## Random walks on weakly hyperbolic groups

Giulio Tiozzo University of Toronto

Random and Arithmetic Structures in Topology MSRI - Fall 2020

► **Lecture 1** (Aug 31, 10.30): Introduction to random walks on groups

- ► Lecture 1 (Aug 31, 10.30): Introduction to random walks on groups
- ► **Lecture 2** (Sep 1, 10.30): Horofunctions + convergence to the boundary

- Lecture 1 (Aug 31, 10.30): Introduction to random walks on groups
- ► **Lecture 2** (Sep 1, 10.30): Horofunctions + convergence to the boundary
- Lecture 3 (Sep 3, 9.00): Positive drift + genericity of loxodromics

- Lecture 1 (Aug 31, 10.30): Introduction to random walks on groups
- ► **Lecture 2** (Sep 1, 10.30): Horofunctions + convergence to the boundary
- Lecture 3 (Sep 3, 9.00): Positive drift + genericity of loxodromics

Main references:

- Lecture 1 (Aug 31, 10.30): Introduction to random walks on groups
- ► **Lecture 2** (Sep 1, 10.30): Horofunctions + convergence to the boundary
- Lecture 3 (Sep 3, 9.00): Positive drift + genericity of loxodromics

Main references:

J. Maher and G. T.,

- Lecture 1 (Aug 31, 10.30): Introduction to random walks on groups
- ► **Lecture 2** (Sep 1, 10.30): Horofunctions + convergence to the boundary
- Lecture 3 (Sep 3, 9.00): Positive drift + genericity of loxodromics

#### Main references:

J. Maher and G. T.,

Random walks on weakly hyperbolic groups Random walks, WPD actions, and the Cremona group

#### Introduction to random walks

**Question.** Consider a drunkard who moves in a city by tossing coins to decide whether to go North, South, East or West:

#### Introduction to random walks

Question. Consider a drunkard who moves in a city by tossing coins to decide whether to go North, South, East or West: can he/she get back home?

#### Introduction to random walks

**Question.** Consider a drunkard who moves in a city by tossing coins to decide whether to go North, South, East or West: can he/she get back home?

Answer. It depends on the topography (geometry) of the city.

**Example 1: Squareville** 

**Example 1: Squareville** 

In Squareville, blocks form a square grid.

**Example 1: Squareville** 

In Squareville, blocks form a square grid.



What is the probability of coming back to where you started?

#### **Definition**

A random walk  $(w_n)$  on X is recurrent if for any  $x \in X$ , the probability that  $w_n = x$  infinitely often is 1:

#### Definition

A random walk  $(w_n)$  on X is recurrent if for any  $x \in X$ , the probability that  $w_n = x$  infinitely often is 1:

$$\mathbb{P}(w_n = x \text{ i.o.}) = 1$$

#### Definition

A random walk  $(w_n)$  on X is recurrent if for any  $x \in X$ , the probability that  $w_n = x$  infinitely often is 1:

$$\mathbb{P}(w_n = x \text{ i.o.}) = 1$$

Otherwise it is said to be transient.

#### Definition

A random walk  $(w_n)$  on X is recurrent if for any  $x \in X$ , the probability that  $w_n = x$  infinitely often is 1:

$$\mathbb{P}(w_n = x \text{ i.o.}) = 1$$

Otherwise it is said to be transient.

Let  $p^n(x, y) :=$  probability of being at y after n steps starting from x.

#### Definition

A random walk  $(w_n)$  on X is recurrent if for any  $x \in X$ , the probability that  $w_n = x$  infinitely often is 1:

$$\mathbb{P}(w_n = x \text{ i.o.}) = 1$$

Otherwise it is said to be transient.

Let  $p^n(x, y) :=$  probability of being at y after n steps starting from x.

#### Lemma

Let  $m = \sum_{n \ge 1} p^n(x, x)$  be the "average number of visits to x".

#### Definition

A random walk  $(w_n)$  on X is recurrent if for any  $x \in X$ , the probability that  $w_n = x$  infinitely often is 1:

$$\mathbb{P}(w_n = x \text{ i.o.}) = 1$$

Otherwise it is said to be transient.

Let  $p^n(x, y) :=$  probability of being at y after n steps starting from x.

#### Lemma

Let  $m = \sum_{n \ge 1} p^n(x, x)$  be the "average number of visits to x". Then the random walk is recurrent iff  $m = \infty$ .

#### Definition

A random walk  $(w_n)$  on X is recurrent if for any  $x \in X$ , the probability that  $w_n = x$  infinitely often is 1:

$$\mathbb{P}(w_n = x \text{ i.o.}) = 1$$

Otherwise it is said to be transient.

Let  $p^n(x, y) :=$  probability of being at y after n steps starting from x.

#### Lemma

Let  $m = \sum_{n \ge 1} p^n(x, x)$  be the "average number of visits to x". Then the random walk is recurrent iff  $m = \infty$ .

Exercise. Prove the Lemma.

Let us first consider the easier case where your world is just a line.

Let us first consider the easier case where your world is just a line. What is the probability of going back to where you start after *N* steps?

Let us first consider the easier case where your world is just a line. What is the probability of going back to where you start after N steps? If N is odd, the probability is zero, but if N=2n you get

Let us first consider the easier case where your world is just a line. What is the probability of going back to where you start after N steps? If N is odd, the probability is zero, but if N=2n you get

$$p^{2n}(0,0) = \frac{1}{2^{2n}} \binom{2n}{n}$$
 (choose *n* ways to go right)

Let us first consider the easier case where your world is just a line. What is the probability of going back to where you start after N steps? If N is odd, the probability is zero, but if N=2n you get

$$p^{2n}(0,0) = \frac{1}{2^{2n}} \binom{2n}{n}$$
 (choose *n* ways to go right)

Is 
$$\sum_{n\geq 1} \frac{1}{2^{2n}} \binom{2n}{n}$$
 convergent?

Let us first consider the easier case where your world is just a line. What is the probability of going back to where you start after N steps? If N is odd, the probability is zero, but if N=2n you get

$$p^{2n}(0,0) = \frac{1}{2^{2n}} \binom{2n}{n}$$
 (choose *n* ways to go right)

Is 
$$\sum_{n\geq 1} \frac{1}{2^{2n}} \binom{2n}{n}$$
 convergent?

Apply Stirling's Formula:  $n! \sim \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$ 

Let us first consider the easier case where your world is just a line. What is the probability of going back to where you start after N steps? If N is odd, the probability is zero, but if N=2n you get

$$p^{2n}(0,0) = \frac{1}{2^{2n}} \binom{2n}{n}$$
 (choose  $n$  ways to go right)

Is 
$$\sum_{n\geq 1} \frac{1}{2^{2n}} \binom{2n}{n}$$
 convergent?

Apply Stirling's Formula:  $n! \sim \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$ 

$$\frac{1}{2^{2n}} \binom{2n}{n} \sim \frac{1}{2^{2n}} \frac{\sqrt{n} \left(\frac{2n}{e}\right)^{2n}}{\left(\sqrt{n} \left(\frac{n}{e}\right)^{n}\right)^{2}} = \frac{1}{\sqrt{n}}$$

Let us first consider the easier case where your world is just a line. What is the probability of going back to where you start after N steps? If N is odd, the probability is zero, but if N = 2n you get

$$p^{2n}(0,0) = \frac{1}{2^{2n}} \binom{2n}{n}$$
 (choose  $n$  ways to go right)

Is 
$$\sum_{n\geq 1} \frac{1}{2^{2n}} \binom{2n}{n}$$
 convergent?

Apply Stirling's Formula:  $n! \sim \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$ 

$$\frac{1}{2^{2n}} \binom{2n}{n} \sim \frac{1}{2^{2n}} \frac{\sqrt{n} \left(\frac{2n}{e}\right)^{2n}}{\left(\sqrt{n} \left(\frac{n}{e}\right)^{n}\right)^{2}} = \frac{1}{\sqrt{n}}$$

: our RW is recurrent.

Now, let us go to Squareville, i.e. the 2-dimensional grid.

Now, let us go to Squareville, i.e. the 2-dimensional grid. We have 4 directions to choose from.

