with $\gamma(0) = x_0$ and $\lim_{t\to+\infty} \gamma(t) = \xi$. Then if $z_n := \gamma(n)$ we get for any $x \in \mathbb{H}^2$

$$h_{\xi}(x) = \lim_{z_n \to \xi} \rho_{z_n}(x)$$

Example

In the hyperbolic plane $X = \mathbb{H}^2$, pick $\xi \in \partial \mathbb{H}^2$ and consider a geodesic ray $\gamma : [0, \infty) \to \mathbb{H}^2$ with $\gamma(0) = x_0$ and $\lim_{t\to+\infty} \gamma(t) = \xi$. Then if $z_n := \gamma(n)$ we get for any $x \in \mathbb{H}^2$

$$h_{\xi}(x) = \lim_{z_n \to \xi} \rho_{z_n}(x) = \lim_{t \to \infty} (d(\gamma(t), x) - t)$$

Example

In the hyperbolic plane $X = \mathbb{H}^2$, pick $\xi \in \partial \mathbb{H}^2$ and consider a geodesic ray $\gamma : [0, \infty) \to \mathbb{H}^2$ with $\gamma(0) = x_0$ and $\lim_{t\to+\infty} \gamma(t) = \xi$. Then if $z_n := \gamma(n)$ we get for any $x \in \mathbb{H}^2$

$$h_{\xi}(x) = \lim_{z_n \to \xi} \rho_{z_n}(x) = \lim_{t \to \infty} (d(\gamma(t), x) - t)$$

the usual definition of horofunction, and level sets are horoballs.

Example

Let X = "infinite tree" defined as $X = \mathbb{Z} \times \mathbb{R}^{\geq 0} / (n, 0) \sim (m, 0)$.

Example

Let X = "infinite tree" defined as $X = \mathbb{Z} \times \mathbb{R}^{\geq 0} / (n, 0) \sim (m, 0)$.

• The Gromov boundary is $\partial X = \mathbb{Z}$.

Example

Let X = "infinite tree" defined as $X = \mathbb{Z} \times \mathbb{R}^{\geq 0} / (n, 0) \sim (m, 0)$.

- The Gromov boundary is $\partial X = \mathbb{Z}$.
- If z_n = [(n, n)] then in the horofunction compactification one has

Example

Let X = "infinite tree" defined as $X = \mathbb{Z} \times \mathbb{R}^{\geq 0} / (n, 0) \sim (m, 0)$.

- The Gromov boundary is $\partial X = \mathbb{Z}$.
- If z_n = [(n, n)] then in the horofunction compactification one has

$$\lim_{n}\rho_{\mathbf{Z}_{n}}=\rho_{\mathbf{Z}_{0}}.$$

Example

Let X = "infinite tree" defined as $X = \mathbb{Z} \times \mathbb{R}^{\geq 0} / (n, 0) \sim (m, 0)$.

- The Gromov boundary is $\partial X = \mathbb{Z}$.
- If z_n = [(n, n)] then in the horofunction compactification one has

$$\lim_{n}\rho_{Z_n}=\rho_{Z_0}.$$

(Note: the set of infinite horofunctions is NOT closed.)

Proposition Let *h* be a horofunction in \overline{X}^h ,

Proposition Let *h* be a horofunction in \overline{X}^h , and let γ be a geodesic in *X*.

Proposition

Let \dot{h} be a horofunction in \overline{X}^h , and let γ be a geodesic in X. Then there is p on γ

Proposition

Let \dot{h} be a horofunction in \overline{X}^h , and let γ be a geodesic in X. Then there is p on γ such that the restriction of h to γ is equal to:

Proposition

Let \dot{h} be a horofunction in \overline{X}^h , and let γ be a geodesic in X. Then there is p on γ such that the restriction of h to γ is equal to:

either

$$h(x) = h(p) + d(p, x) + O(\delta)$$

Proposition

Let \dot{h} be a horofunction in \overline{X}^h , and let γ be a geodesic in X. Then there is p on γ such that the restriction of h to γ is equal to:

either

$$h(x) = h(p) + d(p, x) + O(\delta)$$

or

$$h(x) = h(p) + d^+_{\gamma}(p, x) + O(\delta)$$

Proposition

Let \dot{h} be a horofunction in \overline{X}^h , and let γ be a geodesic in X. Then there is p on γ such that the restriction of h to γ is equal to:

either

$$h(x) = h(p) + d(p, x) + O(\delta)$$

▶ or

$$h(x) = h(p) + d^+_\gamma(p, x) + O(\delta)$$

where d^+ is the oriented distance along the geodesic, for some choice of orientation of γ .

