Random walks on weakly hyperbolic groups

Giulio Tiozzo
University of Toronto

Random and Arithmetic Structures in Topology
MSRI - Fall 2020
Random walks on weakly hyperbolic groups - Summary

- **Lecture 1** (Aug 31, 10.30): Introduction to random walks on groups
Random walks on weakly hyperbolic groups - Summary

- **Lecture 1** (Aug 31, 10.30): Introduction to random walks on groups
- **Lecture 2** (Sep 1, 10.30): Horofunctions + convergence to the boundary
Random walks on weakly hyperbolic groups -
Summary

▷ **Lecture 1** (Aug 31, 10.30): Introduction to random walks on groups

▷ **Lecture 2** (Sep 1, 10.30): Horofunctions + convergence to the boundary

▷ **Lecture 3** (Sep 3, 9.00): Positive drift + genericity of loxodromics
Random walks on weakly hyperbolic groups - Summary

- **Lecture 1** (Aug 31, 10.30): Introduction to random walks on groups
- **Lecture 2** (Sep 1, 10.30): Horofunctions + convergence to the boundary
- **Lecture 3** (Sep 3, 9.00): Positive drift + genericity of loxodromics

Main references:

J. Maher and G. T., *Random walks on weakly hyperbolic groups*, *Random walks, WPD actions, and the Cremona group*
Random walks on weakly hyperbolic groups -
Summary

▶ **Lecture 1** (Aug 31, 10.30): Introduction to random walks on groups

▶ **Lecture 2** (Sep 1, 10.30): Horofunctions + convergence to the boundary

▶ **Lecture 3** (Sep 3, 9.00): Positive drift + genericity of loxodromics

Main references:
J. Maher and G. T.,
Random walks on weakly hyperbolic groups - Summary

▶ Lecture 1 (Aug 31, 10.30): Introduction to random walks on groups
▶ Lecture 2 (Sep 1, 10.30): Horofunctions + convergence to the boundary
▶ Lecture 3 (Sep 3, 9.00): Positive drift + genericity of loxodromics

Main references:
J. Maher and G. T.,
Random walks on weakly hyperbolic groups
Random walks, WPD actions, and the Cremona group
Question. Consider a drunkard who moves in a city by tossing coins to decide whether to go North, South, East or West:
Question. Consider a drunkard who moves in a city by tossing coins to decide whether to go North, South, East or West: can he/she get back home?
Question. Consider a drunkard who moves in a city by tossing coins to decide whether to go North, South, East or West: can he/she get back home?

Answer. It depends on the topography (geometry) of the city.
Recurrent random walks

Example 1: Squareville
Recurrent random walks

Example 1: Squareville
In Squareville, blocks form a square grid.
Recurrent random walks

Example 1: Squareville
In Squareville, blocks form a square grid.

What is the probability of coming back to where you started?
Recurrence

Definition
A random walk \((w_n)\) on \(X\) is **recurrent** if for any \(x \in X\), the probability that \(w_n = x\) infinitely often is 1:

\[
P(\text{\(w_n = x\) i.o.}) = 1
\]

Otherwise it is said to be **transient**.

Let \(p_n(x, y) := \text{probability of being at } y \text{ after } n \text{ steps starting from } x\).

Lemma
Let \(m = \sum_{n \geq 1} p_n(x, x)\) be the "average number of visits to \(x\)."

Then the random walk is recurrent iff \(m = \infty\).

Exercise. Prove the Lemma.
Recurrence

Definition
A random walk \((w_n)\) on \(X\) is recurrent if for any \(x \in X\), the probability that \(w_n = x\) infinitely often is 1:

\[
P(w_n = x \text{ i.o.}) = 1
\]
Recurrence

Definition
A random walk \((w_n)\) on \(X\) is **recurrent** if for any \(x \in X\), the probability that \(w_n = x\) infinitely often is 1:

\[
P(w_n = x \text{ i.o.}) = 1
\]

Otherwise it is said to be **transient**.
Recurrence

Definition
A random walk \((w_n)\) on \(X\) is **recurrent** if for any \(x \in X\), the probability that \(w_n = x\) infinitely often is 1:

\[
P(w_n = x \text{ i.o.}) = 1
\]

Otherwise it is said to be **transient**.

Let \(p^n(x, y) := \) probability of being at \(y\) after \(n\) steps starting from \(x\).
Recurrence

Definition
A random walk \((w_n)\) on \(X\) is **recurrent** if for any \(x \in X\), the probability that \(w_n = x\) infinitely often is 1:

\[
P(w_n = x \ i.o.) = 1
\]

Otherwise it is said to be **transient**.

Let \(p^n(x, y) :=\) probability of being at \(y\) after \(n\) steps starting from \(x\).

Lemma
Let \(m = \sum_{n \geq 1} p^n(x, x)\) be the “average number of visits to \(x\)”.
Recurrence

Definition
A random walk \((w_n)\) on \(X\) is **recurrent** if for any \(x \in X\), the probability that \(w_n = x\) infinitely often is 1:

\[
P(w_n = x \text{ i.o.}) = 1
\]

Otherwise it is said to be **transient**.

Let \(p^n(x, y) := \text{probability of being at } y \text{ after } n \text{ steps starting from } x\).

Lemma
Let \(m = \sum_{n \geq 1} p^n(x, x)\) be the “average number of visits to \(x\).” Then the random walk is recurrent iff \(m = \infty\).
Recurrence

Definition
A random walk \((w_n)\) on \(X\) is recurrent if for any \(x \in X\), the probability that \(w_n = x\) infinitely often is 1:

\[\mathbb{P}(w_n = x \text{ i.o.}) = 1 \]

Otherwise it is said to be transient.

Let \(p^n(x, y) := \text{probability of being at } y \text{ after } n \text{ steps starting from } x\).

Lemma
Let \(m = \sum_{n \geq 1} p^n(x, x)\) be the “average number of visits to \(x\)”. Then the random walk is recurrent iff \(m = \infty\).

Exercise. Prove the Lemma.
Recurrent random walks

Let us first consider the easier case where your world is just a line.
Recurrent random walks

Let us first consider the easier case where your world is just a line. What is the probability of going back to where you start after \(N \) steps?

If \(N \) is odd, the probability is zero, but if \(N = 2n \) you get \(p_{2n}(0,0) = \frac{1}{2^n} \binom{2n}{n} \) (choose \(n \) ways to go right).

Is \(\sum_{n \geq 1} \frac{1}{2^n} \binom{2n}{n} \) convergent?

Apply Stirling's Formula:

\[
\frac{n!}{\sqrt{2\pi n} (n/e)^n} \sim \frac{1}{\sqrt{n}} \left(\frac{2n}{e} \right)^n
\]

\[
\therefore \text{our RW is recurrent.}
\]
Recurrent random walks

Let us first consider the easier case where your world is just a line. What is the probability of going back to where you start after \(N \) steps? If \(N \) is odd, the probability is zero, but if \(N = 2n \) you get

\[
\sum_{n \geq 1} \frac{1}{2^n} = \sum_{n \geq 1} \left(\frac{1}{2} \right)^n = \frac{1}{1 - 1/2} = 2
\]

Apply Stirling's Formula:

\[
\sqrt{2\pi n} \left(\frac{n}{e} \right)^n \sim \sqrt{n} \left(\frac{e}{n} \right)^n
\]

\[
\sim \frac{1}{\sqrt{n}} \frac{1}{\sqrt{2\pi n}} \left(\frac{e}{n} \right)^n
\]

\[
\therefore \text{our RW is recurrent.}
\]
Recurrent random walks

Let us first consider the easier case where your world is just a line. What is the probability of going back to where you start after \(N \) steps? If \(N \) is odd, the probability is zero, but if \(N = 2n \) you get

\[
p^{2n}(0, 0) = \frac{1}{2^{2n}} \binom{2n}{n} \quad \text{(choose } n \text{ ways to go right)}
\]
Recurrent random walks

Let us first consider the easier case where your world is just a line. What is the probability of going back to where you start after N steps? If N is odd, the probability is zero, but if $N = 2n$ you get

$$p^{2n}(0, 0) = \frac{1}{2^{2n}} \binom{2n}{n}$$

(choose n ways to go right)

Is $\sum_{n \geq 1} \frac{1}{2^{2n}} \binom{2n}{n}$ convergent?
Recurrent random walks

Let us first consider the easier case where your world is just a line. What is the probability of going back to where you start after \(N \) steps? If \(N \) is odd, the probability is zero, but if \(N = 2n \) you get

\[
p^{2n}(0, 0) = \frac{1}{2^{2n}} \binom{2n}{n} \quad \text{(choose } n \text{ ways to go right)}
\]

Is \(\sum_{n \geq 1} \frac{1}{2^{2n}} \binom{2n}{n} \) convergent?

Apply Stirling's Formula: \(n! \sim \sqrt{2\pi n} \left(\frac{n}{e} \right)^n \)
Recurrent random walks

Let us first consider the easier case where your world is just a line. What is the probability of going back to where you start after \(N \) steps? If \(N \) is odd, the probability is zero, but if \(N = 2n \) you get

\[
p^{2n}(0, 0) = \frac{1}{2^{2n}} \binom{2n}{n} \quad \text{(choose } n \text{ ways to go right)}
\]

Is \(\sum_{n \geq 1} \frac{1}{2^{2n}} \binom{2n}{n} \) convergent?

Apply Stirling’s Formula: \(n! \sim \sqrt{2\pi n} \left(\frac{n}{e} \right)^n \)

\[
\frac{1}{2^{2n}} \binom{2n}{n} \sim \frac{1}{2^{2n}} \frac{\sqrt{n} \left(\frac{2n}{e} \right)^{2n}}{\left(\sqrt{n} \left(\frac{n}{e} \right)^n \right)^2} = \frac{1}{\sqrt{n}}
\]
Recurrent random walks

Let us first consider the easier case where your world is just a line. What is the probability of going back to where you start after N steps? If N is odd, the probability is zero, but if $N = 2n$ you get

$$p^{2n}(0, 0) = \frac{1}{2^{2n}} \binom{2n}{n} \quad \text{(choose } n \text{ ways to go right)}$$

Is $\sum_{n \geq 1} \frac{1}{2^{2n}} \binom{2n}{n}$ convergent?