Now, let us go to Squareville, i.e. the 2-dimensional grid. We have 4 directions to choose from. One checks

$$p^{2n}(0,0) = \frac{1}{4^{2n}} \binom{2n}{n}^2 \sim \frac{1}{n}$$

Now, let us go to Squareville, i.e. the 2-dimensional grid. We have 4 directions to choose from. One checks

$$p^{2n}(0,0) = \frac{1}{4^{2n}} \binom{2n}{n}^2 \sim \frac{1}{n}$$

(WHY? There is a trick...)

Now, let us go to Squareville, i.e. the 2-dimensional grid. We have 4 directions to choose from. One checks

$$p^{2n}(0,0) = \frac{1}{4^{2n}} \binom{2n}{n}^2 \sim \frac{1}{n}$$

(WHY? There is a trick...) hence the random walk is recurrent.

Now, let us go to Squareville, i.e. the 2-dimensional grid. We have 4 directions to choose from. One checks

$$p^{2n}(0,0) = \frac{1}{4^{2n}} \binom{2n}{n}^2 \sim \frac{1}{n}$$

(WHY? There is a trick...) hence the random walk is recurrent.

## Theorem (Polya)

The simple random walk on  $\mathbb{Z}^d$  is recurrent iff d = 1, 2.

Now, let us go to Squareville, i.e. the 2-dimensional grid. We have 4 directions to choose from. One checks

$$p^{2n}(0,0) = \frac{1}{4^{2n}} \binom{2n}{n}^2 \sim \frac{1}{n}$$

(WHY? There is a trick...) hence the random walk is recurrent.

## Theorem (Polya)

The simple random walk on  $\mathbb{Z}^d$  is recurrent iff d = 1, 2.

"A drunk man will get back home, but a drunk bird will get lost" (Kakutani).

Now, let us go to Squareville, i.e. the 2-dimensional grid. We have 4 directions to choose from. One checks

$$p^{2n}(0,0) = \frac{1}{4^{2n}} \binom{2n}{n}^2 \sim \frac{1}{n}$$

(WHY? There is a trick...) hence the random walk is recurrent.

## Theorem (Polya)

The simple random walk on  $\mathbb{Z}^d$  is recurrent iff d = 1, 2.

"A drunk man will get back home, but a drunk bird will get lost" (Kakutani).

**Exercise.** Prove Polya's theorem for d = 3.

# Random walk in Squareville

Now, let us go to Squareville, i.e. the 2-dimensional grid. We have 4 directions to choose from. One checks

$$p^{2n}(0,0) = \frac{1}{4^{2n}} \binom{2n}{n}^2 \sim \frac{1}{n}$$

(WHY? There is a trick...) hence the random walk is recurrent.

### Theorem (Polya)

The simple random walk on  $\mathbb{Z}^d$  is recurrent iff d = 1, 2.

"A drunk man will get back home, but a drunk bird will get lost" (Kakutani).

**Exercise.** Prove Polya's theorem for d=3. Moreover, for the simple random walk on  $\mathbb{Z}^d$ , show that  $p^{2n}(0,0)\approx n^{-\frac{d}{2}}$ .

### **Example 2: Tree City**

In Tree City, the map has the shape of a 4-valent tree.



### **Example 2: Tree City**

In Tree City, the map has the shape of a 4-valent tree.

### **Theorem**

The simple random walk on a 4-valent tree is transient.



### **Theorem**

The simple random walk on a 4-valent tree is transient.

 $d_n$  = "distance of the  $n^{th}$  step of the RW from the origin".

### **Theorem**

The simple random walk on a 4-valent tree is transient.

 $d_n$  = "distance of the  $n^{th}$  step of the RW from the origin".

If you give the position of the  $n^{th}$  step, then:

### Theorem

The simple random walk on a 4-valent tree is transient.

 $d_n$  = "distance of the  $n^{th}$  step of the RW from the origin".

If you give the position of the  $n^{th}$  step, then: if  $d_n > 0$ 

#### Theorem

The simple random walk on a 4-valent tree is transient.

 $d_n$  = "distance of the  $n^{th}$  step of the RW from the origin".

If you give the position of the  $n^{th}$  step, then: if  $d_n > 0$ 

$$d_{n+1} = \begin{cases} d_n + 1 & \text{with } \mathbb{P} = \frac{3}{4} \\ d_n - 1 & \text{with } \mathbb{P} = \frac{1}{4} \end{cases}$$

#### Theorem

The simple random walk on a 4-valent tree is transient.

 $d_n$  = "distance of the  $n^{th}$  step of the RW from the origin".

If you give the position of the  $n^{th}$  step, then: if  $d_n > 0$ 

$$d_{n+1} = \begin{cases} d_n + 1 & \text{with } \mathbb{P} = \frac{3}{4} \\ d_n - 1 & \text{with } \mathbb{P} = \frac{1}{4} \end{cases}$$

#### Theorem

The simple random walk on a 4-valent tree is transient.

 $d_n$  = "distance of the  $n^{th}$  step of the RW from the origin".

If you give the position of the  $n^{th}$  step, then: if  $d_n > 0$ 

$$d_{n+1} = \begin{cases} d_n + 1 & \text{with } \mathbb{P} = \frac{3}{4} \\ d_n - 1 & \text{with } \mathbb{P} = \frac{1}{4} \end{cases}$$

$$d_{n+1} = d_n + 1$$

#### Theorem

The simple random walk on a 4-valent tree is transient.

 $d_n$  = "distance of the  $n^{th}$  step of the RW from the origin".

If you give the position of the  $n^{th}$  step, then: if  $d_n > 0$ 

$$d_{n+1} = \begin{cases} d_n + 1 & \text{with } \mathbb{P} = \frac{3}{4} \\ d_n - 1 & \text{with } \mathbb{P} = \frac{1}{4} \end{cases}$$

$$d_{n+1}=d_n+1$$

$$\therefore \mathbb{E}(d_{n+1}-d_n) \geq \frac{3}{4}-\frac{1}{4}=\frac{1}{2}$$

#### **Theorem**

The simple random walk on a 4-valent tree is transient.

 $d_n$  = "distance of the  $n^{th}$  step of the RW from the origin".

If you give the position of the  $n^{th}$  step, then: if  $d_n > 0$ 

$$d_{n+1} = \begin{cases} d_n + 1 & \text{with } \mathbb{P} = \frac{3}{4} \\ d_n - 1 & \text{with } \mathbb{P} = \frac{1}{4} \end{cases}$$

$$d_{n+1} = d_n + 1$$

$$\therefore \ \mathbb{E}(d_{n+1}-d_n) \geq \tfrac{3}{4} - \tfrac{1}{4} = \tfrac{1}{2} \ \therefore \ \mathbb{E}\left(\tfrac{d_n}{n}\right) \geq \tfrac{1}{2}$$

### **Theorem**

The simple random walk on a 4-valent tree is transient.

 $d_n$  = "distance of the  $n^{th}$  step of the RW from the origin".

If you give the position of the  $n^{th}$  step, then: if  $d_n > 0$ 

$$d_{n+1} = \begin{cases} d_n + 1 & \text{with } \mathbb{P} = \frac{3}{4} \\ d_n - 1 & \text{with } \mathbb{P} = \frac{1}{4} \end{cases}$$

and if  $d_n = 0$  then

$$d_{n+1}=d_n+1$$

$$\therefore \mathbb{E}(d_{n+1}-d_n) \geq \frac{3}{4}-\frac{1}{4}=\frac{1}{2} \therefore \mathbb{E}\left(\frac{d_n}{n}\right) \geq \frac{1}{2}$$

Then  $\mathbb{E}\left(\frac{d_n}{n}\right) \geq \frac{1}{2}$ 

#### Theorem

The simple random walk on a 4-valent tree is transient.

 $d_n$  = "distance of the  $n^{th}$  step of the RW from the origin".