Finite and infinite horofunctions

For any horofunction $h \in \overline{X}^h$, let us consider

$$\inf(h) := \inf_{y \in X} h(y).$$

Finite and infinite horofunctions

For any horofunction $h \in \overline{X}^h$, let us consider

 $\inf(h) := \inf_{y \in X} h(y).$

Definition The set of finite horofunctions is the set

$$\overline{X}_F^h := \{h \in \overline{X}^h : \inf h > -\infty\}$$

Finite and infinite horofunctions

For any horofunction $h \in \overline{X}^h$, let us consider

 $\inf(h) := \inf_{y \in X} h(y).$

Definition The set of finite horofunctions is the set

$$\overline{X}_F^h := \{h \in \overline{X}^h : \inf h > -\infty\}$$

and the set of infinite horofunctions is the set

$$\overline{X}^h_\infty := \{h \in \overline{X}^h : \inf h = -\infty\}$$

Lemma For each base point $x_0 \in X$,

Lemma

For each base point $x_0 \in X$, each horofunction $h \in \overline{X}^h$ and each $x, y \in X$ we have:

Lemma

For each base point $x_0 \in X$, each horofunction $h \in \overline{X}^h$ and each $x, y \in X$ we have:

$$\min\{-h(x),-h(y)\} \leq (x \cdot y)_{x_0} + O(\delta)$$

Lemma

For each base point $x_0 \in X$, each horofunction $h \in \overline{X}^h$ and each $x, y \in X$ we have:

$$\min\{-h(x),-h(y)\} \leq (x \cdot y)_{x_0} + O(\delta)$$

Proof. By definition,

Lemma

For each base point $x_0 \in X$, each horofunction $h \in \overline{X}^h$ and each $x, y \in X$ we have:

$$\min\{-h(x),-h(y)\} \leq (x \cdot y)_{x_0} + O(\delta)$$

Proof.

By definition,

$$(x \cdot z)_{x_0}$$

Lemma

For each base point $x_0 \in X$, each horofunction $h \in \overline{X}^h$ and each $x, y \in X$ we have:

$$\min\{-h(x),-h(y)\} \leq (x \cdot y)_{x_0} + O(\delta)$$

Proof.

By definition,

$$(x \cdot z)_{x_0} = \frac{d_X(x_0, x) + d_X(x_0, z) - d_X(x, z)}{2}$$

Lemma

For each base point $x_0 \in X$, each horofunction $h \in \overline{X}^h$ and each $x, y \in X$ we have:

$$\min\{-h(x),-h(y)\} \leq (x \cdot y)_{x_0} + O(\delta)$$

Proof.

By definition,

$$(x \cdot z)_{x_0} = \frac{d_X(x_0, x) + d_X(x_0, z) - d_X(x, z)}{2} = -\rho_z(x)$$

Lemma

For each base point $x_0 \in X$, each horofunction $h \in \overline{X}^h$ and each $x, y \in X$ we have:

$$\min\{-h(x),-h(y)\} \leq (x \cdot y)_{x_0} + O(\delta)$$

Proof.

By definition,

$$(x \cdot z)_{x_0} = \frac{d_X(x_0, x) + d_X(x_0, z) - d_X(x, z)}{2} = -\rho_z(x)$$

By δ -hyperbolicity,

$$(x \cdot y)_{x_0} \ge \min\{(x \cdot z)_{x_0}, (y \cdot z)_{x_0}\} - \delta$$

Lemma

For each base point $x_0 \in X$, each horofunction $h \in \overline{X}^h$ and each $x, y \in X$ we have:

$$\min\{-h(x),-h(y)\} \leq (x \cdot y)_{x_0} + O(\delta)$$

Proof.

By definition,

$$(x \cdot z)_{x_0} = \frac{d_X(x_0, x) + d_X(x_0, z) - d_X(x, z)}{2} = -\rho_z(x)$$

By δ -hyperbolicity,

$$(x \cdot y)_{x_0} \ge \min\{(x \cdot z)_{x_0}, (y \cdot z)_{x_0}\} - \delta$$

hence

Lemma

For each base point $x_0 \in X$, each horofunction $h \in \overline{X}^h$ and each $x, y \in X$ we have:

$$\min\{-h(x),-h(y)\} \leq (x \cdot y)_{x_0} + O(\delta)$$

Proof.