Apply Stirling’s Formula: $n! \sim \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$

$$\frac{1}{2^{2n}} \binom{2n}{n} \sim \frac{1}{2^{2n}} \frac{\sqrt{n} \left(\frac{2n}{e}\right)^{2n}}{\left(\sqrt{n} \left(\frac{n}{e}\right)^n\right)^2} = \frac{1}{\sqrt{n}}$$

\therefore our RW is recurrent.
Random walk in Squareville

Now, let us go to Squareville, i.e. the 2-dimensional grid.
Random walk in Squareville

Now, let us go to Squareville, i.e. the 2-dimensional grid. We have 4 directions to choose from.
Random walk in Squareville

Now, let us go to Squareville, i.e. the 2-dimensional grid. We have 4 directions to choose from. One checks

\[p^{2n}(0, 0) = \frac{1}{4^{2n}} \binom{2n}{n}^2 \approx \frac{1}{n} \]
Random walk in Squareville

Now, let us go to Squareville, i.e. the 2-dimensional grid. We have 4 directions to choose from. One checks

\[p^{2n}(0, 0) = \frac{1}{4^{2n}} \binom{2n}{n}^2 \sim \frac{1}{n} \]

(Why? There is a trick...)
Random walk in Squareville

Now, let us go to Squareville, i.e. the 2-dimensional grid. We have 4 directions to choose from. One checks

$$p^{2n}(0, 0) = \frac{1}{4^{2n}} \binom{2n}{n}^2 \sim \frac{1}{n}$$

(WHY? There is a trick...) hence the random walk is recurrent.
Random walk in Squareville

Now, let us go to Squareville, i.e. the 2-dimensional grid. We have 4 directions to choose from. One checks

\[p^{2n}(0, 0) = \frac{1}{4^{2n}} \binom{2n}{n}^2 \sim \frac{1}{n} \]

(WHY? There is a trick...) hence the random walk is recurrent.

Theorem (Polya)

The simple random walk on \(\mathbb{Z}^d \) is recurrent iff \(d = 1, 2 \).
Random walk in Squareville

Now, let us go to Squareville, i.e. the 2-dimensional grid. We have 4 directions to choose from. One checks

\[p^{2n}(0, 0) = \frac{1}{4^{2n}} \left(\frac{2n}{n} \right)^2 \sim \frac{1}{n} \]

(WHY? There is a trick...) hence the random walk is recurrent.

Theorem (Polya)

The simple random walk on \(\mathbb{Z}^d \) is recurrent iff \(d = 1, 2 \).

“A drunk man will get back home, but a drunk bird will get lost” (Kakutani).
Random walk in Squareville

Now, let us go to Squareville, i.e. the 2-dimensional grid. We have 4 directions to choose from. One checks

\[p^{2n}(0, 0) = \frac{1}{4^{2n}} \binom{2n}{n}^2 \sim \frac{1}{n} \]

(WHY? There is a trick...) hence the random walk is recurrent.

Theorem (Polya)

The simple random walk on \(\mathbb{Z}^d \) is recurrent iff \(d = 1, 2 \).

“A drunk man will get back home, but a drunk bird will get lost” (Kakutani).

Exercise. Prove Polya’s theorem for \(d = 3 \).
Random walk in Squareville

Now, let us go to Squareville, i.e. the 2-dimensional grid. We have 4 directions to choose from. One checks

\[p^{2n}(0,0) = \frac{1}{4^{2n}} \binom{2n}{n}^2 \sim \frac{1}{n} \]

(\textit{WHY? There is a trick...}) hence the random walk is recurrent.

Theorem (Polya)

The simple random walk on \(\mathbb{Z}^d \) is recurrent iff \(d = 1, 2 \).

“A drunk man will get back home, but a drunk bird will get lost” (Kakutani).

Exercise. Prove Polya’s theorem for \(d = 3 \). Moreover, for the simple random walk on \(\mathbb{Z}^d \), show that \(p^{2n}(0,0) \approx n^{-\frac{d}{2}} \).
Transient random walks

Example 2: Tree City
In Tree City, the map has the shape of a 4-valent tree.
Transient random walks

Example 2: Tree City
In Tree City, the map has the shape of a 4-valent tree.

Theorem

The simple random walk on a 4-valent tree is transient.
In Tree City, the map has the shape of a 4-valent tree.

Theorem

The simple random walk on a 4-valent tree is transient.

\[d_n = \text{“distance of the } n^{th} \text{ step of the RW from the origin”}. \]
In Tree City, the map has the shape of a 4-valent tree.

Theorem

The simple random walk on a 4-valent tree is transient.

\[d_n = \text{“distance of the } n^{th} \text{ step of the RW from the origin”}. \]

If you give the position of the \(n^{th} \) step, then:

\[\text{If } d_n > 0 \text{ then } d_{n+1} = \begin{cases}
 d_n + 1 & \text{with } P = \frac{3}{4} \\
 d_n - 1 & \text{with } P = \frac{1}{4}
\end{cases} \]

\[\text{If } d_n = 0 \text{ then } d_{n+1} = d_n + 1 \]

\[\therefore E(d_{n+1} - d_n) \geq \frac{3}{4} - \frac{1}{4} = \frac{1}{2} \]

\[\therefore E(d_n) \geq \frac{1}{2} \]

Then \(E(d_n) \geq \frac{1}{2} \Rightarrow \text{RW is transient} \] (do we know \(\lim_{n \to \infty} d_n \) exist?)
In Tree City, the map has the shape of a 4-valent tree.

Theorem
The simple random walk on a 4-valent tree is transient.

$$d_n = \text{“distance of the } n^{th} \text{ step of the RW from the origin”}.$$

If you give the position of the n^{th} step, then: if $d_n > 0$
In Tree City, the map has the shape of a 4-valent tree.

Theorem

The simple random walk on a 4-valent tree is transient.

\[d_n = \text{“distance of the } n^{th} \text{ step of the RW from the origin”}. \]

If you give the position of the \(n^{th} \) step, then: if \(d_n > 0 \)

\[d_{n+1} = \begin{cases}
 d_n + 1 & \text{with } P = \frac{3}{4} \\
 d_n - 1 & \text{with } P = \frac{1}{4}
\end{cases} \]

\[\therefore E(d_n + 1 - d_n) \geq \frac{3}{4} - \frac{1}{4} = \frac{1}{2} \]

\[\therefore E(d_n) \geq \frac{1}{2} \]

Then \[E(d_n) \geq \frac{1}{2} \Rightarrow \text{RW is transient} \] (do we know \(\lim_{n \to \infty} d_n \) exist?)
In Tree City, the map has the shape of a 4-valent tree.

Theorem

The simple random walk on a 4-valent tree is transient.

\[d_n = \text{“distance of the } n^{th} \text{ step of the RW from the origin”}. \]

If you give the position of the \(n^{th} \) step, then: if \(d_n > 0 \)

\[
d_{n+1} = \begin{cases}
 d_n + 1 \quad \text{with } P = \frac{3}{4} \\
 d_n - 1 \quad \text{with } P = \frac{1}{4}
\end{cases}
\]

and if \(d_n = 0 \) then
In Tree City, the map has the shape of a 4-valent tree.

Theorem

The simple random walk on a 4-valent tree is transient.

\[d_n = \text{“distance of the } n^{th} \text{ step of the RW from the origin”}. \]

If you give the position of the \(n^{th} \) step, then: if \(d_n > 0 \)

\[d_{n+1} = \begin{cases}
 d_n + 1 & \text{with } \mathbb{P} = \frac{3}{4} \\
 d_n - 1 & \text{with } \mathbb{P} = \frac{1}{4}
\end{cases} \]

and if \(d_n = 0 \) then

\[d_{n+1} = d_n + 1 \]
In Tree City, the map has the shape of a 4-valent tree.

Theorem

The simple random walk on a 4-valent tree is transient.

\[d_n = \text{"distance of the } n^{th} \text{ step of the RW from the origin"}. \]

If you give the position of the \(n^{th} \) step, then: if \(d_n > 0 \)

\[
d_{n+1} = \begin{cases}
 d_n + 1 & \text{ with } P = \frac{3}{4} \\
 d_n - 1 & \text{ with } P = \frac{1}{4}
\end{cases}
\]

and if \(d_n = 0 \) then

\[d_{n+1} = d_n + 1 \]

\[\therefore \quad E(d_{n+1} - d_n) \geq \frac{3}{4} - \frac{1}{4} = \frac{1}{2} \]
In Tree City, the map has the shape of a 4-valent tree.

Theorem

The simple random walk on a 4-valent tree is transient.

\[d_n = \text{"distance of the } n^{th} \text{ step of the RW from the origin"}. \]

If you give the position of the \(n^{th} \) step, then: if \(d_n > 0 \)

\[
d_{n+1} = \begin{cases}
 d_n + 1 & \text{with } P = \frac{3}{4} \\
 d_n - 1 & \text{with } P = \frac{1}{4}
\end{cases}
\]

and if \(d_n = 0 \) then

\[d_{n+1} = d_n + 1 \]

\[\therefore \mathbb{E}(d_{n+1} - d_n) \geq \frac{3}{4} - \frac{1}{4} = \frac{1}{2} \therefore \mathbb{E}\left(\frac{d_n}{n}\right) \geq \frac{1}{2} \]
In Tree City, the map has the shape of a 4-valent tree.

Theorem

The simple random walk on a 4-valent tree is transient.

\[d_n = "\text{distance of the } n^{th} \text{ step of the RW from the origin}". \]

If you give the position of the \(n^{th} \) step, then: if \(d_n > 0 \)

\[
d_{n+1} = \begin{cases}
 d_n + 1 & \text{with } P = \frac{3}{4} \\
 d_n - 1 & \text{with } P = \frac{1}{4}
\end{cases}
\]

and if \(d_n = 0 \) then

\[d_{n+1} = d_n + 1 \]

\[\therefore \quad \mathbb{E}(d_{n+1} - d_n) \geq \frac{3}{4} - \frac{1}{4} = \frac{1}{2} \cdot \quad \mathbb{E}\left(\frac{d_n}{n}\right) \geq \frac{1}{2} \]

Then \[\mathbb{E}\left(\frac{d_n}{n}\right) \geq \frac{1}{2} \]
In Tree City, the map has the shape of a 4-valent tree.

Theorem

The simple random walk on a 4-valent tree is transient.

\[d_n = \text{“distance of the } n^{th} \text{ step of the RW from the origin”}. \]

If you give the position of the \(n^{th} \) step, then: if \(d_n > 0 \)

\[d_{n+1} = \begin{cases}
 d_n + 1 & \text{with } P = \frac{3}{4} \\
 d_n - 1 & \text{with } P = \frac{1}{4}
\end{cases} \]

and if \(d_n = 0 \) then

\[d_{n+1} = d_n + 1 \]

\[\therefore \ E(d_{n+1} - d_n) \geq \frac{3}{4} - \frac{1}{4} = \frac{1}{2} \therefore E \left(\frac{d_n}{n} \right) \geq \frac{1}{2} \]

Then \(E \left(\frac{d_n}{n} \right) \geq \frac{1}{2} \Rightarrow \text{RW is transient} \]
In Tree City, the map has the shape of a 4-valent tree.

Theorem
The simple random walk on a 4-valent tree is transient.

\[d_n = \text{“distance of the } n^{th} \text{ step of the RW from the origin”}. \]

If you give the position of the \(n^{th} \) step, then: if \(d_n > 0 \)

\[
\begin{align*}
 d_{n+1} &= \begin{cases}
 d_n + 1 & \text{with } P = \frac{3}{4} \\
 d_n - 1 & \text{with } P = \frac{1}{4}
\end{cases}
\]

and if \(d_n = 0 \) then

\[d_{n+1} = d_n + 1 \]

\[\therefore \mathbb{E}(d_{n+1} - d_n) \geq \frac{3}{4} - \frac{1}{4} = \frac{1}{2} \therefore \mathbb{E}\left(\frac{d_n}{n}\right) \geq \frac{1}{2} \]

Then \(\mathbb{E}\left(\frac{d_n}{n}\right) \geq \frac{1}{2} \Rightarrow \text{RW is transient} \)

(Do we know \(\lim_{n \to \infty} \frac{d_n}{n} \) exist?)
A radially symmetric tree of valence \((a_1, a_2, \ldots)\) is a tree where all vertices at distance \(n\) from the base point have exactly \(a_{n-1}\) children.