If you give the position of the  $n^{th}$  step, then: if  $d_n > 0$ 

$$d_{n+1} = \begin{cases} d_n + 1 & \text{with } \mathbb{P} = \frac{3}{4} \\ d_n - 1 & \text{with } \mathbb{P} = \frac{1}{4} \end{cases}$$

and if  $d_n = 0$  then

$$d_{n+1}=d_n+1$$

$$\therefore \mathbb{E}(d_{n+1}-d_n)\geq \frac{3}{4}-\frac{1}{4}=\frac{1}{2} \therefore \mathbb{E}\left(\frac{d_n}{n}\right)\geq \frac{1}{2}$$

Then  $\mathbb{E}\left(\frac{d_n}{n}\right) \geq \frac{1}{2} \Rightarrow \mathsf{RW}$  is transient

#### **Theorem**

The simple random walk on a 4-valent tree is transient.

 $d_n$  = "distance of the  $n^{th}$  step of the RW from the origin".

If you give the position of the  $n^{th}$  step, then: if  $d_n > 0$ 

$$d_{n+1} = \begin{cases} d_n + 1 & \text{with } \mathbb{P} = \frac{3}{4} \\ d_n - 1 & \text{with } \mathbb{P} = \frac{1}{4} \end{cases}$$

 $d_{n+1} = d_n + 1$ 

and if  $d_n = 0$  then

$$\therefore \mathbb{E}(d_{n+1}-d_n) \geq \frac{3}{4}-\frac{1}{4}=\frac{1}{2} \therefore \mathbb{E}\left(\frac{d_n}{n}\right) \geq \frac{1}{2}$$

Then  $\mathbb{E}\left(\frac{d_n}{n}\right) \geq \frac{1}{2} \Rightarrow \mathsf{RW}$  is transient (do we know  $\lim_{n \to \infty} \frac{d_n}{n}$  exist?)

Exercise (P. Lessa)

### Exercise (P. Lessa)

A radially symmetric tree of valence  $(a_1, a_2, ...)$  is a tree where all vertices at distance n from the base point have exactly  $a_{n-1}$  children.

### Exercise (P. Lessa)

A radially symmetric tree of valence  $(a_1, a_2, ...)$  is a tree where all vertices at distance n from the base point have exactly  $a_{n-1}$  children. Prove that the simple random walk on a radially symmetric tree  $(a_1, a_2, ...)$  is transient

### Exercise (P. Lessa)

A radially symmetric tree of valence  $(a_1, a_2, ...)$  is a tree where all vertices at distance n from the base point have exactly  $a_{n-1}$  children. Prove that the simple random walk on a radially symmetric tree  $(a_1, a_2, ...)$  is transient iff

$$\sum_{n\geq 1}\frac{1}{a_1\cdot a_2\cdots a_n}<\infty$$

### Exercise (P. Lessa)

A radially symmetric tree of valence  $(a_1, a_2, ...)$  is a tree where all vertices at distance n from the base point have exactly  $a_{n-1}$  children. Prove that the simple random walk on a radially symmetric tree  $(a_1, a_2, ...)$  is transient iff

$$\sum_{n\geq 1}\frac{1}{a_1\cdot a_2\cdots a_n}<\infty$$

Let G be a group and (X, d) a metric space.

Let G be a group and (X, d) a metric space. The isometry group of X is the group of elements which preserve distance:

Let G be a group and (X, d) a metric space. The isometry group of X is the group of elements which preserve distance:

 $\mathsf{Isom}(X) = \{f : X \to X : d(x,y) = d(f(x),f(y)) \text{ for all } x,y \in X\}$ 

Let G be a group and (X, d) a metric space. The isometry group of X is the group of elements which preserve distance:

$$\mathsf{Isom}(X) = \{f: X \to X: d(x,y) = d(f(x),f(y)) \text{ for all } x,y \in X\}$$

### Definition

A group action of G on X is a homomorphism

$$\rho: G \to \mathsf{Isom}(X).$$

Let G be a group and (X, d) a metric space. The isometry group of X is the group of elements which preserve distance:

$$\mathsf{Isom}(X) = \{f: X \to X: d(x,y) = d(f(x),f(y)) \text{ for all } x,y \in X\}$$

### Definition

A group action of *G* on *X* is a homomorphism

$$\rho: G \to \mathsf{Isom}(X)$$
.

**Example:** the group of reals acting on itself by translations:

Let G be a group and (X, d) a metric space. The isometry group of X is the group of elements which preserve distance:

$$\mathsf{Isom}(X) = \{f: X \to X: d(x,y) = d(f(x),f(y)) \text{ for all } x,y \in X\}$$

### Definition

A group action of *G* on *X* is a homomorphism

$$\rho: G \to \mathsf{Isom}(X)$$
.

**Example:** the group of reals acting on itself by translations:  $X = \mathbb{R}$ ,  $G = \mathbb{R}$  and the action  $\rho : \mathbb{R} \to \mathsf{Isom}(\mathbb{R})$  is given by  $\rho(t) : x \mapsto x + t$ .

Let  $\mu$  be a probability measure on G.

Let  $\mu$  be a probability measure on G. Draw a sequence  $(g_n)$  of elements of G,

Let  $\mu$  be a probability measure on G. Draw a sequence  $(g_n)$  of elements of G, independently

Let  $\mu$  be a probability measure on G. Draw a sequence  $(g_n)$  of elements of G, independently and with distribution  $\mu$ .

Let  $\mu$  be a probability measure on G. Draw a sequence  $(g_n)$  of elements of G, independently and with distribution  $\mu$ .

The sequence  $(g_n)$  is the sequence of increments, and we are interested in the products

$$w_n := g_1 \dots g_n$$

Let  $\mu$  be a probability measure on G. Draw a sequence  $(g_n)$  of elements of G, independently and with distribution  $\mu$ .

The sequence  $(g_n)$  is the sequence of increments, and we are interested in the products

$$w_n := g_1 \dots g_n$$

The sequence  $(w_n)$  is called a sample path for the random walk.

Let  $\mu$  be a probability measure on G. Draw a sequence  $(g_n)$  of elements of G, independently and with distribution  $\mu$ .

The sequence  $(g_n)$  is the sequence of increments, and we are interested in the products

$$w_n := g_1 \dots g_n$$

The sequence  $(w_n)$  is called a sample path for the random walk.

More formally, the space of increments (or step space) is the product space  $(G^{\mathbb{N}}, \mu^{\mathbb{N}})$ .

Let  $\mu$  be a probability measure on G. Draw a sequence  $(g_n)$  of elements of G, independently and with distribution  $\mu$ .

The sequence  $(g_n)$  is the sequence of increments, and we are interested in the products

$$w_n := g_1 \dots g_n$$

The sequence  $(w_n)$  is called a sample path for the random walk.

More formally, the space of increments (or step space) is the product space  $(G^{\mathbb{N}}, \mu^{\mathbb{N}})$ . Consider the map  $\Phi: G^{\mathbb{N}} \to G^{\mathbb{N}}$ 

$$\Phi:(g_n)\mapsto(w_n)$$

where  $w_n = g_1 g_2 \dots g_n$ 

Let  $\mu$  be a probability measure on G. Draw a sequence  $(g_n)$  of elements of G, independently and with distribution  $\mu$ .

The sequence  $(g_n)$  is the sequence of increments, and we are interested in the products

$$w_n := g_1 \dots g_n$$

The sequence  $(w_n)$  is called a sample path for the random walk.

More formally, the space of increments (or step space) is the product space  $(G^{\mathbb{N}}, \mu^{\mathbb{N}})$ . Consider the map  $\Phi: G^{\mathbb{N}} \to G^{\mathbb{N}}$ 

$$\Phi:(g_n)\mapsto(w_n)$$

where  $w_n = g_1 g_2 \dots g_n$  and define the sample space as the space  $(\Omega, \mathbb{P})$  where  $\Omega = G^{\mathbb{N}}$  and  $\mathbb{P} = \Phi_{\star} \mu^{\mathbb{N}}$  is the pushforward.

Let  $\mu$  be a probability measure on G. Draw a sequence  $(g_n)$  of elements of G, independently and with distribution  $\mu$ . The sequence  $(g_n)$  is the sequence of increments, and we are interested in the products

$$w_n := g_1 \dots g_n$$

The sequence  $(w_n)$  is called a sample path for the random walk.