By definition,

$$(x \cdot z)_{x_0} = \frac{d_X(x_0, x) + d_X(x_0, z) - d_X(x, z)}{2} = -\rho_z(x)$$

By δ -hyperbolicity,

$$(x \cdot y)_{x_0} \ge \min\{(x \cdot z)_{x_0}, (y \cdot z)_{x_0}\} - \delta$$

hence

$$(\mathbf{x} \cdot \mathbf{y})_{\mathbf{x}_0} \geq \min\{-\rho_z(\mathbf{x}), -\rho_z(\mathbf{y})\} - \delta.$$

Comparing the horofunction and Gromov boundaries

Lemma

For each base point $x_0 \in X$, each horofunction $h \in \overline{X}^h$ and each $x, y \in X$ we have:

$$\min\{-h(x),-h(y)\} \leq (x \cdot y)_{x_0} + O(\delta)$$

Proof.

By definition,

$$(x \cdot z)_{x_0} = \frac{d_X(x_0, x) + d_X(x_0, z) - d_X(x, z)}{2} = -\rho_z(x)$$

By δ -hyperbolicity,

$$(x \cdot y)_{x_0} \ge \min\{(x \cdot z)_{x_0}, (y \cdot z)_{x_0}\} - \delta$$

hence

$$(\mathbf{x} \cdot \mathbf{y})_{\mathbf{x}_0} \ge \min\{-\rho_z(\mathbf{x}), -\rho_z(\mathbf{y})\} - \delta.$$

Since every horofunction is the pointwise limit of functions ρ_z , the claim follows.

Lemma

For each base point $x_0 \in X$, each horofunction $h \in \overline{X}^h$ and each $x, y \in X$ we have:

$$\min\{-h(x),-h(y)\} \leq (x \cdot y)_{x_0} + O(\delta)$$

Lemma

For each base point $x_0 \in X$, each horofunction $h \in \overline{X}^h$ and each $x, y \in X$ we have:

$$\min\{-h(x),-h(y)\} \leq (x \cdot y)_{x_0} + O(\delta)$$

Corollary

Let $(x_n) \subseteq X$ be a sequence of points, and $h \in \overline{X}^h$ a horofunction.

Lemma

For each base point $x_0 \in X$, each horofunction $h \in \overline{X}^h$ and each $x, y \in X$ we have:

$$\min\{-h(x),-h(y)\} \leq (x \cdot y)_{x_0} + O(\delta)$$

Corollary

Let $(x_n) \subseteq X$ be a sequence of points, and $h \in \overline{X}^h$ a horofunction. If $h(x_n) \to -\infty$, then (x_n) converges in the Gromov boundary,

Lemma

For each base point $x_0 \in X$, each horofunction $h \in \overline{X}^h$ and each $x, y \in X$ we have:

$$\min\{-h(x),-h(y)\} \leq (x \cdot y)_{x_0} + O(\delta)$$

Corollary

Let $(x_n) \subseteq X$ be a sequence of points, and $h \in \overline{X}^h$ a horofunction. If $h(x_n) \to -\infty$, then (x_n) converges in the Gromov boundary, and

$$\lim_{n\to\infty}x_n\in\partial X$$

does not depend on the choice of (x_n) .

Definition The local minimum map $\varphi : \overline{X}^h \to X \cup \partial X$ is defined as follows.

Definition The local minimum map $\varphi : \overline{X}^h \to X \cup \partial X$ is defined as follows.

• If $h \in \overline{X}_F^h$, then

Definition The local minimum map $\varphi : \overline{X}^h \to X \cup \partial X$ is defined as follows. If $h \in \overline{X}_F^h$, then

$$\varphi(h) := \{x \in X : h(x) \le \inf h + 1\}$$

Definition The local minimum map $\varphi : \overline{X}^h \to X \cup \partial X$ is defined as follows. If $h \in \overline{X}_F^h$, then

$$\varphi(h) := \{x \in X : h(x) \le \inf h + 1\}$$

• If
$$h \in \overline{X}_{\infty}^{h}$$
, then

Definition The local minimum map $\varphi : \overline{X}^h \to X \cup \partial X$ is defined as follows.