Prove that the simple random walk on a radially symmetric tree \((a_1, a_2, \ldots)\) is transient iff
\[
\sum_{n \geq 1} a_1 \cdot a_2 \cdots a_n < \infty
\]
Exercise (P. Lessa)
A radially symmetric tree of valence \((a_1, a_2, \ldots)\) is a tree where all vertices at distance \(n\) from the base point have exactly \(a_{n-1}\) children.
Exercise (P. Lessa)
A radially symmetric tree of valence \((a_1, a_2, \ldots)\) is a tree where all vertices at distance \(n\) from the base point have exactly \(a_{n-1}\) children. Prove that the simple random walk on a radially symmetric tree \((a_1, a_2, \ldots)\) is transient
Exercise (P. Lessa)
A radially symmetric tree of valence \((a_1, a_2, \ldots)\) is a tree where all vertices at distance \(n\) from the base point have exactly \(a_{n-1}\) children. Prove that the simple random walk on a radially symmetric tree \((a_1, a_2, \ldots)\) is transient iff

\[
\sum_{n \geq 1} \frac{1}{a_1 \cdot a_2 \cdots a_n} < \infty
\]
Exercise (P. Lessa)

A radially symmetric tree of valence \((a_1, a_2, \ldots)\) is a tree where all vertices at distance \(n\) from the base point have exactly \(a_{n-1}\) children. Prove that the simple random walk on a radially symmetric tree \((a_1, a_2, \ldots)\) is transient iff

\[
\sum_{n \geq 1} \frac{1}{a_1 \cdot a_2 \cdots a_n} < \infty
\]
Let G be a group and (X, d) a metric space.
General setup

Let G be a group and (X, d) a metric space. The isometry group of X is the group of elements which preserve distance:
General setup

Let G be a group and (X, d) a metric space. The **isometry group** of X is the group of elements which preserve distance:

$$\text{Isom}(X) = \{ f : X \to X : d(x, y) = d(f(x), f(y)) \text{ for all } x, y \in X \}$$
Let G be a group and (X, d) a metric space. The isometry group of X is the group of elements which preserve distance:

$$\text{Isom}(X) = \{f : X \to X : d(x, y) = d(f(x), f(y)) \text{ for all } x, y \in X\}$$

Definition

A group action of G on X is a homomorphism

$$\rho : G \to \text{Isom}(X).$$
General setup

Let G be a group and (X, d) a metric space. The isometry group of X is the group of elements which preserve distance:

$\text{Isom}(X) = \{f : X \to X : d(x, y) = d(f(x), f(y)) \text{ for all } x, y \in X\}$

Definition
A group action of G on X is a homomorphism

$\rho : G \to \text{Isom}(X)$.

Example: the group of reals acting on itself by translations:
General setup

Let G be a group and (X, d) a metric space. The isometry group of X is the group of elements which preserve distance:

$$\text{Isom}(X) = \{ f : X \rightarrow X : d(x, y) = d(f(x), f(y)) \text{ for all } x, y \in X \}$$

Definition

A group action of G on X is a homomorphism

$$\rho : G \rightarrow \text{Isom}(X).$$

Example: the group of reals acting on itself by translations: $X = \mathbb{R}$, $G = \mathbb{R}$ and the action $\rho : \mathbb{R} \rightarrow \text{Isom}(\mathbb{R})$ is given by $\rho(t) : x \mapsto x + t$.
General setup

Let μ be a probability measure on G.
Let μ be a probability measure on G. Draw a sequence (g_n) of elements of G,

The sequence (g_n) is the sequence of increments, and we are interested in the products $w_n := g_1 \cdots g_n$. The sequence (w_n) is called a sample path for the random walk. More formally, the space of increments (or step space) is the product space (G^N, μ^N). Consider the map $\Phi : G^N \to G^N$ $\Phi : (g_n) \mapsto (w_n)$ where $w_n = g_1 \cdots g_n$ and define the sample space as the space (Ω, P) where $\Omega = G^N$ and $P = \Phi \star \mu^N$ is the pushforward. If you fix a basepoint $x \in X$ you can look at the sequence $(w_n \cdot x) \subseteq X$.

General setup
General setup

Let μ be a probability measure on G. Draw a sequence (g_n) of elements of G, independently.
General setup

Let μ be a probability measure on G. Draw a sequence (g_n) of elements of G, independently and with distribution μ.
General setup

Let μ be a probability measure on G. Draw a sequence (g_n) of elements of G, independently and with distribution μ. The sequence (g_n) is the sequence of increments, and we are interested in the products

$$w_n := g_1 \cdots g_n$$
General setup

Let μ be a probability measure on G. Draw a sequence (g_n) of elements of G, independently and with distribution μ. The sequence (g_n) is the sequence of increments, and we are interested in the products

$$w_n := g_1 \ldots g_n$$

The sequence (w_n) is called a sample path for the random walk.
General setup

Let μ be a probability measure on G. Draw a sequence (g_n) of elements of G, independently and with distribution μ. The sequence (g_n) is the sequence of increments, and we are interested in the products

$$w_n := g_1 \cdots g_n$$

The sequence (w_n) is called a sample path for the random walk. More formally, the space of increments (or step space) is the product space $(G^\mathbb{N}, \mu^\mathbb{N})$.
General setup

Let μ be a probability measure on G. Draw a sequence (g_n) of elements of G, independently and with distribution μ. The sequence (g_n) is the sequence of increments, and we are interested in the products

$$w_n := g_1 \cdots g_n$$

The sequence (w_n) is called a sample path for the random walk. More formally, the space of increments (or step space) is the product space $(G^\mathbb{N}, \mu^\mathbb{N})$. Consider the map $\Phi : G^\mathbb{N} \to G^\mathbb{N}$

$$\Phi : (g_n) \mapsto (w_n)$$

where $w_n = g_1 g_2 \cdots g_n$
General setup

Let \(\mu \) be a probability measure on \(G \). Draw a sequence \((g_n)\) of elements of \(G \), independently and with distribution \(\mu \).

The sequence \((g_n)\) is the sequence of increments, and we are interested in the products

\[
w_n := g_1 \cdots g_n
\]

The sequence \((w_n)\) is called a sample path for the random walk.

More formally, the space of increments (or step space) is the product space \((G^\mathbb{N}, \mu^\mathbb{N})\). Consider the map \(\Phi : G^\mathbb{N} \to G^\mathbb{N} \)

\[
\Phi : (g_n) \mapsto (w_n)
\]

where \(w_n = g_1 g_2 \cdots g_n \) and define the sample space as the space \((\Omega, \mathbb{P})\) where \(\Omega = G^\mathbb{N} \) and \(\mathbb{P} = \Phi_* \mu^\mathbb{N} \) is the pushforward.
General setup

Let μ be a probability measure on G. Draw a sequence (g_n) of elements of G, independently and with distribution μ. The sequence (g_n) is the sequence of increments, and we are interested in the products

$$w_n := g_1 \cdots g_n$$

The sequence (w_n) is called a sample path for the random walk. More formally, the space of increments (or step space) is the product space $(G^\mathbb{N}, \mu^\mathbb{N})$. Consider the map $\Phi : G^\mathbb{N} \rightarrow G^\mathbb{N}$

$$\Phi : (g_n) \mapsto (w_n)$$

where $w_n = g_1 g_2 \cdots g_n$ and define the sample space as the space (Ω, \mathbb{P}) where $\Omega = G^\mathbb{N}$ and $\mathbb{P} = \Phi_* \mu^\mathbb{N}$ is the pushforward. If you fix a basepoint $x \in X$ you can look at the sequence $(w_n \cdot x) \subseteq X$.
Examples

1. The group $G = \mathbb{Z}$ acts by translations on $X = \mathbb{R}$.
Examples

1. The group $G = \mathbb{Z}$ acts by translations on $X = \mathbb{R}$. Let
 $\mu = \frac{\delta_+ + \delta_-}{2}$, i.e. one moves forward by 1 with probability $\frac{1}{2}$
 and moves backward by 1 with probability $\frac{1}{2}$.

2. The same holds for $G = \mathbb{R}^d$ or $G = \mathbb{Z}^d$ acting by translations on
 $X = \mathbb{R}^d$.

3. $X = 4$-valent tree $G = F_2 = \{\text{reduced words in the alphabet } \{a, b, a^{-1}, b^{-1}\}\}$

 Reduced := there are no redundant pairs, i.e. there is no
 a after a^{-1}, no a^{-1} after a, no b after b^{-1}, and no
 b^{-1} after b.

 $\mu = \frac{\delta_a + \delta_{a^{-1}} + \delta_b + \delta_{b^{-1}}}{2}$ ⇒ RW in Tree City
Examples

1. The group $G = \mathbb{Z}$ acts by translations on $X = \mathbb{R}$. Let
 $\mu = \frac{\delta + 1 + \delta - 1}{2}$, i.e. one moves forward by 1 with probability $\frac{1}{2}$
 and moves backward by 1 with probability $\frac{1}{2}$. This is the simple random walk on \mathbb{Z}.
Examples

1. The group $G = \mathbb{Z}$ acts by translations on $X = \mathbb{R}$. Let
 $\mu = \frac{\delta + 1 + \delta - 1}{2}$, i.e. one moves forward by 1 with probability $\frac{1}{2}$
 and moves backward by 1 with probability $\frac{1}{2}$. This is the simple random walk on \mathbb{Z}.

2. The same holds for $G = \mathbb{R}^d$ or $G = \mathbb{Z}^d$ acting by translations on $X = \mathbb{R}^d$.
Examples

1. The group $G = \mathbb{Z}$ acts by translations on $X = \mathbb{R}$. Let $\mu = \frac{\delta_{1} + \delta_{-1}}{2}$, i.e. one moves forward by 1 with probability $\frac{1}{2}$ and moves backward by 1 with probability $\frac{1}{2}$. This is the simple random walk on \mathbb{Z}.

2. The same holds for $G = \mathbb{R}^d$ or $G = \mathbb{Z}^d$ acting by translations on $X = \mathbb{R}^d$. For $d = 2$ and $\mu = \frac{1}{4} \left(\delta_{(1,0)} + \delta_{(-1,0)} + \delta_{(0,1)} + \delta_{(0,-1)} \right)$
Examples

1. The group $G = \mathbb{Z}$ acts by translations on $X = \mathbb{R}$. Let
 $\mu = \frac{\delta_{+1} + \delta_{-1}}{2}$, i.e. one moves forward by 1 with probability $\frac{1}{2}$
 and moves backward by 1 with probability $\frac{1}{2}$. This is the simple random walk on \mathbb{Z}.