More formally, the space of increments (or step space) is the product space  $(G^{\mathbb{N}}, \mu^{\mathbb{N}})$ . Consider the map  $\Phi: G^{\mathbb{N}} \to G^{\mathbb{N}}$ 

$$\Phi:(g_n)\mapsto(w_n)$$

where  $w_n = g_1g_2 \dots g_n$  and define the sample space as the space  $(\Omega, \mathbb{P})$  where  $\Omega = G^{\mathbb{N}}$  and  $\mathbb{P} = \Phi_\star \mu^{\mathbb{N}}$  is the pushforward. If you fix a basepoint  $x \in X$  you can look at the sequence  $(w_n \cdot x) \subseteq X$ .

# Examples

1. The group  $G = \mathbb{Z}$  acts by translations on  $X = \mathbb{R}$ .

1. The group  $G = \mathbb{Z}$  acts by translations on  $X = \mathbb{R}$ . Let  $\mu = \frac{\delta_{+1} + \delta_{-1}}{2}$ , i.e. one moves forward by 1 with probability  $\frac{1}{2}$  and moves backward by 1 with probability  $\frac{1}{2}$ .

1. The group  $G = \mathbb{Z}$  acts by translations on  $X = \mathbb{R}$ . Let  $\mu = \frac{\delta_{+1} + \delta_{-1}}{2}$ , i.e. one moves forward by 1 with probability  $\frac{1}{2}$  and moves backward by 1 with probability  $\frac{1}{2}$ . This is the simple random walk on  $\mathbb{Z}$ .

- 1. The group  $G = \mathbb{Z}$  acts by translations on  $X = \mathbb{R}$ . Let  $\mu = \frac{\delta_{+1} + \delta_{-1}}{2}$ , i.e. one moves forward by 1 with probability  $\frac{1}{2}$  and moves backward by 1 with probability  $\frac{1}{2}$ . This is the simple random walk on  $\mathbb{Z}$ .
- 2. The same holds for  $G = \mathbb{R}^d$  or  $G = \mathbb{Z}^d$  acting by translations on  $X = \mathbb{R}^d$ .

- 1. The group  $G = \mathbb{Z}$  acts by translations on  $X = \mathbb{R}$ . Let  $\mu = \frac{\delta_{+1} + \delta_{-1}}{2}$ , i.e. one moves forward by 1 with probability  $\frac{1}{2}$  and moves backward by 1 with probability  $\frac{1}{2}$ . This is the simple random walk on  $\mathbb{Z}$ .
- 2. The same holds for  $G = \mathbb{R}^d$  or  $G = \mathbb{Z}^d$  acting by translations on  $X = \mathbb{R}^d$ . For d = 2 and  $\mu = \frac{1}{4} \left( \delta_{(1,0)} + \delta_{(-1,0)} + \delta_{(0,1)} + \delta_{(0,-1)} \right)$

- 1. The group  $G = \mathbb{Z}$  acts by translations on  $X = \mathbb{R}$ . Let  $\mu = \frac{\delta_{+1} + \delta_{-1}}{2}$ , i.e. one moves forward by 1 with probability  $\frac{1}{2}$  and moves backward by 1 with probability  $\frac{1}{2}$ . This is the simple random walk on  $\mathbb{Z}$ .
- 2. The same holds for  $G = \mathbb{R}^d$  or  $G = \mathbb{Z}^d$  acting by translations on  $X = \mathbb{R}^d$ . For d = 2 and  $\mu = \frac{1}{4} \left( \delta_{(1,0)} + \delta_{(-1,0)} + \delta_{(0,1)} + \delta_{(0,-1)} \right)$  you get the simple random walk on  $\mathbb{Z}^2$  (i.e. the random walk in Squareville).

- 1. The group  $G = \mathbb{Z}$  acts by translations on  $X = \mathbb{R}$ . Let  $\mu = \frac{\delta_{+1} + \delta_{-1}}{2}$ , i.e. one moves forward by 1 with probability  $\frac{1}{2}$  and moves backward by 1 with probability  $\frac{1}{2}$ . This is the simple random walk on  $\mathbb{Z}$ .
- 2. The same holds for  $G = \mathbb{R}^d$  or  $G = \mathbb{Z}^d$  acting by translations on  $X = \mathbb{R}^d$ . For d = 2 and  $\mu = \frac{1}{4} \left( \delta_{(1,0)} + \delta_{(-1,0)} + \delta_{(0,1)} + \delta_{(0,-1)} \right)$  you get the simple random walk on  $\mathbb{Z}^2$  (i.e. the random walk in Squareville).
- 3. X = 4-valent tree

- 1. The group  $G = \mathbb{Z}$  acts by translations on  $X = \mathbb{R}$ . Let  $\mu = \frac{\delta_{+1} + \delta_{-1}}{2}$ , i.e. one moves forward by 1 with probability  $\frac{1}{2}$  and moves backward by 1 with probability  $\frac{1}{2}$ . This is the simple random walk on  $\mathbb{Z}$ .
- 2. The same holds for  $G = \mathbb{R}^d$  or  $G = \mathbb{Z}^d$  acting by translations on  $X = \mathbb{R}^d$ . For d = 2 and  $\mu = \frac{1}{4} \left( \delta_{(1,0)} + \delta_{(-1,0)} + \delta_{(0,1)} + \delta_{(0,-1)} \right)$  you get the simple random walk on  $\mathbb{Z}^2$  (i.e. the random walk in Squareville).
- 3. X = 4-valent tree  $G = \mathbb{F}_2 = \{ \text{reduced words in the alphabet } \{a, b, a^{-1}, b^{-1} \} \}$

- 1. The group  $G = \mathbb{Z}$  acts by translations on  $X = \mathbb{R}$ . Let  $\mu = \frac{\delta_{+1} + \delta_{-1}}{2}$ , i.e. one moves forward by 1 with probability  $\frac{1}{2}$  and moves backward by 1 with probability  $\frac{1}{2}$ . This is the simple random walk on  $\mathbb{Z}$ .
- 2. The same holds for  $G = \mathbb{R}^d$  or  $G = \mathbb{Z}^d$  acting by translations on  $X = \mathbb{R}^d$ . For d = 2 and  $\mu = \frac{1}{4} \left( \delta_{(1,0)} + \delta_{(-1,0)} + \delta_{(0,1)} + \delta_{(0,-1)} \right)$  you get the simple random walk on  $\mathbb{Z}^2$  (i.e. the random walk in Squareville).
- 3. X = 4-valent tree  $G = \mathbb{F}_2 = \{ \text{reduced words in the alphabet } \{a, b, a^{-1}, b^{-1} \} \}$ Reduced := there are no redundant pairs, i.e. there is no a after  $a^{-1}$ , no  $a^{-1}$  after a, no b after  $b^{-1}$ , and no  $b^{-1}$  after b.

- 1. The group  $G = \mathbb{Z}$  acts by translations on  $X = \mathbb{R}$ . Let  $\mu = \frac{\delta_{+1} + \delta_{-1}}{2}$ , i.e. one moves forward by 1 with probability  $\frac{1}{2}$  and moves backward by 1 with probability  $\frac{1}{2}$ . This is the simple random walk on  $\mathbb{Z}$ .
- 2. The same holds for  $G = \mathbb{R}^d$  or  $G = \mathbb{Z}^d$  acting by translations on  $X = \mathbb{R}^d$ . For d = 2 and  $\mu = \frac{1}{4} \left( \delta_{(1,0)} + \delta_{(-1,0)} + \delta_{(0,1)} + \delta_{(0,-1)} \right)$  you get the simple random walk on  $\mathbb{Z}^2$  (i.e. the random walk in Squareville).
- 3. X = 4-valent tree  $G = \mathbb{F}_2 = \{ \text{reduced words in the alphabet } \{a, b, a^{-1}, b^{-1}\} \}$ Reduced := there are no redundant pairs, i.e. there is no a after  $a^{-1}$ , no  $a^{-1}$  after a, no b after  $b^{-1}$ , and no  $b^{-1}$  after b.