• If $h \in \overline{X}_F^h$, then

$$\varphi(h) := \{x \in X : h(x) \le \inf h + 1\}$$

▶ If $h \in \overline{X}_{\infty}^{h}$, then choose a sequence (y_n) with $h(y_n) \to -\infty$ and set

$$\varphi(h) := \lim_{n \to \infty} y_n$$

Definition The local minimum map $\varphi : \overline{X}^h \to X \cup \partial X$ is defined as follows.

• If $h \in \overline{X}_F^h$, then

$$\varphi(h) := \{x \in X : h(x) \le \inf h + 1\}$$

If h∈ X^h_∞, then choose a sequence (y_n) with h(y_n) → -∞ and set

$$\varphi(h) := \lim_{n \to \infty} y_n$$

be the limit point in the Gromov boundary.

Definition The local minimum map $\varphi : \overline{X}^h \to X \cup \partial X$ is defined as follows.

• If $h \in \overline{X}_F^h$, then

$$\varphi(h) := \{x \in X : h(x) \le \inf h + 1\}$$

If h∈ X^h_∞, then choose a sequence (y_n) with h(y_n) → -∞ and set

$$\varphi(h) := \lim_{n \to \infty} y_n$$

be the limit point in the Gromov boundary.

Lemma

There exists K, which depends only on δ , such that for each finite horofunction h,

diam $\varphi(h) \leq K$.

Lemma

There exists K, which depends only on δ , such that for each finite horofunction h,

diam $\varphi(h) \leq K$.

Proof.

Let $x, y \in \phi(h)$, for some $h \in \overline{X}^h$, and consider the restriction of h along a geodesic segment from x to y.

Lemma

There exists K, which depends only on δ , such that for each finite horofunction h,

diam $\varphi(h) \leq K$.

Proof.

Let $x, y \in \phi(h)$, for some $h \in \overline{X}^h$, and consider the restriction of h along a geodesic segment from x to y. By the Proposition, the restriction has at most one coarse local minimum:

Lemma

There exists K, which depends only on δ , such that for each finite horofunction h,

diam $\varphi(h) \leq K$.

Proof.

Let $x, y \in \phi(h)$, for some $h \in \overline{X}^h$, and consider the restriction of h along a geodesic segment from x to y. By the Proposition, the restriction has at most one coarse local minimum: hence, since x and y are coarse local minima of h, the distance between x and y is universally bounded in terms of δ .

Lemma

There exists K, which depends only on δ , such that for each finite horofunction h,

diam $\varphi(h) \leq K$.

Proof.

Let $x, y \in \phi(h)$, for some $h \in \overline{X}^h$, and consider the restriction of h along a geodesic segment from x to y. By the Proposition, the restriction has at most one coarse local minimum: hence, since x and y are coarse local minima of h, the distance between x and y is universally bounded in terms of δ .

Corollary

The local minimum map $\varphi : \overline{X}^h \to X \cup \partial X$ is well-defined and *G*-equivariant.

Lemma

There exists K, which depends only on δ , such that for each finite horofunction h,

diam $\varphi(h) \leq K$.

Proof.

Let $x, y \in \phi(h)$, for some $h \in \overline{X}^h$, and consider the restriction of h along a geodesic segment from x to y. By the Proposition, the restriction has at most one coarse local minimum: hence, since x and y are coarse local minima of h, the distance between x and y is universally bounded in terms of δ .

Corollary

The local minimum map $\varphi : \overline{X}^h \to X \cup \partial X$ is well-defined and *G*-equivariant.

Note: φ is not continuous

Lemma

There exists K, which depends only on δ , such that for each finite horofunction h,

diam $\varphi(h) \leq K$.

Proof.

Let $x, y \in \phi(h)$, for some $h \in \overline{X}^h$, and consider the restriction of h along a geodesic segment from x to y. By the Proposition, the restriction has at most one coarse local minimum: hence, since x and y are coarse local minima of h, the distance between x and y is universally bounded in terms of δ .

Corollary

The local minimum map $\varphi : \overline{X}^h \to X \cup \partial X$ is well-defined and *G*-equivariant.

Note: φ is not continuous but $\varphi|_{\overline{X}^h}$ is continuous.

Lemma

There exists K, which depends only on δ , such that for each finite horofunction h,

diam $\varphi(h) \leq K$.

Proof.

Let $x, y \in \phi(h)$, for some $h \in \overline{X}^h$, and consider the restriction of h along a geodesic segment from x to y. By the Proposition, the restriction has at most one coarse local minimum: hence, since x and y are coarse local minima of h, the distance between x and y is universally bounded in terms of δ .