2. The same holds for $G = \mathbb{R}^d$ or $G = \mathbb{Z}^d$ acting by translations on $X = \mathbb{R}^d$. For $d = 2$ and
 $\mu = \frac{1}{4} \left(\delta_{(1,0)} + \delta_{(-1,0)} + \delta_{(0,1)} + \delta_{(0,-1)} \right)$ you get the simple
 random walk on \mathbb{Z}^2 (i.e. the random walk in Squareville).
Examples

1. The group $G = \mathbb{Z}$ acts by translations on $X = \mathbb{R}$. Let
 \[\mu = \frac{\delta_{+1} + \delta_{-1}}{2}, \]
 i.e. one moves forward by 1 with probability $\frac{1}{2}$ and moves backward by 1 with probability $\frac{1}{2}$. This is the simple random walk on \mathbb{Z}.

2. The same holds for $G = \mathbb{R}^d$ or $G = \mathbb{Z}^d$ acting by translations on $X = \mathbb{R}^d$. For $d = 2$ and
 \[\mu = \frac{1}{4} \left(\delta_{(1,0)} + \delta_{(-1,0)} + \delta_{(0,1)} + \delta_{(0,-1)} \right) \]
 you get the simple random walk on \mathbb{Z}^2 (i.e. the random walk in Squareville).

3. $X = 4$-valent tree
Examples

1. The group $G = \mathbb{Z}$ acts by translations on $X = \mathbb{R}$. Let
 $\mu = \frac{\delta_{+1} + \delta_{-1}}{2}$, i.e. one moves forward by 1 with probability $\frac{1}{2}$
 and moves backward by 1 with probability $\frac{1}{2}$. This is the simple random walk on \mathbb{Z}.

2. The same holds for $G = \mathbb{R}^d$ or $G = \mathbb{Z}^d$ acting by translations on $X = \mathbb{R}^d$. For $d = 2$ and
 $\mu = \frac{1}{4} \left(\delta_{(1,0)} + \delta_{(-1,0)} + \delta_{(0,1)} + \delta_{(0,-1)} \right)$ you get the simple
 random walk on \mathbb{Z}^2 (i.e. the random walk in Squareville).

3. $X = 4$-valent tree
 $G = F_2 = \{ \text{reduced words in the alphabet } \{a, b, a^{-1}, b^{-1}\} \}$
Examples

1. The group $G = \mathbb{Z}$ acts by translations on $X = \mathbb{R}$. Let
 $\mu = \frac{\delta_1 + \delta_{-1}}{2}$, i.e. one moves forward by 1 with probability $\frac{1}{2}$
 and moves backward by 1 with probability $\frac{1}{2}$. This is the simple random walk on \mathbb{Z}.

2. The same holds for $G = \mathbb{R}^d$ or $G = \mathbb{Z}^d$ acting by translations on $X = \mathbb{R}^d$. For $d = 2$ and
 $\mu = \frac{1}{4} \left(\delta_{(1,0)} + \delta_{(-1,0)} + \delta_{(0,1)} + \delta_{(0,-1)} \right)$
 you get the simple random walk on \mathbb{Z}^2 (i.e. the random walk in Squareville).

3. $X = 4$-valent tree
 $G = \mathbb{F}_2 = \{ \text{reduced words in the alphabet } \{a, b, a^{-1}, b^{-1}\} \}$

 Reduced $:= \text{there are no redundant pairs, i.e. there is no } a \text{ after } a^{-1}, \text{ no } a^{-1} \text{ after } a, \text{ no } b \text{ after } b^{-1}, \text{ and no } b^{-1} \text{ after } b$.
Examples

1. The group $G = \mathbb{Z}$ acts by translations on $X = \mathbb{R}$. Let $\mu = \frac{\delta_{+1} + \delta_{-1}}{2}$, i.e. one moves forward by 1 with probability $\frac{1}{2}$ and moves backward by 1 with probability $\frac{1}{2}$. This is the simple random walk on \mathbb{Z}.

2. The same holds for $G = \mathbb{R}^d$ or $G = \mathbb{Z}^d$ acting by translations on $X = \mathbb{R}^d$. For $d = 2$ and $\mu = \frac{1}{4} \left(\delta_{(1,0)} + \delta_{(-1,0)} + \delta_{(0,1)} + \delta_{(0,-1)} \right)$ you get the simple random walk on \mathbb{Z}^2 (i.e. the random walk in Squareville).

3. $X = 4$-valent tree

$G = F_2 = \{ \text{reduced words in the alphabet } \{ a, b, a^{-1}, b^{-1} \} \}$

Reduced := there are no redundant pairs, i.e. there is no a after a^{-1}, no a^{-1} after a, no b after b^{-1}, and no b^{-1} after b.

$$\mu = \frac{1}{4} (\delta_a + \delta_{a^{-1}} + \delta_b + \delta_{b^{-1}})$$
Examples

1. The group $G = \mathbb{Z}$ acts by translations on $X = \mathbb{R}$. Let
 \[\mu = \frac{\delta_{+1} + \delta_{-1}}{2}, \]
 i.e. one moves forward by 1 with probability $\frac{1}{2}$ and moves backward by 1 with probability $\frac{1}{2}$. This is the simple random walk on \mathbb{Z}.

2. The same holds for $G = \mathbb{R}^d$ or $G = \mathbb{Z}^d$ acting by translations on $X = \mathbb{R}^d$. For $d = 2$ and
 \[\mu = \frac{1}{4} \left(\delta_{(1,0)} + \delta_{(-1,0)} + \delta_{(0,1)} + \delta_{(0,-1)} \right) \]
 you get the simple random walk on \mathbb{Z}^2 (i.e. the random walk in Squareville).

3. $X = 4$-valent tree
 $G = \mathbb{F}_2 = \{\text{reduced words in the alphabet } \{a, b, a^{-1}, b^{-1}\}\}$
 Reduced := there are no redundant pairs, i.e. there is no a after a^{-1}, no a^{-1} after a, no b after b^{-1}, and no b^{-1} after b.
 \[\mu = \frac{1}{4} \left(\delta_a + \delta_{a^{-1}} + \delta_b + \delta_{b^{-1}} \right) \]
 \Rightarrow RW in Tree City
Definition
Given a group G finitely generated by a set S,

Cayley graphs

Definition
Given a finitely generated group G and a finite generating set S, we define the word length of $g \in G$ as

$$\|g\| := \min \{ k : g = s_1 s_2 \ldots s_k, s_i \in S \cup S^{-1} \}.$$

Moreover, we define the word metric or word distance between $g, h \in G$ as

$$d(g, h) := \| g^{-1} h \|.$$
Cayley graphs

Definition
Given a group G finitely generated by a set S, the *Cayley graph* $\Gamma = \text{Cay}(G, S)$ is a graph.
Cayley graphs

Definition
Given a group G finitely generated by a set S, the Cayley graph $\Gamma = \text{Cay}(G, S)$ is a graph whose vertices are the elements of G.

\[\text{Definition} \]
Given a finitely generated group G and a finite generating set S, we define the word length of $g \in G$ as
\[\| g \| : = \min \{ k : g = s_1 s_2 \ldots s_k, s_i \in S \cup S^{-1} \} \]
Moreover, we define the word metric or word distance between $g, h \in G$ as
\[d(g, h) : = \| g^{-1} h \| \]
Cayley graphs

Definition
Given a group G finitely generated by a set S, the **Cayley graph** $\Gamma = \text{Cay}(G, S)$ is a graph whose vertices are the elements of G and there is an edge $g \to h$ ($g, h \in G$) if $h = gs$ where $s \in S$.

Given a finitely generated group G and a finite generating set S, we define the word length of $g \in G$ as $\|g\| = \min \{k : g = s_1 s_2 \ldots s_k, \ s_i \in S \cup S^{-1}\}$. Moreover, we define the word metric or word distance between $g, h \in G$ as $d(g, h) = \|g^{-1}h\|$.
Cayley graphs

Definition
Given a group G finitely generated by a set S, the Cayley graph $\Gamma = \text{Cay}(G, S)$ is a graph whose vertices are the elements of G and there is an edge $g \rightarrow h$ ($g, h \in G$) if $h = gs$ where $s \in S$.

Definition
Given a finitely generated group G and a finite generating set S, we define the word length of $g \in G$ as

$$\|g\| := \min\{k : g = s_1 s_2 \ldots s_k, s_i \in S \cup S^{-1}\}.$$
Cayley graphs

Definition
Given a group G finitely generated by a set S, the Cayley graph $\Gamma = \text{Cay}(G, S)$ is a graph whose vertices are the elements of G and there is an edge $g \rightarrow h$ ($g, h \in G$) if $h = gs$ where $s \in S$.

Definition
Given a finitely generated group G and a finite generating set S, we define the word length of $g \in G$ as

$$\|g\| := \min\{k : g = s_1 s_2 \ldots s_k, s_i \in S \cup S^{-1}\}.$$

Moreover, we define the word metric or word distance between $g, h \in G$ as

$$d(g, h) := \|g^{-1} h\|.$$
Cayley graphs

With this definition, left-multiplication is an isometry:

\[d(gh_1, gh_2) = d(h_1, h_2) \quad \forall h \in G. \]
Cayley graphs

With this definition, left-multiplication is an isometry:

\[d(gh_1, gh_2) = d(h_1, h_2) \quad \forall h \in G. \]

- If \(G = \mathbb{F}_2 \), \(S = \{a, b\} \), then \(\text{Cay}(\mathbb{F}_2, S) \) is the 4-valent tree.
Cayley graphs

With this definition, left-multiplication is an isometry:

\[d(gh_1, gh_2) = d(h_1, h_2) \quad \forall h \in G. \]

▶ If \(G = F_2 \), \(S = \{a, b\} \), then \(\text{Cay}(F_2, S) \) is the 4-valent tree.
▶ If \(G = \mathbb{Z}^2 \), \(S = \{(1, 0), (0, 1)\} \) then \(\text{Cay}({\mathbb{Z}^2}, S) \) is the square grid.
Example: the hyperbolic plane

4. \(G = SL_2(\mathbb{R}) = \{ A \in M_2 : \det A = 1 \} \)
4. $G = SL_2(\mathbb{R}) = \{ A \in M_2 : \det A = 1 \}$ which acts on the hyperbolic plane $X = \mathbb{H} = \{ z \in \mathbb{C} : \text{Im}(z) > 0 \}$ by
Example: the hyperbolic plane

4. \(G = SL_2(\mathbb{R}) = \{ A \in M_2 : \det A = 1 \} \) which acts on the hyperbolic plane \(X = \mathbb{H} = \{ z \in \mathbb{C} : \text{Im}(z) > 0 \} \) by

\[
\begin{pmatrix} a & b \\ c & d \end{pmatrix} (z) = \frac{az + b}{cz + d}.
\]
Example: the hyperbolic plane