$$\mu = \frac{1}{4} (\delta_a + \delta_{a^{-1}} + \delta_b + \delta_{b^{-1}})$$

- 1. The group  $G = \mathbb{Z}$  acts by translations on  $X = \mathbb{R}$ . Let  $\mu = \frac{\delta_{+1} + \delta_{-1}}{2}$ , i.e. one moves forward by 1 with probability  $\frac{1}{2}$  and moves backward by 1 with probability  $\frac{1}{2}$ . This is the simple random walk on  $\mathbb{Z}$ .
- 2. The same holds for  $G = \mathbb{R}^d$  or  $G = \mathbb{Z}^d$  acting by translations on  $X = \mathbb{R}^d$ . For d = 2 and  $\mu = \frac{1}{4} \left( \delta_{(1,0)} + \delta_{(-1,0)} + \delta_{(0,1)} + \delta_{(0,-1)} \right)$  you get the simple random walk on  $\mathbb{Z}^2$  (i.e. the random walk in Squareville).
- 3. X = 4-valent tree  $G = \mathbb{F}_2 = \{ \text{reduced words in the alphabet } \{a, b, a^{-1}, b^{-1} \} \}$ Reduced := there are no redundant pairs, i.e. there is no a after  $a^{-1}$ , no  $a^{-1}$  after a, no b after  $b^{-1}$ , and no  $b^{-1}$  after b.

$$\mu = \frac{1}{4} (\delta_a + \delta_{a^{-1}} + \delta_b + \delta_{b^{-1}})$$

⇒ RW in Tree City

#### Definition

Given a group G finitely generated by a set S,

#### Definition

Given a group G finitely generated by a set S, the Cayley graph  $\Gamma = \text{Cay}(G, S)$  is a graph

#### Definition

Given a group G finitely generated by a set S, the Cayley graph  $\Gamma = \text{Cay}(G, S)$  is a graph whose vertices are the elements of G

#### Definition

Given a group G finitely generated by a set S, the Cayley graph  $\Gamma = \text{Cay}(G, S)$  is a graph whose vertices are the elements of G and there is an edge  $g \to h(g, h \in G)$  if h = gs where  $s \in S$ .

#### Definition

Given a group G finitely generated by a set S, the Cayley graph  $\Gamma = \text{Cay}(G, S)$  is a graph whose vertices are the elements of G and there is an edge  $g \to h(g, h \in G)$  if h = gs where  $s \in S$ .

#### Definition

Given a finitely generated group G and a finite generating set S, we define the word length of  $g \in G$  as

$$||g|| := \min\{k : g = s_1 s_2 \dots s_k, s_i \in S \cup S^{-1}\}.$$

#### Definition

Given a group G finitely generated by a set S, the Cayley graph  $\Gamma = \text{Cay}(G, S)$  is a graph whose vertices are the elements of G and there is an edge  $g \to h(g, h \in G)$  if h = gs where  $s \in S$ .

#### **Definition**

Given a finitely generated group G and a finite generating set S, we define the word length of  $g \in G$  as

$$||g|| := \min\{k : g = s_1 s_2 \dots s_k, s_i \in S \cup S^{-1}\}.$$

Moreover, we define the word metric or word distance between  $g, h \in G$  as

$$d(g,h) := \|g^{-1}h\|.$$

With this definition, left-multiplication is an isometry:

$$d(gh_1, gh_2) = d(h_1, h_2) \quad \forall h \in G.$$

With this definition, left-multiplication is an isometry:

$$d(gh_1,gh_2)=d(h_1,h_2) \qquad \forall h \in G.$$

▶ If  $G = \mathbb{F}_2$ ,  $S = \{a, b\}$ , then Cay( $\mathbb{F}_2$ , S) is the 4-valent tree.

With this definition, left-multiplication is an isometry:

$$d(gh_1, gh_2) = d(h_1, h_2) \quad \forall h \in G.$$

- ▶ If  $G = \mathbb{F}_2$ ,  $S = \{a, b\}$ , then Cay( $\mathbb{F}_2$ , S) is the 4-valent tree.
- ▶ If  $G = \mathbb{Z}^2$ ,  $S = \{(1,0), (0,1)\}$  then  $Cay(\mathbb{Z}^2, S)$  is the square grid.

4. 
$$G = SL_2(\mathbb{R}) = \{A \in M_2 : \det A = 1\}$$

4.  $G = SL_2(\mathbb{R}) = \{A \in M_2 : \det A = 1\}$  which acts on the hyperbolic plane  $X = \mathbb{H} = \{z \in \mathbb{C} : \operatorname{Im}(z) > 0\}$  by

4.  $G = SL_2(\mathbb{R}) = \{A \in M_2 : \det A = 1\}$  which acts on the hyperbolic plane  $X = \mathbb{H} = \{z \in \mathbb{C} : \operatorname{Im}(z) > 0\}$  by

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} (z) = \frac{az+b}{cz+d}.$$

4.  $G = SL_2(\mathbb{R}) = \{A \in M_2 : \det A = 1\}$  which acts on the hyperbolic plane  $X = \mathbb{H} = \{z \in \mathbb{C} : \operatorname{Im}(z) > 0\}$  by

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} (z) = \frac{az+b}{cz+d}.$$

G preserves the hyperbolic metric  $ds = \frac{dx}{y}$ .

4.  $G = SL_2(\mathbb{R}) = \{A \in M_2 : \det A = 1\}$  which acts on the hyperbolic plane  $X = \mathbb{H} = \{z \in \mathbb{C} : \operatorname{Im}(z) > 0\}$  by

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} (z) = \frac{az+b}{cz+d}.$$

*G* preserves the hyperbolic metric  $ds = \frac{dx}{y}$ . Let  $A, B \in SL_2(\mathbb{R}), \mu = \frac{1}{4}(\delta_A + \delta_{A^{-1}} + \delta_B + \delta_{B^{-1}}).$ 

4.  $G = SL_2(\mathbb{R}) = \{A \in M_2 : \det A = 1\}$  which acts on the hyperbolic plane  $X = \mathbb{H} = \{z \in \mathbb{C} : \operatorname{Im}(z) > 0\}$  by

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} (z) = \frac{az+b}{cz+d}.$$

*G* preserves the hyperbolic metric  $ds = \frac{dx}{y}$ . Let  $A, B \in SL_2(\mathbb{R}), \mu = \frac{1}{4}(\delta_A + \delta_{A^{-1}} + \delta_B + \delta_{B^{-1}})$ . Fix  $x \in \mathbb{H}$ .

4.  $G = SL_2(\mathbb{R}), X = \mathbb{H} = \{z \in \mathbb{C} : \text{Im}(z) > 0\}$  Let  $A, B \in SL_2(\mathbb{R}), \mu = \frac{1}{4}(\delta_A + \delta_{A^{-1}} + \delta_B + \delta_{B^{-1}}).$ 

4.  $G = SL_2(\mathbb{R}), X = \mathbb{H} = \{z \in \mathbb{C} : Im(z) > 0\}$  Let  $A, B \in SL_2(\mathbb{R}), \mu = \frac{1}{4}(\delta_A + \delta_{A^{-1}} + \delta_B + \delta_{B^{-1}}).$  Fix  $x \in \mathbb{H}$ .

4.  $G = SL_2(\mathbb{R}), X = \mathbb{H} = \{z \in \mathbb{C} : Im(z) > 0\}$  Let  $A, B \in SL_2(\mathbb{R}), \mu = \frac{1}{4}(\delta_A + \delta_{A^{-1}} + \delta_B + \delta_{B^{-1}}).$  Fix  $x \in \mathbb{H}$ .



4.  $G = SL_2(\mathbb{R}), X = \mathbb{H} = \{z \in \mathbb{C} : Im(z) > 0\}$  Let  $A, B \in SL_2(\mathbb{R}), \mu = \frac{1}{4}(\delta_A + \delta_{A^{-1}} + \delta_B + \delta_{B^{-1}}).$  Fix  $x \in \mathbb{H}$ .



4.  $G = SL_2(\mathbb{R}), X = \mathbb{H} = \{z \in \mathbb{C} : Im(z) > 0\}$  Let  $A, B \in SL_2(\mathbb{R}), \mu = \frac{1}{4}(\delta_A + \delta_{A^{-1}} + \delta_B + \delta_{B^{-1}}).$  Fix  $x \in \mathbb{H}$ .



4.  $G = SL_2(\mathbb{R}), X = \mathbb{H} = \{z \in \mathbb{C} : Im(z) > 0\}$  Let  $A, B \in SL_2(\mathbb{R}), \mu = \frac{1}{4}(\delta_A + \delta_{A^{-1}} + \delta_B + \delta_{B^{-1}}).$  Fix  $x \in \mathbb{H}$ .