Corollary

The local minimum map $\varphi : \overline{X}^h \to X \cup \partial X$ is well-defined and *G*-equivariant.

Note: φ is not continuous but $\varphi|_{\overline{\chi}_{\infty}^{h}}$ is continuous. E.g., in the "infinite tree" case, if $z_{n} := (n, n)$ then $\rho_{z_{n}} \to \rho_{x_{0}}$ but $\phi(\rho_{z_{n}}) = z_{n} \nleftrightarrow x_{0}$.

Definition

Let μ be a probability measure on a group *G*, and let *M* be a metric space on which *G* acts by homeomorphisms.

Definition

Let μ be a probability measure on a group *G*, and let *M* be a metric space on which *G* acts by homeomorphisms. A probability measure ν on *M* is μ -stationary

Definition

Let μ be a probability measure on a group *G*, and let *M* be a metric space on which *G* acts by homeomorphisms. A probability measure ν on *M* is μ -stationary (or just stationary)

Definition

Let μ be a probability measure on a group *G*, and let *M* be a metric space on which *G* acts by homeomorphisms. A probability measure ν on *M* is μ -stationary (or just stationary) if

$$\int_G g
u \ d\mu(g) =
u$$

Definition

Let μ be a probability measure on a group *G*, and let *M* be a metric space on which *G* acts by homeomorphisms. A probability measure ν on *M* is μ -stationary (or just stationary) if

$$\int_G g
u \; d \mu(g) =
u$$

The pair (M, ν) is then called a (G, μ) -space.

٠

Definition

Let μ be a probability measure on a group *G*, and let *M* be a metric space on which *G* acts by homeomorphisms. A probability measure ν on *M* is μ -stationary (or just stationary) if

$$\int_G g
u \; d \mu(g) =
u$$

The pair (M, ν) is then called a (G, μ) -space.

Problem: Since ∂X need not be compact, you may not be able to find a stationary measure in $P(\partial X)$.

Definition

Let μ be a probability measure on a group *G*, and let *M* be a metric space on which *G* acts by homeomorphisms. A probability measure ν on *M* is μ -stationary (or just stationary) if

$$\int_G g
u \; d \mu(g) =
u$$

The pair (M, ν) is then called a (G, μ) -space.

Problem: Since ∂X need not be compact, you may not be able to find a stationary measure in $P(\partial X)$. Trick: Consider the horofunction compactification (which is always compact and metrizable).

Definition

Let μ be a probability measure on a group *G*, and let *M* be a metric space on which *G* acts by homeomorphisms. A probability measure ν on *M* is μ -stationary (or just stationary) if

$$\int_G g
u \; d \mu(g) =
u$$

The pair (M, ν) is then called a (G, μ) -space.

Problem: Since ∂X need not be compact, you may not be able to find a stationary measure in $P(\partial X)$. Trick: Consider the horofunction compactification (which is always compact and metrizable).

Lemma

 $P(\overline{X}^{h})$ is compact, so it contains a μ -stationary measure.

Proposition

Let M be a compact metric space on which G acts continuously,

Proposition

Let M be a compact metric space on which G acts continuously, and ν a μ -stationary probability measure on M.

Proposition

Let *M* be a compact metric space on which *G* acts continuously, and ν a μ -stationary probability measure on *M*. Then for \mathbb{P} -a.e. sequence (w_n) the limit

Proposition

Let *M* be a compact metric space on which *G* acts continuously, and ν a μ -stationary probability measure on *M*. Then for \mathbb{P} -a.e. sequence (w_n) the limit

$$\nu_{\omega} := \lim_{n \to \infty} g_1 g_2 \dots g_n \nu$$

Proposition

Let M be a compact metric space on which G acts continuously, and ν a μ -stationary probability measure on M. Then for \mathbb{P} -a.e. sequence (w_n) the limit

$$\nu_{\omega} := \lim_{n \to \infty} g_1 g_2 \dots g_n \nu$$

exists in the space P(M) of probability measures on M.

Proposition

Let M be a compact metric space on which G acts continuously, and ν a μ -stationary probability measure on M. Then for \mathbb{P} -a.e. sequence (w_n) the limit

$$\nu_{\omega} := \lim_{n \to \infty} g_1 g_2 \dots g_n \nu$$

exists in the space P(M) of probability measures on M.