4. \(G = SL_2(\mathbb{R}) = \{ A \in M_2 : \det A = 1 \} \) which acts on the hyperbolic plane \(X = \mathbb{H} = \{ z \in \mathbb{C} : \text{Im}(z) > 0 \} \) by

\[
\begin{pmatrix}
 a & b \\
 c & d \\
\end{pmatrix}
(z) = \frac{az + b}{cz + d}.
\]

\(G \) preserves the hyperbolic metric \(ds = \frac{dx}{y} \).
Example: the hyperbolic plane

4. \(G = SL_2(\mathbb{R}) = \{ A \in M_2 : \det A = 1 \} \) which acts on the hyperbolic plane \(X = \mathbb{H} = \{ z \in \mathbb{C} : \text{Im}(z) > 0 \} \) by

\[
\begin{pmatrix}
a & b \\
c & d
\end{pmatrix}
\begin{pmatrix}
z
\end{pmatrix}
= \begin{pmatrix}
az + b \\
cz + d
\end{pmatrix}.
\]

\(G \) preserves the hyperbolic metric \(ds = \frac{dx}{y} \). Let \(A, B \in SL_2(\mathbb{R}), \mu = \frac{1}{4}(\delta_A + \delta_{A^{-1}} + \delta_B + \delta_{B^{-1}}) \).
Example: the hyperbolic plane

4. \(G = SL_2(\mathbb{R}) = \{ A \in M_2 : \det A = 1 \} \) which acts on the hyperbolic plane \(X = \mathbb{H} = \{ z \in \mathbb{C} : \Im(z) > 0 \} \) by

\[
\begin{pmatrix} a & b \\ c & d \end{pmatrix} (z) = \frac{az + b}{cz + d}.
\]

\(G \) preserves the hyperbolic metric \(ds = \frac{dx}{y} \). Let \(A, B \in SL_2(\mathbb{R}), \mu = \frac{1}{4} (\delta_A + \delta_{A^{-1}} + \delta_B + \delta_{B^{-1}}) \). Fix \(x \in \mathbb{H} \).
Example: the hyperbolic plane

4. \(G = SL_2(\mathbb{R}) \), \(X = \mathbb{H} = \{z \in \mathbb{C} : \text{Im}(z) > 0\} \) Let \(A, B \in SL_2(\mathbb{R}) \), \(\mu = \frac{1}{4}(\delta_A + \delta_{A^{-1}} + \delta_B + \delta_{B^{-1}}) \).
Example: the hyperbolic plane

4. $G = SL_2(\mathbb{R})$, $X = \mathbb{H} = \{z \in \mathbb{C} : \text{Im}(z) > 0\}$ Let $A, B \in SL_2(\mathbb{R})$, $\mu = \frac{1}{4}(\delta_A + \delta_{A^{-1}} + \delta_B + \delta_{B^{-1}})$. Fix $x \in \mathbb{H}$.

The disc has a natural topological boundary, i.e. the circle. This RW converges a.s. to the boundary (Furstenberg).
Example: the hyperbolic plane

4. $G = SL_2(\mathbb{R}), \, X = \mathbb{H} = \{z \in \mathbb{C} : \text{Im}(z) > 0\}$ Let $A, B \in SL_2(\mathbb{R}), \, \mu = \frac{1}{4}(\delta_A + \delta_{A^{-1}} + \delta_B + \delta_{B^{-1}})$. Fix $x \in \mathbb{H}$.

The disc has a natural topological boundary, i.e. the circle. This RW converges a.s. to the boundary (Furstenberg).
Example: the hyperbolic plane

4. $G = \text{SL}_2(\mathbb{R})$, $X = \mathbb{H} = \{z \in \mathbb{C} : \text{Im}(z) > 0\}$ Let $A, B \in \text{SL}_2(\mathbb{R})$, $\mu = \frac{1}{4}(\delta_A + \delta_{A^{-1}} + \delta_B + \delta_{B^{-1}})$. Fix $x \in \mathbb{H}$.

The disc has a natural topological boundary, i.e. the circle. This RW converges a.s. to the boundary (Furstenberg).
Example: the hyperbolic plane

4. $G = SL_2(\mathbb{R})$, $X = \mathbb{H} = \{ z \in \mathbb{C} : \text{Im}(z) > 0 \}$ Let $A, B \in SL_2(\mathbb{R})$, $\mu = \frac{1}{4}(\delta_A + \delta_{A^{-1}} + \delta_B + \delta_{B^{-1}})$. Fix $x \in \mathbb{H}$.

The disc has a natural topological boundary, i.e. the circle. This RW converges a.s. to the boundary (Furstenberg).
Example: the hyperbolic plane

4. \(G = \text{SL}_2(\mathbb{R}), \ X = \mathbb{H} = \{ z \in \mathbb{C} : \text{Im}(z) > 0 \} \)
 Let \(A, B \in \text{SL}_2(\mathbb{R}), \mu = \frac{1}{4}(\delta_A + \delta_{A^{-1}} + \delta_B + \delta_{B^{-1}}) \).
 Fix \(x \in \mathbb{H} \).

The disc has a natural topological boundary, i.e. the circle.
This RW converges a.s. to the boundary (Furstenberg).
Example: the hyperbolic plane

4. \(G = SL_2(\mathbb{R}) \), \(X = \mathbb{H} = \{ z \in \mathbb{C} : \text{Im}(z) > 0 \} \) Let \(A, B \in SL_2(\mathbb{R}) \), \(\mu = \frac{1}{4}(\delta_A + \delta_{A^{-1}} + \delta_B + \delta_{B^{-1}}) \). Fix \(x \in \mathbb{H} \).

The disc has a natural topological boundary, i.e. the circle. This RW converges a.s. to the boundary (Furstenberg).
Example: the hyperbolic plane

4. $G = SL_2(\mathbb{R}), \, X = \mathbb{H} = \{z \in \mathbb{C} : \text{Im}(z) > 0\}$ Let $A, B \in SL_2(\mathbb{R}), \mu = \frac{1}{4} (\delta_A + \delta_{A^{-1}} + \delta_B + \delta_{B^{-1}})$. Fix $x \in \mathbb{H}$.

The disc has a natural topological boundary, i.e. the circle. This RW converges a.s. to the boundary (Furstenberg).
Example: the hyperbolic plane

4. \(G = SL_2(\mathbb{R}), \ X = \mathbb{H} = \{z \in \mathbb{C} : \text{Im}(z) > 0\} \) Let \(A, B \in SL_2(\mathbb{R}), \mu = \frac{1}{4}(\delta_A + \delta_{A^{-1}} + \delta_B + \delta_{B^{-1}}) \). Fix \(x \in \mathbb{H} \).

The disc has a natural topological boundary, i.e. the circle. This RW converges a.s. to the boundary (Furstenberg).
Example: the hyperbolic plane

4. $G = SL_2(\mathbb{R})$, $X = \mathbb{H} = \{z \in \mathbb{C} : \text{Im}(z) > 0\}$ Let $A, B \in SL_2(\mathbb{R})$, $\mu = \frac{1}{4}(\delta_A + \delta_{A^{-1}} + \delta_B + \delta_{B^{-1}})$. Fix $x \in \mathbb{H}$.

The disc has a natural topological boundary, i.e. the circle. This RW converges a.s. to the boundary (Furstenberg).
Example: the hyperbolic plane

4. \(G = SL_2(\mathbb{R}) \), \(X = \mathbb{H} = \{ z \in \mathbb{C} : \text{Im}(z) > 0 \} \) Let \(A, B \in SL_2(\mathbb{R}) \), \(\mu = \frac{1}{4}(\delta_A + \delta_A^{-1} + \delta_B + \delta_B^{-1}) \). Fix \(x \in \mathbb{H} \).

The disc has a natural topological boundary, i.e. the circle. This RW converges a.s. to the boundary (Furstenberg).
Example: the hyperbolic plane

4. \(G = SL_2(\mathbb{R}), X = \mathbb{H} = \{ z \in \mathbb{C} : \text{Im}(z) > 0 \} \) Let

\(A, B \in SL_2(\mathbb{R}), \mu = \frac{1}{4}(\delta_A + \delta_{A^{-1}} + \delta_B + \delta_{B^{-1}}) \). Fix \(x \in \mathbb{H} \).
Example: the hyperbolic plane

$G = SL_2(\mathbb{R})$, $X = \mathbb{H} = \{ z \in \mathbb{C} : \text{Im}(z) > 0 \}$ Let $A, B \in SL_2(\mathbb{R})$, $\mu = \frac{1}{4}(\delta_A + \delta_{A^{-1}} + \delta_B + \delta_{B^{-1}})$. Fix $x \in \mathbb{H}$.

The disc has a natural topological boundary, i.e. the circle.
Example: the hyperbolic plane

4. \(G = SL_2(\mathbb{R}) \), \(X = \mathbb{H} = \{ z \in \mathbb{C} : \text{Im}(z) > 0 \} \) Let \(A, B \in SL_2(\mathbb{R}) \), \(\mu = \frac{1}{4}(\delta_A + \delta_{A^{-1}} + \delta_B + \delta_{B^{-1}}) \). Fix \(x \in \mathbb{H} \).

The disc has a natural topological boundary, i.e. the circle. This RW converges a.s. to the boundary (Furstenberg).
Questions

1. Does a typical sample path escape to ∞ or it comes back to the origin infinitely often?

Definition

We define the drift or speed or rate of escape of the random walk to be the limit

$$L := \lim_{n \to \infty} d(w^n x, x^n)$$

if it exists.

A measure μ on G has finite first moment on X if for some (equivalently, any) $x \in X$

$$\int_G d(x, gx) d\mu(g) < +\infty.$$
Questions

1. Does a typical sample path escape to ∞ or it comes back to the origin infinitely often?
2. If it escapes, does it escape with “positive speed”?

Definition

We define the drift or speed or rate of escape of the random walk to be the limit $L := \lim_{n \to \infty} d(w^n x, x)^n$ (if it exists).

A measure μ on G has finite first moment on X if for some (equivalently, any) $x \in X\int_G d(x, gx) d\mu(g) < +\infty$.
Questions

1. Does a typical sample path escape to ∞ or it comes back to the origin infinitely often?

2. If it escapes, does it escape with “positive speed”?

Definition

We define the **drift** or **speed** or **rate of escape** of the random walk to be the limit

$$L := \lim_{n \to \infty} \frac{d(w_n x, x)}{n} \quad \text{(if it exists)}$$
Questions

1. Does a typical sample path escape to ∞ or it comes back to the origin infinitely often?

2. If it escapes, does it escape with “positive speed”?

Definition

We define the **drift or speed or rate of escape** of the random walk to be the limit

$$L := \lim_{n \to \infty} \frac{d(w_n x, x)}{n} \quad \text{ (if it exists)}$$

A measure μ on G has **finite first moment** on X if for some (equivalently, any) $x \in X$

$$\int_G d(x, gx) \, d\mu(g) < +\infty.$$
Lemma

If μ has finite first moment, then there exists a constant $L \in \mathbb{R}$ such that for a.e. sample path

$$\lim_{n \to \infty} \frac{d(w_n x, x)}{n} = L.$$
Questions

Lemma

If μ has finite first moment, then there exists a constant $L \in \mathbb{R}$ such that for a.e. sample path

$$\lim_{n \to \infty} \frac{d(w_n x, x)}{n} = L.$$

Proof.