4.  $G = SL_2(\mathbb{R}), X = \mathbb{H} = \{z \in \mathbb{C} : Im(z) > 0\}$  Let  $A, B \in SL_2(\mathbb{R}), \mu = \frac{1}{4}(\delta_A + \delta_{A^{-1}} + \delta_B + \delta_{B^{-1}}).$  Fix  $x \in \mathbb{H}$ .



4.  $G = SL_2(\mathbb{R}), X = \mathbb{H} = \{z \in \mathbb{C} : Im(z) > 0\}$  Let  $A, B \in SL_2(\mathbb{R}), \mu = \frac{1}{4}(\delta_A + \delta_{A^{-1}} + \delta_B + \delta_{B^{-1}}).$  Fix  $x \in \mathbb{H}$ .



4.  $G = SL_2(\mathbb{R}), X = \mathbb{H} = \{z \in \mathbb{C} : Im(z) > 0\}$  Let  $A, B \in SL_2(\mathbb{R}), \mu = \frac{1}{4}(\delta_A + \delta_{A^{-1}} + \delta_B + \delta_{B^{-1}}).$  Fix  $x \in \mathbb{H}$ .



4.  $G = SL_2(\mathbb{R}), X = \mathbb{H} = \{z \in \mathbb{C} : Im(z) > 0\}$  Let  $A, B \in SL_2(\mathbb{R}), \mu = \frac{1}{4}(\delta_A + \delta_{A^{-1}} + \delta_B + \delta_{B^{-1}}).$  Fix  $x \in \mathbb{H}$ .



4.  $G = SL_2(\mathbb{R}), X = \mathbb{H} = \{z \in \mathbb{C} : Im(z) > 0\}$  Let  $A, B \in SL_2(\mathbb{R}), \mu = \frac{1}{4}(\delta_A + \delta_{A^{-1}} + \delta_B + \delta_{B^{-1}}).$  Fix  $x \in \mathbb{H}$ .



# Example: the hyperbolic plane

4.  $G = SL_2(\mathbb{R}), X = \mathbb{H} = \{z \in \mathbb{C} : Im(z) > 0\}$  Let



# Example: the hyperbolic plane

4.  $G = SL_2(\mathbb{R}), X = \mathbb{H} = \{z \in \mathbb{C} : Im(z) > 0\}$  Let  $A, B \in SL_2(\mathbb{R}), \mu = \frac{1}{4}(\delta_A + \delta_{A^{-1}} + \delta_B + \delta_{B^{-1}}).$  Fix  $x \in \mathbb{H}$ .



The disc has a natural topological boundary, i.e. the circle.

# Example: the hyperbolic plane

4.  $G = SL_2(\mathbb{R}), X = \mathbb{H} = \{z \in \mathbb{C} : Im(z) > 0\}$  Let  $A, B \in SL_2(\mathbb{R}), \mu = \frac{1}{4}(\delta_A + \delta_{A^{-1}} + \delta_B + \delta_{B^{-1}}).$  Fix  $x \in \mathbb{H}$ .



The disc has a natural topological boundary, i.e. the circle. This RW converges a.s. to the boundary (Furstenberg).

1. Does a typical sample path escape to  $\infty$  or it comes back to the origin infinitely often?

- 1. Does a typical sample path escape to  $\infty$  or it comes back to the origin infinitely often?
- 2. If it escapes, does it escape with "positive speed"?

- 1. Does a typical sample path escape to  $\infty$  or it comes back to the origin infinitely often?
- 2. If it escapes, does it escape with "positive speed"?

#### Definition

We define the drift or speed or rate of escape of the random walk to be the limit

$$L := \lim_{n \to \infty} \frac{d(w_n x, x)}{n} \qquad \text{(if it exists)}$$

- 1. Does a typical sample path escape to  $\infty$  or it comes back to the origin infinitely often?
- 2. If it escapes, does it escape with "positive speed"?

#### Definition

We define the drift or speed or rate of escape of the random walk to be the limit

$$L := \lim_{n \to \infty} \frac{d(w_n x, x)}{n} \qquad \text{(if it exists)}$$

A measure  $\mu$  on G has finite first moment on X if for some (equivalently, any)  $x \in X$ 

$$\int_{G} d(x,gx) \ d\mu(g) < +\infty.$$

#### Lemma

If  $\mu$  has finite first moment, then there exists a constant  $L \in \mathbb{R}$  such that for a.e. sample path

$$\lim_{n\to\infty}\frac{d(w_nx,x)}{n}=L.$$

#### Lemma

If  $\mu$  has finite first moment, then there exists a constant  $L \in \mathbb{R}$  such that for a.e. sample path

$$\lim_{n\to\infty}\frac{d(w_nx,x)}{n}=L.$$

### Proof.

For any  $x \in X$ , the function  $a(n, \omega) := d(x, w_n(\omega)x)$  is a subadditive cocycle,

### Lemma

If  $\mu$  has finite first moment, then there exists a constant  $L \in \mathbb{R}$  such that for a.e. sample path

$$\lim_{n\to\infty}\frac{d(w_nx,x)}{n}=L.$$

### Proof.

For any  $x \in X$ , the function  $a(n, \omega) := d(x, w_n(\omega)x)$  is a subadditive cocycle, because

$$d(x, w_{n+m}(\omega)x) \le d(x, w_n(\omega)x) + d(w_n(\omega)x, w_{n+m}(\omega)x) =$$

### Lemma

If  $\mu$  has finite first moment, then there exists a constant  $L \in \mathbb{R}$  such that for a.e. sample path

$$\lim_{n\to\infty}\frac{d(w_nx,x)}{n}=L.$$

### Proof.

For any  $x \in X$ , the function  $a(n, \omega) := d(x, w_n(\omega)x)$  is a subadditive cocycle, because

$$d(x, w_{n+m}(\omega)x) \le d(x, w_n(\omega)x) + d(w_n(\omega)x, w_{n+m}(\omega)x) =$$

and since  $w_n$  is an isometry

### Lemma

If  $\mu$  has finite first moment, then there exists a constant  $L \in \mathbb{R}$  such that for a.e. sample path

$$\lim_{n\to\infty}\frac{d(w_nx,x)}{n}=L.$$

### Proof.

For any  $x \in X$ , the function  $a(n, \omega) := d(x, w_n(\omega)x)$  is a subadditive cocycle, because

$$d(x, w_{n+m}(\omega)x) \le d(x, w_n(\omega)x) + d(w_n(\omega)x, w_{n+m}(\omega)x) =$$

and since  $w_n$  is an isometry

$$=d(x,w_n(\omega)x)+d(x,g_{n+1}\dots g_{n+m}x)=d(x,w_n(\omega)x)+d(x,w_m(T^n\omega)x)$$

### Lemma

If  $\mu$  has finite first moment, then there exists a constant  $L \in \mathbb{R}$  such that for a.e. sample path

$$\lim_{n\to\infty}\frac{d(w_nx,x)}{n}=L.$$

### Proof.

For any  $x \in X$ , the function  $a(n, \omega) := d(x, w_n(\omega)x)$  is a subadditive cocycle, because

$$d(x, w_{n+m}(\omega)x) \leq d(x, w_n(\omega)x) + d(w_n(\omega)x, w_{n+m}(\omega)x) =$$

and since  $w_n$  is an isometry

$$=d(x,w_n(\omega)x)+d(x,g_{n+1}\dots g_{n+m}x)=d(x,w_n(\omega)x)+d(x,w_m(T^n\omega)x)$$

where *T* is the shift on the space of increments,

### Lemma

If  $\mu$  has finite first moment, then there exists a constant  $L \in \mathbb{R}$  such that for a.e. sample path

$$\lim_{n\to\infty}\frac{d(w_nx,x)}{n}=L.$$

### Proof.

For any  $x \in X$ , the function  $a(n, \omega) := d(x, w_n(\omega)x)$  is a subadditive cocycle, because

$$d(x, w_{n+m}(\omega)x) \le d(x, w_n(\omega)x) + d(w_n(\omega)x, w_{n+m}(\omega)x) =$$

and since  $w_n$  is an isometry

$$=d(x,w_n(\omega)x)+d(x,g_{n+1}\ldots g_{n+m}x)=d(x,w_n(\omega)x)+d(x,w_m(T^n\omega)x)$$

where T is the shift on the space of increments, hence the claim follows by Kingman's subadditive ergodic theorem.