Proof.

Apply the martingale convergence theorem

Proposition

Let M be a compact metric space on which G acts continuously, and ν a μ -stationary probability measure on M. Then for \mathbb{P} -a.e. sequence (w_n) the limit

$$\nu_{\omega} := \lim_{n \to \infty} g_1 g_2 \dots g_n \nu$$

exists in the space P(M) of probability measures on M.

Proof.

Apply the martingale convergence theorem to

$$X_n := \int_M f(w_n\xi) \ d\nu(\xi).$$

Proposition

Let M be a compact metric space on which G acts continuously, and ν a μ -stationary probability measure on M. Then for \mathbb{P} -a.e. sequence (w_n) the limit

$$\nu_{\omega} := \lim_{n \to \infty} g_1 g_2 \dots g_n \nu$$

exists in the space P(M) of probability measures on M.

Proof.

Apply the martingale convergence theorem to

$$X_n := \int_M f(w_n\xi) \ d\nu(\xi).$$

for any $f \in C(M)$.

Proposition

Let μ be a non-elementary probability measure on G,

Proposition

Let μ be a non-elementary probability measure on G, and let ν be a μ -stationary measure on \overline{X}^h .

Proposition

Let μ be a non-elementary probability measure on G, and let ν be a μ -stationary measure on \overline{X}^h . Then

 $\nu(\overline{X}_F^h)=0.$

Proposition

Let μ be a non-elementary probability measure on *G*, and let ν be a μ -stationary measure on \overline{X}^h . Then

$$\nu(\overline{X}_F^h)=0.$$

Proposition

For \mathbb{P} -a.e. (w_n) there exists a subsequence $(\rho_{w_n x_0})$ which converges to a horofunction in \overline{X}_{∞}^h .

Proposition

Let μ be a non-elementary probability measure on *G*, and let ν be a μ -stationary measure on \overline{X}^h . Then

$$\nu(\overline{X}_F^h)=0.$$

Proposition

For \mathbb{P} -a.e. (w_n) there exists a subsequence $(\rho_{w_n x_0})$ which converges to a horofunction in \overline{X}^h_{∞} . As a corollary, for \mathbb{P} -a.e. sample path (w_n) there exists a subsequence $(w_{n_k} x_0)$ which converges to a point in the Gromov boundary ∂X .

Proposition

Let $\tilde{\nu}$ be a μ -stationary measure on ∂X ,

Proposition

Let $\tilde{\nu}$ be a μ -stationary measure on ∂X , and suppose that the sequence $(w_n x_0)$ converges to $\lambda \in \partial X$.

Proposition

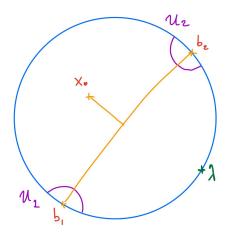
Let $\tilde{\nu}$ be a μ -stationary measure on ∂X , and suppose that the sequence $(w_n x_0)$ converges to $\lambda \in \partial X$. Then there exists a subsequence $(w_{n_k}\tilde{\nu})$ which converges to the

 δ -measure δ_{λ} on ∂X .

Proposition

Let $\tilde{\nu}$ be a μ -stationary measure on ∂X , and suppose that the sequence $(w_n x_0)$ converges to $\lambda \in \partial X$. Then there exists a subsequence $(w_{n_k}\tilde{\nu})$ which converges to the

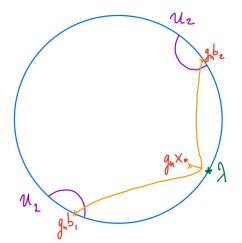
 δ -measure δ_{λ} on ∂X .



Proposition

Let $\tilde{\nu}$ be a μ -stationary measure on ∂X , and suppose that the sequence $(w_n x_0)$ converges to $\lambda \in \partial X$.

Then there exists a subsequence $(w_{n_k}\tilde{\nu})$ which converges to the δ -measure δ_{λ} on ∂X .



Proof. Let $\nu \in P(\overline{X}^h)$ a μ -stationary measure,

Proof. Let $\nu \in P(\overline{X}^h)$ a μ -stationary measure, and denote $\widetilde{\nu} := \phi_* \nu \in P(\partial X)$.