For any $x \in X$, the function $a(n, \omega) := d(x, w_n(\omega)x)$ is a subadditive cocycle,
Lemma

If μ has finite first moment, then there exists a constant $L \in \mathbb{R}$ such that for a.e. sample path

$$\lim_{n \to \infty} \frac{d(w_n x, x)}{n} = L.$$

Proof.

For any $x \in X$, the function $a(n, \omega) := d(x, w_n(\omega)x)$ is a subadditive cocycle, because

$$d(x, w_{n+m}(\omega)x) \leq d(x, w_n(\omega)x) + d(w_n(\omega)x, w_{n+m}(\omega)x) =$$
Questions

Lemma

If μ has finite first moment, then there exists a constant $L \in \mathbb{R}$ such that for a.e. sample path

$$\lim_{n \to \infty} \frac{d(w_n x, x)}{n} = L.$$

Proof.

For any $x \in X$, the function $a(n, \omega) := d(x, w_n(\omega)x)$ is a subadditive cocycle, because

$$d(x, w_{n+m}(\omega)x) \leq d(x, w_n(\omega)x) + d(w_n(\omega)x, w_{n+m}(\omega)x) =$$

and since w_n is an isometry
Lemma
If μ has finite first moment, then there exists a constant $L \in \mathbb{R}$ such that for a.e. sample path

$$\lim_{n \to \infty} \frac{d(w_n x, x)}{n} = L.$$

Proof.
For any $x \in X$, the function $a(n, \omega) := d(x, w_n(\omega)x)$ is a subadditive cocycle, because

$$d(x, w_{n+m}(\omega)x) \leq d(x, w_n(\omega)x) + d(w_n(\omega)x, w_{n+m}(\omega)x) =$$

and since w_n is an isometry

$$= d(x, w_n(\omega)x) + d(x, g_{n+1} \ldots g_{n+m}x) = d(x, w_n(\omega)x) + d(x, w_m(T^n\omega)x)$$
Lemma

If μ has finite first moment, then there exists a constant $L \in \mathbb{R}$ such that for a.e. sample path

$$
\lim_{n \to \infty} \frac{d(w_n x, x)}{n} = L.
$$

Proof.

For any $x \in X$, the function $a(n, \omega) := d(x, w_n(\omega)x)$ is a subadditive cocycle, because

$$
d(x, w_{n+m}(\omega)x) \leq d(x, w_n(\omega)x) + d(w_n(\omega)x, w_{n+m}(\omega)x) =
$$

and since w_n is an isometry

$$
= d(x, w_n(\omega)x) + d(x, g_{n+1} \ldots g_{n+m}x) = d(x, w_n(\omega)x) + d(x, w_m(T^n \omega)x)
$$

where T is the shift on the space of increments,
Questions

Lemma

If μ has finite first moment, then there exists a constant $L \in \mathbb{R}$ such that for a.e. sample path

$$\lim_{n \to \infty} \frac{d(w_n x, x)}{n} = L.$$

Proof.

For any $x \in X$, the function $a(n, \omega) := d(x, w_n(\omega)x)$ is a subadditive cocycle, because

$$d(x, w_{n+m}(\omega)x) \leq d(x, w_n(\omega)x) + d(w_n(\omega)x, w_{n+m}(\omega)x) =$$

and since w_n is an isometry

$$= d(x, w_n(\omega)x) + d(x, g_{n+1} \ldots g_{n+m}x) = d(x, w_n(\omega)x) + d(x, w_m(T^n\omega)x)$$

where T is the shift on the space of increments, hence the claim follows by Kingman’s subadditive ergodic theorem. \qed
Questions

3. Does a sample path track geodesics in X?
Questions

3. Does a sample path track geodesics in X? How closely?
Questions

3. Does a sample path track geodesics in X? How closely?
4. If X has a topological boundary ∂X, does a typical sample path converge to ∂X?
Questions

3. Does a sample path track geodesics in X? How closely?

4. If X has a topological boundary ∂X, does a typical sample path converge to ∂X?

Definition

If so, define the hitting measure ν on ∂X as

$$\nu(A) = \mathbb{P}(\lim_{n \to \infty} w_n x \in A)$$

for any $A \subset \partial X$.
Questions

3. Does a sample path track geodesics in X? How closely?

4. If X has a topological boundary ∂X, does a typical sample path converge to ∂X?

Definition

If so, define the hitting measure ν on ∂X as

$$
\nu(A) = \mathbb{P}(\lim_{n \to \infty} w_n x \in A)
$$

for any $A \subset \partial X$.

5. What are the properties of hitting measure?
Questions

3. Does a sample path track geodesics in X? How closely?

4. If X has a topological boundary ∂X, does a typical sample path converge to ∂X?

Definition

If so, define the hitting measure ν on ∂X as

$$\nu(A) = \mathbb{P}(\lim_{n \to \infty} w_n x \in A)$$

for any $A \subset \partial X$.

5. What are the properties of hitting measure? Is it the same as the geometric measure?
Questions

3. Does a sample path track geodesics in X? How closely?
4. If X has a topological boundary ∂X, does a typical sample path converge to ∂X?

Definition
If so, define the hitting measure ν on ∂X as

$$\nu(A) = \mathbb{P}(\lim_{n \to \infty} w_n x \in A)$$

for any $A \subset \partial X$.

5. What are the properties of hitting measure? Is it the same as the geometric measure? For example, is it the same as the Lebesgue measure?
Questions

3. Does a sample path track geodesics in X? How closely?

4. If X has a topological boundary ∂X, does a typical sample path converge to ∂X?

Definition
If so, define the hitting measure ν on ∂X as

$$\nu(A) = \mathbb{P}(\lim_{n \to \infty} w_n x \in A)$$

for any $A \subset \partial X$.

5. What are the properties of hitting measure? Is it the same as the geometric measure? For example, is it the same as the Lebesgue measure?

6. Is $(\partial X, \nu)$ a model for the Poisson boundary of (G, μ)?
Questions

3. Does a sample path track geodesics in X? How closely?

4. If X has a topological boundary ∂X, does a typical sample path converge to ∂X?

Definition
If so, define the hitting measure ν on ∂X as

$$\nu(A) = \mathbb{P}(\lim_{n \to \infty} w_n x \in A)$$

for any $A \subset \partial X$.

5. What are the properties of hitting measure? Is it the same as the geometric measure? For example, is it the same as the Lebesgue measure?

6. Is $(\partial X, \nu)$ a model for the Poisson boundary of (G, μ)? That is, do you have a representation formula for bounded harmonic functions?
Hyperbolic metric spaces

Let \((X, d)\) be a geodesic, metric space, and let \(x_0 \in X\) be a basepoint.
Hyperbolic metric spaces

Let \((X, d)\) be a geodesic, metric space, and let \(x_0 \in X\) be a basepoint.

Definition

The geodesic metric space \(X\) is \(\delta\)-hyperbolic if \(\exists \delta > 0\) such that geodesic triangles are \(\delta\)-thin.
Hyperbolic metric spaces

Let \((X, d)\) be a geodesic, metric space, and let \(x_0 \in X\) be a basepoint.

Definition

The geodesic metric space \(X\) is \(\delta\)-hyperbolic if \(\exists \delta > 0\) such that geodesic triangles are \(\delta\)-thin.
Hyperbolic metric spaces

Definition
The geodesic metric space X is δ-hyperbolic if $\exists \delta > 0$ such that geodesic triangles are δ-thin.

Example
The following are δ-hyperbolic spaces:
Definition
The geodesic metric space X is δ-hyperbolic if $\exists \delta > 0$ such that geodesic triangles are δ-thin.

Example
The following are δ-hyperbolic spaces:
$X = \mathbb{R}$
Hyperbolic metric spaces

Definition
The geodesic metric space X is δ-hyperbolic if $\exists \delta > 0$ such that geodesic triangles are δ-thin.

Example
The following are δ-hyperbolic spaces:
$X = \mathbb{R}$ \(\checkmark\) (NOT \mathbb{R}^2!)
Hyperbolic metric spaces

Definition
The geodesic metric space X is δ-hyperbolic if $\exists \delta > 0$ such that geodesic triangles are δ-thin.

Example
The following are δ-hyperbolic spaces:
- $X = \mathbb{R}$ (NOT \mathbb{R}^2!)
- $X =$ tree

Recall a space is proper if metric balls $\{z \in X : d(x, z) \leq R\}$ are compact.
Hyperbolic metric spaces

Definition
The geodesic metric space X is δ-hyperbolic if $\exists \delta > 0$ such that geodesic triangles are δ-thin.

Example
The following are δ-hyperbolic spaces:
- $X = \mathbb{R} \checkmark$ (NOT \mathbb{R}^2!)
- $X = \text{tree} \checkmark$
- $G = \mathbb{F}_2$, $X = \text{Cay}(\mathbb{F}_2, S) \checkmark$
Hyperbolic metric spaces

Definition
The geodesic metric space X is δ-hyperbolic if $\exists \delta > 0$ such that geodesic triangles are δ-thin.

Example
The following are δ-hyperbolic spaces:
$X = \mathbb{R} \checkmark$ (NOT \mathbb{R}^2!)
$X =$ tree \checkmark
$G = F_2, X = \text{Cay}(F_2, S) \checkmark$
$X =$ locally infinite tree
Hyperbolic metric spaces

Definition
The geodesic metric space X is δ-hyperbolic if $\exists \delta > 0$ such that geodesic triangles are δ-thin.

Example
The following are δ-hyperbolic spaces:
$X = \mathbb{R} \checkmark$ (NOT \mathbb{R}^2!)
$X = \text{tree} \checkmark$
$G = \mathbb{F}_2, X = \text{Cay}(\mathbb{F}_2, S) \checkmark$
$X = \text{locally infinite tree} \text{ (not proper!)}$
Hyperbolic metric spaces

Definition
The geodesic metric space X is δ-hyperbolic if $\exists \delta > 0$ such that geodesic triangles are δ-thin.

Example
The following are δ-hyperbolic spaces:
$X = \mathbb{R} \checkmark$ (NOT \mathbb{R}^2!)
$X =$ tree \checkmark
$G = \mathbb{F}_2, X = \text{Cay}(\mathbb{F}_2, S) \checkmark$
$X =$ locally infinite tree (not proper!)

Recall a space is proper if metric balls $\{ z \in X : d(x, z) \leq R \}$ are compact.
Hyperbolic isometries

Definition
Given an isometry g of X and $x \in X$, we define its translation length as
Hyperbolic isometries

Definition
Given an isometry g of X and $x \in X$, we define its translation length as

$$\tau(g) := \lim_{n \to \infty} \frac{d(g^n x, x)}{n}$$

Exercise: the limit exists and is independent of the choice of x.

Lemma (Classification of isometries of hyperbolic spaces)
Let g be an isometry of a δ-hyperbolic metric space X (not necessarily proper).