3. Does a sample path track geodesics in *X*?

3. Does a sample path track geodesics in X? How closely?

- 3. Does a sample path track geodesics in X? How closely?
- 4. If X has a topological boundary  $\partial X$ , does a typical sample path converge to  $\partial X$ ?

- 3. Does a sample path track geodesics in X? How closely?
- 4. If X has a topological boundary  $\partial X$ , does a typical sample path converge to  $\partial X$ ?

### Definition

If so, define the hitting measure  $\nu$  on  $\partial X$  as

$$\nu(A) = \mathbb{P}(\lim_{n\to\infty} w_n x \in A)$$

for any  $A \subset \partial X$ .

- 3. Does a sample path track geodesics in X? How closely?
- 4. If X has a topological boundary  $\partial X$ , does a typical sample path converge to  $\partial X$ ?

#### Definition

If so, define the hitting measure  $\nu$  on  $\partial X$  as

$$\nu(A) = \mathbb{P}(\lim_{n\to\infty} w_n x \in A)$$

for any  $A \subset \partial X$ .

5. What are the properties of hitting measure?

- 3. Does a sample path track geodesics in X? How closely?
- 4. If X has a topological boundary  $\partial X$ , does a typical sample path converge to  $\partial X$ ?

#### Definition

If so, define the hitting measure  $\nu$  on  $\partial X$  as

$$\nu(A) = \mathbb{P}(\lim_{n\to\infty} w_n x \in A)$$

for any  $A \subset \partial X$ .

5. What are the properties of hitting measure? Is it the same as the geometric measure?

- 3. Does a sample path track geodesics in X? How closely?
- 4. If X has a topological boundary  $\partial X$ , does a typical sample path converge to  $\partial X$ ?

### Definition

If so, define the hitting measure  $\nu$  on  $\partial X$  as

$$\nu(A) = \mathbb{P}(\lim_{n\to\infty} w_n x \in A)$$

for any  $A \subset \partial X$ .

5. What are the properties of hitting measure? Is it the same as the geometric measure? For example, is it the same as the Lebesgue measure?

- 3. Does a sample path track geodesics in X? How closely?
- 4. If X has a topological boundary  $\partial X$ , does a typical sample path converge to  $\partial X$ ?

#### Definition

If so, define the hitting measure  $\nu$  on  $\partial X$  as

$$\nu(A) = \mathbb{P}(\lim_{n\to\infty} w_n x \in A)$$

for any  $A \subset \partial X$ .

- 5. What are the properties of hitting measure? Is it the same as the geometric measure? For example, is it the same as the Lebesgue measure?
- 6. Is  $(\partial X, \nu)$  a model for the Poisson boundary of  $(G, \mu)$ ?

- 3. Does a sample path track geodesics in X? How closely?
- 4. If X has a topological boundary  $\partial X$ , does a typical sample path converge to  $\partial X$ ?

#### Definition

If so, define the hitting measure  $\nu$  on  $\partial X$  as

$$\nu(A) = \mathbb{P}(\lim_{n\to\infty} w_n x \in A)$$

for any  $A \subset \partial X$ .

- 5. What are the properties of hitting measure? Is it the same as the geometric measure? For example, is it the same as the Lebesgue measure?
- 6. Is  $(\partial X, \nu)$  a model for the Poisson boundary of  $(G, \mu)$ ? That is, do you have a representation formula for bounded harmonic functions?

Let (X, d) be a geodesic, metric space, and let  $x_0 \in X$  be a basepoint.

Let (X, d) be a geodesic, metric space, and let  $x_0 \in X$  be a basepoint.

## Definition

The geodesic metric space X is  $\delta$ -hyperbolic if  $\exists \delta > 0$  such that geodesic triangles are  $\delta$ -thin.

Let (X, d) be a geodesic, metric space, and let  $x_0 \in X$  be a basepoint.

### Definition

The geodesic metric space X is  $\delta$ -hyperbolic if  $\exists \delta > 0$  such that geodesic triangles are  $\delta$ -thin.



### Definition

The geodesic metric space X is  $\delta$ -hyperbolic if  $\exists \delta > 0$  such that geodesic triangles are  $\delta$ -thin.

## Example

### Definition

The geodesic metric space X is  $\delta$ -hyperbolic if  $\exists \delta > 0$  such that geodesic triangles are  $\delta$ -thin.

## Example

$$X = \mathbb{R} \checkmark$$

### Definition

The geodesic metric space X is  $\delta$ -hyperbolic if  $\exists \delta > 0$  such that geodesic triangles are  $\delta$ -thin.

## Example

$$X = \mathbb{R} \checkmark \text{ (NOT } \mathbb{R}^2!)$$

### Definition

The geodesic metric space X is  $\delta$ -hyperbolic if  $\exists \delta > 0$  such that geodesic triangles are  $\delta$ -thin.

## Example

The following are  $\delta$ -hyperbolic spaces:

 $X = \mathbb{R} \checkmark \text{ (NOT } \mathbb{R}^2!)$ 

 $X = \text{tree } \checkmark$ 

### Definition

The geodesic metric space X is  $\delta$ -hyperbolic if  $\exists \delta > 0$  such that geodesic triangles are  $\delta$ -thin.

## Example

$$X = \mathbb{R} \checkmark \text{ (NOT } \mathbb{R}^2!)$$

$$X = \text{tree } \checkmark$$

$$G = \mathbb{F}_2, X = \mathsf{Cay}(\mathbb{F}_2, \mathcal{S}) \checkmark$$

### Definition

The geodesic metric space X is  $\delta$ -hyperbolic if  $\exists \delta > 0$  such that geodesic triangles are  $\delta$ -thin.

## Example

The following are  $\delta$ -hyperbolic spaces:

 $X = \mathbb{R} \checkmark \text{ (NOT } \mathbb{R}^2!)$ 

 $X = \text{tree } \checkmark$ 

 $G = \mathbb{F}_2, X = \mathsf{Cay}(\mathbb{F}_2, S) \checkmark$ 

X =locally infinite tree

### Definition

The geodesic metric space X is  $\delta$ -hyperbolic if  $\exists \delta > 0$  such that geodesic triangles are  $\delta$ -thin.

## Example

The following are  $\delta$ -hyperbolic spaces:

 $X = \mathbb{R} \checkmark \text{ (NOT } \mathbb{R}^2!)$ 

 $X = \text{tree } \checkmark$ 

 $G = \mathbb{F}_2, X = \mathsf{Cay}(\mathbb{F}_2, S) \checkmark$ 

X =locally infinite tree (not proper!)

### Definition

The geodesic metric space X is  $\delta$ -hyperbolic if  $\exists \delta > 0$  such that geodesic triangles are  $\delta$ -thin.

## Example

The following are  $\delta$ -hyperbolic spaces:

 $X = \mathbb{R} \checkmark \text{ (NOT } \mathbb{R}^2!)$ 

 $X = \text{tree } \checkmark$ 

 $G = \mathbb{F}_2, X = \mathsf{Cay}(\mathbb{F}_2, S) \checkmark$ 

X =locally infinite tree (not proper!)

Recall a space is proper if metric balls  $\{z \in X : d(x,z) \le R\}$  are compact.

# Hyperbolic isometries

### **Definition**

Given an isometry g of X and  $x \in X$ , we define its translation length as

# Hyperbolic isometries

### Definition

Given an isometry g of X and  $x \in X$ , we define its translation length as

$$\tau(g) := \lim_{n \to \infty} \frac{d(g^n x, x)}{n}$$

#### Definition

Given an isometry g of X and  $x \in X$ , we define its translation length as

$$\tau(g) := \lim_{n \to \infty} \frac{d(g^n x, x)}{n}$$

**Exercise**: the limit exists and is independent of the choice of *x*.

#### Definition

Given an isometry g of X and  $x \in X$ , we define its translation length as

$$\tau(g) := \lim_{n \to \infty} \frac{d(g^n x, x)}{n}$$

**Exercise**: the limit exists and is independent of the choice of x.

Lemma (Classification of isometries of hyperbolic spaces) Let g be an isometry of a  $\delta$ -hyperbolic metric space X (not necessarily proper).