▶ By the martingale convergence theorem, for a.e. w_n $(w_n)_*\nu \longrightarrow \nu_w \in P(\overline{X}^h).$

- ▶ By the martingale convergence theorem, for a.e. w_n $(w_n)_*\nu \longrightarrow \nu_w \in P(\overline{X}^h).$
- ▶ Then by pushing forward by φ_* one gets $(w_n)_*(\tilde{\nu}) \longrightarrow (\tilde{\nu})_w \in P(\partial X).$

Proof.

- ▶ By the martingale convergence theorem, for a.e. w_n $(w_n)_*\nu \longrightarrow \nu_w \in P(\overline{X}^h).$
- ► Then by pushing forward by φ_* one gets $(w_n)_*(\tilde{\nu}) \longrightarrow (\tilde{\nu})_w \in P(\partial X).$
- ▶ By δ -hyperbolicity, if $w_n x \longrightarrow \xi \in \partial X$ then $w_n \tilde{\nu} \longrightarrow \delta_{\xi}$.

Proof.

- ▶ By the martingale convergence theorem, for a.e. w_n $(w_n)_*\nu \longrightarrow \nu_w \in P(\overline{X}^h).$
- ► Then by pushing forward by φ_* one gets $(w_n)_*(\tilde{\nu}) \longrightarrow (\tilde{\nu})_w \in P(\partial X).$
- ▶ By δ -hyperbolicity, if $w_n x \longrightarrow \xi \in \partial X$ then $w_n \tilde{\nu} \longrightarrow \delta_{\xi}$.
- The sequence w_nx has at least one limit point ξ in ∂X, and for each limit point ξ, w_{nk} ν̃ → δ_ξ,

Proof.

- ▶ By the martingale convergence theorem, for a.e. w_n $(w_n)_*\nu \longrightarrow \nu_w \in P(\overline{X}^h).$
- ► Then by pushing forward by φ_* one gets $(w_n)_*(\tilde{\nu}) \longrightarrow (\tilde{\nu})_w \in P(\partial X).$
- ▶ By δ -hyperbolicity, if $w_n x \longrightarrow \xi \in \partial X$ then $w_n \tilde{\nu} \longrightarrow \delta_{\xi}$.
- The sequence w_nx has at least one limit point ξ in ∂X, and for each limit point ξ , w_{nk} ν̃ → δ_ξ,
- ▶ BUT there can be only one limit point, as $\lim_{n\to\infty} w_n \tilde{\nu}$ exists.

Proof.

- ▶ By the martingale convergence theorem, for a.e. w_n $(w_n)_*\nu \longrightarrow \nu_w \in P(\overline{X}^h).$
- ► Then by pushing forward by φ_* one gets $(w_n)_*(\tilde{\nu}) \longrightarrow (\tilde{\nu})_w \in P(\partial X).$
- ▶ By δ -hyperbolicity, if $w_n x \longrightarrow \xi \in \partial X$ then $w_n \tilde{\nu} \longrightarrow \delta_{\xi}$.
- The sequence w_nx has at least one limit point ξ in ∂X, and for each limit point ξ , w_{nk} ν̃ → δ_ξ,
- ▶ BUT there can be only one limit point, as $\lim_{n\to\infty} w_n \tilde{\nu}$ exists.
- Hence, $\lim_{n\to\infty} w_n x = \xi \in \partial X$ exists.

Proof.

Let $\nu \in P(\overline{X}^h)$ a μ -stationary measure, and denote $\widetilde{\nu} := \phi_* \nu \in P(\partial X)$.

- ▶ By the martingale convergence theorem, for a.e. w_n $(w_n)_*\nu \longrightarrow \nu_w \in P(\overline{X}^h).$
- ► Then by pushing forward by φ_* one gets $(w_n)_*(\tilde{\nu}) \longrightarrow (\tilde{\nu})_w \in P(\partial X).$
- ▶ By δ -hyperbolicity, if $w_n x \longrightarrow \xi \in \partial X$ then $w_n \tilde{\nu} \longrightarrow \delta_{\xi}$.
- ► The sequence $w_n x$ has at least one limit point ξ in ∂X , and for each limit point ξ , $w_{n_k} \tilde{\nu} \longrightarrow \delta_{\xi}$,
- ▶ BUT there can be only one limit point, as $\lim_{n\to\infty} w_n \tilde{\nu}$ exists.
- Hence, $\lim_{n\to\infty} w_n x = \xi \in \partial X$ exists.

Corollary

The hitting measure is the only μ -stationary measure on ∂X .