Then either:
1. g has bounded orbits. Then g is called **elliptic**.
2. g has unbounded orbits and $\tau(g) = 0$. Then g is called **parabolic**.
3. $\tau(g) > 0$. Then g is called **hyperbolic or loxodromic**, and has precisely two fixed points on ∂X, one attracting and one repelling.
Hyperbolic isometries

Definition
Given an isometry g of X and $x \in X$, we define its translation length as

$$\tau(g) := \lim_{n \to \infty} \frac{d(g^n x, x)}{n}$$

Exercise: the limit exists and is independent of the choice of x.

Lemma (Classification of isometries of hyperbolic spaces)
Let g be an isometry of a δ-hyperbolic metric space X (not necessarily proper).
Then either:
1. g has bounded orbits. Then g is called elliptic.
2. g has unbounded orbits and $\tau(g) = 0$. Then g is called parabolic.
3. $\tau(g) > 0$. Then g is called hyperbolic or loxodromic, and has precisely two fixed points on ∂X, one attracting and one repelling.
Hyperbolic isometries

Definition
Given an isometry g of X and $x \in X$, we define its translation length as

$$\tau(g) := \lim_{n \to \infty} \frac{d(g^n x, x)}{n}$$

Exercise: the limit exists and is independent of the choice of x.

Lemma (Classification of isometries of hyperbolic spaces)
Let g be an isometry of a δ-hyperbolic metric space X (not necessarily proper).
Hyperbolic isometries

Definition
Given an isometry g of X and $x \in X$, we define its translation length as

$$\tau(g) := \lim_{n \to \infty} \frac{d(g^n x, x)}{n}$$

Exercise: the limit exists and is independent of the choice of x.

Lemma (Classification of isometries of hyperbolic spaces)
Let g be an isometry of a δ-hyperbolic metric space X (not necessarily proper). Then either:
Hyperbolic isometries

Definition
Given an isometry g of X and $x \in X$, we define its translation length as

$$\tau(g) := \lim_{n \to \infty} \frac{d(g^n x, x)}{n}$$

Exercise: the limit exists and is independent of the choice of x.

Lemma (Classification of isometries of hyperbolic spaces)
Let g be an isometry of a δ-hyperbolic metric space X (not necessarily proper). Then either:

1. g has bounded orbits.
Hyperbolic isometries

Definition
Given an isometry g of X and $x \in X$, we define its translation length as

$$\tau(g) := \lim_{n \to \infty} \frac{d(g^n x, x)}{n}$$

Exercise: the limit exists and is independent of the choice of x.

Lemma (Classification of isometries of hyperbolic spaces)
Let g be an isometry of a δ-hyperbolic metric space X (not necessarily proper). Then either:

1. g has bounded orbits. Then g is called **elliptic**.
Hyperbolic isometries

Definition
Given an isometry \(g \) of \(X \) and \(x \in X \), we define its translation length as

\[
\tau(g) := \lim_{n \to \infty} \frac{d(g^n x, x)}{n}
\]

Exercise: the limit exists and is independent of the choice of \(x \).

Lemma (Classification of isometries of hyperbolic spaces)
Let \(g \) be an isometry of a \(\delta \)-hyperbolic metric space \(X \) (not necessarily proper). Then either:

1. \(g \) has bounded orbits. Then \(g \) is called elliptic.
2. \(g \) has unbounded orbits and \(\tau(g) = 0 \).
Hyperbolic isometries

Definition
Given an isometry g of X and $x \in X$, we define its translation length as

$$
\tau(g) := \lim_{n \to \infty} \frac{d(g^n x, x)}{n}
$$

Exercise: the limit exists and is independent of the choice of x.

Lemma (Classification of isometries of hyperbolic spaces)
Let g be an isometry of a δ-hyperbolic metric space X (not necessarily proper). Then either:

1. g has bounded orbits. Then g is called elliptic.
2. g has unbounded orbits and $\tau(g) = 0$. Then g is called parabolic.
Hyperbolic isometries

Definition
Given an isometry g of X and $x \in X$, we define its translation length as

$$\tau(g) := \lim_{n \to \infty} \frac{d(g^n x, x)}{n}$$

Exercise: the limit exists and is independent of the choice of x.

Lemma (Classification of isometries of hyperbolic spaces)
Let g be an isometry of a δ-hyperbolic metric space X (not necessarily proper). Then either:

1. g has bounded orbits. Then g is called elliptic.

2. g has unbounded orbits and $\tau(g) = 0$. Then g is called parabolic.

3. $\tau(g) > 0$. Then g is called hyperbolic or loxodromic, and has precisely two fixed points on ∂X, one attracting and one repelling.
Hyperbolic isometries

Definition
Given an isometry \(g \) of \(X \) and \(x \in X \), we define its translation length as

\[
\tau(g) := \lim_{n \to \infty} \frac{d(g^n x, x)}{n}
\]

Exercise: the limit exists and is independent of the choice of \(x \).

Lemma (Classification of isometries of hyperbolic spaces)
Let \(g \) be an isometry of a \(\delta \)-hyperbolic metric space \(X \) (not necessarily proper). Then either:

1. \(g \) has bounded orbits. Then \(g \) is called elliptic.
2. \(g \) has unbounded orbits and \(\tau(g) = 0 \). Then \(g \) is called parabolic.
3. \(\tau(g) > 0 \). Then \(g \) is called hyperbolic or loxodromic, and has precisely two fixed points on \(\partial X \), one attracting and one repelling.
Hyperbolic isometries

Definition
Given an isometry \(g \) of \(X \) and \(x \in X \), we define its translation length as

\[
\tau(g) := \lim_{n \to \infty} \frac{d(g^n x, x)}{n}
\]

Exercise: the limit exists and is independent of the choice of \(x \).

Lemma (Classification of isometries of hyperbolic spaces)
Let \(g \) be an isometry of a \(\delta \)-hyperbolic metric space \(X \) (not necessarily proper). Then either:

1. \(g \) has bounded orbits. Then \(g \) is called **elliptic**.

2. \(g \) has unbounded orbits and \(\tau(g) = 0 \). Then \(g \) is called **parabolic**.

3. \(\tau(g) > 0 \). Then \(g \) is called **hyperbolic** or **loxodromic**, and has precisely two fixed points on \(\partial X \), one attracting and one repelling.
Weakly hyperbolic groups

Definition
Two loxodromic elements are independent if their fixed point sets are disjoint.

Example
- $G = F_2$, $X = \text{Cay}(F_2, S)$
- G a word hyperbolic group, $X = \text{Cay}(G, S)$
- G a relatively hyperbolic group, $X = \text{coned-off space}$
- G a mapping class group, $X = \text{curve complex}$
- G a right-angled Artin group, $X = \text{extension graph}$
- $G = \text{Out}(F_n)$, $X = \text{free splitting/free factor complex}$
- G the Cremona group, $X = \text{Picard-Manin hyperboloid}$
Weakly hyperbolic groups

Definition
Two loxodromic elements are *independent* if their fixed point sets are disjoint. A semigroup of isometries of X is *non-elementary* if it contains 2 independent hyperbolic elements.
Weakly hyperbolic groups

Definition
Two loxodromic elements are independent if their fixed point sets are disjoint. A semigroup of isometries of X is non-elementary if it contains 2 independent hyperbolic elements.

Definition
A group is weakly hyperbolic if it admits a non-elementary action on a (possibly non-proper) hyperbolic metric space.
Weakly hyperbolic groups

Definition
Two loxodromic elements are independent if their fixed point sets are disjoint. A semigroup of isometries of X is non-elementary if it contains 2 independent hyperbolic elements.

Definition
A group is weakly hyperbolic if it admits a non-elementary action on a (possibly non-proper) hyperbolic metric space.

Example
- $G = F_2$, $X = \text{Cay}(F_2, S)$
Weakly hyperbolic groups

Definition
Two loxodromic elements are independent if their fixed point sets are disjoint. A semigroup of isometries of X is non-elementary if it contains 2 independent hyperbolic elements.

Definition
A group is weakly hyperbolic if it admits a non-elementary action on a (possibly non-proper) hyperbolic metric space.

Example

- $G = \mathbb{F}_2, X = \text{Cay}(\mathbb{F}_2, S)$
- G a word hyperbolic group,
Weakly hyperbolic groups

Definition
Two loxodromic elements are independent if their fixed point sets are disjoint. A semigroup of isometries of X is non-elementary if it contains 2 independent hyperbolic elements.

Definition
A group is weakly hyperbolic if it admits a non-elementary action on a (possibly non-proper) hyperbolic metric space.

Example
- $G = \mathbb{F}_2$, $X = \text{Cay}(\mathbb{F}_2, S)$
- G a word hyperbolic group, $X = \text{Cay}(G, S)$
Weakly hyperbolic groups

Definition
Two loxodromic elements are independent if their fixed point sets are disjoint. A semigroup of isometries of \(X \) is non-elementary if it contains 2 independent hyperbolic elements.

Definition
A group is weakly hyperbolic if it admits a non-elementary action on a (possibly non-proper) hyperbolic metric space.

Example
- \(G = \mathbb{F}_2, X = \text{Cay}(\mathbb{F}_2, S) \)
- \(G \) a word hyperbolic group, \(X = \text{Cay}(G, S) \)
- \(G \) a relatively hyperbolic group,
Weakly hyperbolic groups

Definition
Two loxodromic elements are independent if their fixed point sets are disjoint. A semigroup of isometries of X is non-elementary if it contains 2 independent hyperbolic elements.

Definition
A group is weakly hyperbolic if it admits a non-elementary action on a (possibly non-proper) hyperbolic metric space.

Example
- $G = \mathbb{F}_2, X = \text{Cay}(\mathbb{F}_2, S)$
- G a word hyperbolic group, $X = \text{Cay}(G, S)$
- G a relatively hyperbolic group, $X = \text{coned-off space}$
Weakly hyperbolic groups

Definition
Two loxodromic elements are independent if their fixed point sets are disjoint. A semigroup of isometries of X is non-elementary if it contains 2 independent hyperbolic elements.

Definition
A group is weakly hyperbolic if it admits a non-elementary action on a (possibly non-proper) hyperbolic metric space.

Example
- $G = \mathbb{F}_2$, $X = \text{Cay}(\mathbb{F}_2, S)$
- G a word hyperbolic group, $X = \text{Cay}(G, S)$
- G a relatively hyperbolic group, $X = \text{coned-off space}$
- G a mapping class group,
Weakly hyperbolic groups

Definition
Two loxodromic elements are independent if their fixed point sets are disjoint. A semigroup of isometries of X is non-elementary if it contains 2 independent hyperbolic elements.

Definition
A group is weakly hyperbolic if it admits a non-elementary action on a (possibly non-proper) hyperbolic metric space.

Example
- $G = \mathbb{F}_2$, $X = \text{Cay}(\mathbb{F}_2, S)$
- G a word hyperbolic group, $X = \text{Cay}(G, S)$
- G a relatively hyperbolic group, $X = \text{coned-off space}$
- G a mapping class group, $X = \text{curve complex}$
Weakly hyperbolic groups

Definition
Two loxodromic elements are *independent* if their fixed point sets are disjoint. A semigroup of isometries of X is *non-elementary* if it contains 2 independent hyperbolic elements.

Definition
A group is *weakly hyperbolic* if it admits a non-elementary action on a (possibly non-proper) hyperbolic metric space.

Example

- $G = \mathbb{F}_2, X = \text{Cay}(\mathbb{F}_2, S)$
- G a word hyperbolic group, $X = \text{Cay}(G, S)$
- G a relatively hyperbolic group, $X = \text{coned-off space}$
- G a mapping class group, $X = \text{curve complex}$
- G a right-angled Artin group,
Weakly hyperbolic groups

Definition
Two loxodromic elements are independent if their fixed point sets are disjoint. A semigroup of isometries of X is non-elementary if it contains 2 independent hyperbolic elements.

Definition
A group is weakly hyperbolic if it admits a non-elementary action on a (possibly non-proper) hyperbolic metric space.

Example

- $G = \mathbb{F}_2$, $X = \text{Cay}(\mathbb{F}_2, S)$
- G a word hyperbolic group, $X = \text{Cay}(G, S)$
- G a relatively hyperbolic group, $X = \text{coned-off space}$
- G a mapping class group, $X = \text{curve complex}$
- G a right-angled Artin group, $X = \text{extension graph}$
Weakly hyperbolic groups

Definition
Two loxodromic elements are **independent** if their fixed point sets are disjoint. A semigroup of isometries of X is **non-elementary** if it contains 2 independent hyperbolic elements.

Definition
A group is **weakly hyperbolic** if it admits a non-elementary action on a (possibly non-proper) hyperbolic metric space.

Example

- $G = \mathbb{F}_2, X = \text{Cay}(\mathbb{F}_2, S)$
- G a word hyperbolic group, $X = \text{Cay}(G, S)$
- G a relatively hyperbolic group, $X = \text{coned-off space}$
- G a mapping class group, $X = \text{curve complex}$
- G a right-angled Artin group, $X = \text{extension graph}$
- $G = \text{Out}(F_n)$,
Weakly hyperbolic groups

Definition
Two loxodromic elements are independent if their fixed point sets are disjoint. A semigroup of isometries of X is non-elementary if it contains 2 independent hyperbolic elements.

Definition
A group is weakly hyperbolic if it admits a non-elementary action on a (possibly non-proper) hyperbolic metric space.

Example

- $G = \mathbb{F}_2$, $X = \text{Cay}(\mathbb{F}_2, S)$
- G a word hyperbolic group, $X = \text{Cay}(G, S)$
- G a relatively hyperbolic group, $X = \text{coned-off space}$
- G a mapping class group, $X = \text{curve complex}$
- G a right-angled Artin group, $X = \text{extension graph}$
- $G = \text{Out}(F_n)$, $X = \text{free splitting/free factor complex}$
Weakly hyperbolic groups

Definition
Two loxodromic elements are independent if their fixed point sets are disjoint. A semigroup of isometries of X is non-elementary if it contains 2 independent hyperbolic elements.

Definition
A group is weakly hyperbolic if it admits a non-elementary action on a (possibly non-proper) hyperbolic metric space.

Example

- $G = \mathbb{F}_2, X = \text{Cay}(\mathbb{F}_2, S)$
- G a word hyperbolic group, $X = \text{Cay}(G, S)$
- G a relatively hyperbolic group, $X = \text{coned-off space}$
- G a mapping class group, $X = \text{curve complex}$
- G a right-angled Artin group, $X = \text{extension graph}$
- $G = \text{Out}(F_n), X = \text{free splitting/free factor complex}$
- $G = \text{Cremona group}$,
Weakly hyperbolic groups

Definition
Two loxodromic elements are independent if their fixed point sets are disjoint. A semigroup of isometries of X is non-elementary if it contains 2 independent hyperbolic elements.

Definition
A group is weakly hyperbolic if it admits a non-elementary action on a (possibly non-proper) hyperbolic metric space.

Example

- $G = \mathbb{F}_2$, $X = \text{Cay}(\mathbb{F}_2, S)$
- G a word hyperbolic group, $X = \text{Cay}(G, S)$
- G a relatively hyperbolic group, $X = \text{coned-off space}$
- G a mapping class group, $X = \text{curve complex}$
- G a right-angled Artin group, $X = \text{extension graph}$
- $G = \text{Out}(F_n)$, $X = \text{free splitting/free factor complex}$
- $G = \text{Cremona group}$, $X = \text{Picard-Manin hyperboloid}$
Statement of results

Theorem (Maher-T. '18)

Let G be a countable group of isometries of a δ-hyperbolic metric space X, such that the semigroup generated by the support of μ is non-elementary.

Then:

1. (Boundary convergence)
 For a.e. (w_n) and every $x \in X$
 \[\lim_{n \to \infty} w_n x = \xi \in \partial X \exists. \]

2. (Positive drift)
 \[\exists L > 0 \text{ s.t.} \lim \inf_{n \to \infty} d(w_n x, x) = L > 0. \]

If μ has finite 1st moment then

\[\lim_{n \to \infty} d(w_n x, x) = L > 0 \exists \text{ a.s.} \]
Statement of results

Theorem (Maher-T. ’18)

Let G be a countable group of isometries of a δ-hyperbolic metric space X,
Statement of results

Theorem (Maher-T. ’18)

Let G be a countable group of isometries of a δ-hyperbolic metric space X, such that the semigroup generated by the support of μ is non-elementary.

1. (Boundary convergence) For a.e. (w_n) and every $x \in X$, $\lim_{n \to \infty} w_n x = \xi \in \partial X$ exists.
2. (Positive drift) $\exists L > 0$ s.t. $\lim \inf_{n \to \infty} d(w_n x, x)_n = L > 0$.
 If μ has finite 1st moment then $\lim_{n \to \infty} d(w_n x, x)_n = L > 0$ exists a.s.
Statement of results

Theorem (Maher-T. ’18)

Let \(G \) be a countable group of isometries of a \(\delta \)-hyperbolic metric space \(X \), such that the semigroup generated by the support of \(\mu \) is non-elementary. Then:

1. (Boundary convergence)

 For a.e. \((w_n)\) and every \(x \in X \),

 \[\lim_{n \to \infty} w_n x = \xi \in \partial X \text{ exists}. \]

2. (Positive drift)

 \[\exists L > 0 \text{ s.t.} \liminf_{n \to \infty} d(w_n x, x) = L > 0. \]

 If \(\mu \) has finite 1st moment then

 \[\lim_{n \to \infty} d(w_n x, x) = L > 0 \text{ exists a.s.} \]
Statement of results

Theorem (Maher-T. ’18)

Let G be a countable group of isometries of a δ-hyperbolic metric space X, such that the semigroup generated by the support of μ is non-elementary. Then:

1. (Boundary convergence) For a.e. (w_n) and every $x \in X$

$$\lim_{n \to \infty} w_n x = \xi \in \partial X \text{ exists.}$$
Statement of results

Theorem (Maher-T. ’18)

Let G be a countable group of isometries of a δ-hyperbolic metric space X, such that the semigroup generated by the support of μ is non-elementary. Then:

1. (Boundary convergence) For a.e. (w_n) and every $x \in X$

 \[
 \lim_{n \to \infty} w_n x = \xi \in \partial X \text{ exists.}
 \]

2. (Positive drift) $\exists L > 0$ s.t.

 \[
 \liminf_{n \to \infty} \frac{d(w_n x, x)}{n} = L > 0.
 \]
Statement of results

Theorem (Maher-T. ’18)

Let G be a countable group of isometries of a δ-hyperbolic metric space X, such that the semigroup generated by the support of μ is non-elementary. Then:

1. (Boundary convergence) For a.e. (w_n) and every $x \in X$

$$\lim_{n \to \infty} w_n x = \xi \in \partial X \text{ exists.}$$

2. (Positive drift) $\exists L > 0 \text{ s.t.}$

$$\liminf_{n \to \infty} \frac{d(w_n x, x)}{n} = L > 0.$$

If μ has finite 1^{st} moment then

$$\lim_{n \to \infty} \frac{d(w_n x, x)}{n} = L > 0 \text{ exists a.s.}$$
Statement of results

Theorem (Maher-T. ’18)
Let G be a countable group of isometries of a δ-hyperbolic metric space X, such that the semigroup generated by the support of μ is non-elementary. Then:

1. (Boundary convergence) For a.e. (w_n) and every $x \in X$

$$\lim_{n \to \infty} w_n x = \xi \in \partial X$$
exists.

2. (Positive drift) $\exists L > 0$ s.t.

$$\liminf_{n \to \infty} \frac{d(w_n x, x)}{n} = L > 0.$$

If μ has finite 1^{st} moment then

$$\lim_{n \to \infty} \frac{d(w_n x, x)}{n} = L > 0$$
exists a.s.
3. (Growth of translation length) For any $\epsilon > 0$ we have

$$
\mathbb{P}(\tau(w_n) \geq n(L - \epsilon)) \to 1
$$

as $n \to \infty$.
3. **(Growth of translation length)** For any $\epsilon > 0$ we have

$$\mathbb{P}(\tau(w_n) \geq n(L - \epsilon)) \to 1$$

as $n \to \infty$.

Corollary.

$$\mathbb{P}(w_n \text{ is loxodromic }) \to 1$$
Statement of results

3. (Growth of translation length) For any $\epsilon > 0$ we have

$$\mathbb{P}(\tau(w_n) \geq n(L - \epsilon)) \to 1$$

as $n \to \infty$.

Corollary.

$$\mathbb{P}(w_n \text{ is loxodromic}) \to 1$$

4. (Poisson boundary) If the action is weakly properly discontinuous (WPD),

...
3. (Growth of translation length) For any $\epsilon > 0$ we have

$$\mathbb{P}(\tau(w_n) \geq n(L - \epsilon)) \to 1$$

as $n \to \infty$.

Corollary.

$$\mathbb{P}(w_n \text{ is loxodromic}) \to 1$$

4. (Poisson boundary) If the action is weakly properly discontinuous (WPD), and the measure has finite logarithmic moment and finite entropy,
3. (Growth of translation length) For any $\epsilon > 0$ we have

$$P(\tau(w_n) \geq n(L - \epsilon)) \to 1$$

as $n \to \infty$.

Corollary.

$$P(w_n \text{ is loxodromic}) \to 1$$

4. (Poisson boundary) If the action is weakly properly discontinuous (WPD), and the measure has finite logarithmic moment and finite entropy, then the Gromov boundary $(\partial X, \nu)$
3. (Growth of translation length) For any $\epsilon > 0$ we have

$$\mathbb{P}(\tau(w_n) \geq n(L - \epsilon)) \to 1$$

as $n \to \infty$.

Corollary.

$$\mathbb{P}(w_n \text{ is loxodromic }) \to 1$$

4. (Poisson boundary) If the action is weakly properly discontinuous (WPD), and the measure has finite logarithmic moment and finite entropy, then the Gromov boundary $(\partial X, \nu)$ is a model for the Poisson boundary of (G, μ).