#### Definition

Given an isometry g of X and  $x \in X$ , we define its translation length as

$$\tau(g) := \lim_{n \to \infty} \frac{d(g^n x, x)}{n}$$

**Exercise**: the limit exists and is independent of the choice of x.

Lemma (Classification of isometries of hyperbolic spaces) Let g be an isometry of a  $\delta$ -hyperbolic metric space X (not necessarily proper). Then either:

#### Definition

Given an isometry g of X and  $x \in X$ , we define its translation length as

$$\tau(g) := \lim_{n \to \infty} \frac{d(g^n x, x)}{n}$$

**Exercise**: the limit exists and is independent of the choice of x.

Lemma (Classification of isometries of hyperbolic spaces) Let g be an isometry of a  $\delta$ -hyperbolic metric space X (not necessarily proper). Then either:

1. g has bounded orbits.

#### Definition

Given an isometry g of X and  $x \in X$ , we define its translation length as

$$\tau(g) := \lim_{n \to \infty} \frac{d(g^n x, x)}{n}$$

**Exercise**: the limit exists and is independent of the choice of x.

Lemma (Classification of isometries of hyperbolic spaces) Let g be an isometry of a  $\delta$ -hyperbolic metric space X (not necessarily proper). Then either:

1. g has bounded orbits. Then g is called elliptic.

#### Definition

Given an isometry g of X and  $x \in X$ , we define its translation length as

$$\tau(g) := \lim_{n \to \infty} \frac{d(g^n x, x)}{n}$$

**Exercise**: the limit exists and is independent of the choice of x.

Lemma (Classification of isometries of hyperbolic spaces)

- 1. g has bounded orbits. Then g is called elliptic.
- 2. g has unbounded orbits and  $\tau(g) = 0$ .

#### Definition

Given an isometry g of X and  $x \in X$ , we define its translation length as

$$\tau(g) := \lim_{n \to \infty} \frac{d(g^n x, x)}{n}$$

**Exercise**: the limit exists and is independent of the choice of x.

Lemma (Classification of isometries of hyperbolic spaces)

- 1. g has bounded orbits. Then g is called elliptic.
- 2. g has unbounded orbits and  $\tau(g) = 0$ . Then g is called parabolic.

#### Definition

Given an isometry g of X and  $x \in X$ , we define its translation length as

$$\tau(g) := \lim_{n \to \infty} \frac{d(g^n x, x)}{n}$$

**Exercise**: the limit exists and is independent of the choice of x.

# Lemma (Classification of isometries of hyperbolic spaces)

- 1. g has bounded orbits. Then g is called elliptic.
- 2. g has unbounded orbits and  $\tau(g) = 0$ . Then g is called parabolic.
- 3.  $\tau(g) > 0$ .

#### Definition

Given an isometry g of X and  $x \in X$ , we define its translation length as

$$\tau(g) := \lim_{n \to \infty} \frac{d(g^n x, x)}{n}$$

**Exercise**: the limit exists and is independent of the choice of *x*.

## Lemma (Classification of isometries of hyperbolic spaces)

- 1. g has bounded orbits. Then g is called elliptic.
- 2. g has unbounded orbits and  $\tau(g) = 0$ . Then g is called parabolic.
- 3.  $\tau(g) > 0$ . Then g is called hyperbolic or loxodromic, and has precisely two fixed points on  $\partial X$ , one attracting and one repelling.

#### Definition

Given an isometry g of X and  $x \in X$ , we define its translation length as

$$\tau(g) := \lim_{n \to \infty} \frac{d(g^n x, x)}{n}$$

**Exercise**: the limit exists and is independent of the choice of *x*.

## Lemma (Classification of isometries of hyperbolic spaces)

- 1. g has bounded orbits. Then g is called elliptic.
- 2. g has unbounded orbits and  $\tau(g) = 0$ . Then g is called parabolic.
- 3.  $\tau(g) > 0$ . Then g is called hyperbolic or loxodromic, and has precisely two fixed points on  $\partial X$ , one attracting and one repelling.

#### **Definition**

Two loxodromic elements are independent if their fixed point sets are disjoint.

#### Definition

Two loxodromic elements are independent if their fixed point sets are disjoint. A semigroup of isometries of *X* is non-elementary if it contains 2 independent hyperbolic elements.

#### Definition

Two loxodromic elements are independent if their fixed point sets are disjoint. A semigroup of isometries of *X* is non-elementary if it contains 2 independent hyperbolic elements.

#### Definition

A group is weakly hyperbolic if it admits a non-elementary action on a (possibly non-proper) hyperbolic metric space.

#### Definition

Two loxodromic elements are independent if their fixed point sets are disjoint. A semigroup of isometries of *X* is non-elementary if it contains 2 independent hyperbolic elements.

#### Definition

A group is weakly hyperbolic if it admits a non-elementary action on a (possibly non-proper) hyperbolic metric space.

#### Definition

Two loxodromic elements are independent if their fixed point sets are disjoint. A semigroup of isometries of *X* is non-elementary if it contains 2 independent hyperbolic elements.

#### Definition

A group is weakly hyperbolic if it admits a non-elementary action on a (possibly non-proper) hyperbolic metric space.

- $G = \mathbb{F}_2, X = \operatorname{Cay}(\mathbb{F}_2, S)$
- G a word hyperbolic group,

#### Definition

Two loxodromic elements are independent if their fixed point sets are disjoint. A semigroup of isometries of *X* is non-elementary if it contains 2 independent hyperbolic elements.

#### Definition

A group is weakly hyperbolic if it admits a non-elementary action on a (possibly non-proper) hyperbolic metric space.

- $\blacktriangleright \ \ \textit{G} = \mathbb{F}_2, \textit{X} = \text{Cay}(\mathbb{F}_2, \textit{S})$
- ▶ G a word hyperbolic group, X = Cay(G, S)

#### Definition

Two loxodromic elements are independent if their fixed point sets are disjoint. A semigroup of isometries of *X* is non-elementary if it contains 2 independent hyperbolic elements.

#### Definition

A group is weakly hyperbolic if it admits a non-elementary action on a (possibly non-proper) hyperbolic metric space.

- $G = \mathbb{F}_2, X = \operatorname{Cay}(\mathbb{F}_2, S)$
- ▶ G a word hyperbolic group, X = Cay(G, S)
- ► *G* a relatively hyperbolic group,

#### Definition

Two loxodromic elements are independent if their fixed point sets are disjoint. A semigroup of isometries of *X* is non-elementary if it contains 2 independent hyperbolic elements.

#### **Definition**

A group is weakly hyperbolic if it admits a non-elementary action on a (possibly non-proper) hyperbolic metric space.

- $G = \mathbb{F}_2, X = \operatorname{Cay}(\mathbb{F}_2, S)$
- ▶ G a word hyperbolic group, X = Cay(G, S)
- ► *G* a relatively hyperbolic group, *X* = coned-off space

#### Definition

Two loxodromic elements are independent if their fixed point sets are disjoint. A semigroup of isometries of *X* is non-elementary if it contains 2 independent hyperbolic elements.

#### **Definition**

A group is weakly hyperbolic if it admits a non-elementary action on a (possibly non-proper) hyperbolic metric space.

- $G = \mathbb{F}_2, X = \operatorname{Cay}(\mathbb{F}_2, S)$
- ▶ G a word hyperbolic group, X = Cay(G, S)
- ► *G* a relatively hyperbolic group, *X* = coned-off space
- ► *G* a mapping class group,

#### Definition

Two loxodromic elements are independent if their fixed point sets are disjoint. A semigroup of isometries of *X* is non-elementary if it contains 2 independent hyperbolic elements.

#### Definition

A group is weakly hyperbolic if it admits a non-elementary action on a (possibly non-proper) hyperbolic metric space.

- $G = \mathbb{F}_2, X = \operatorname{Cay}(\mathbb{F}_2, S)$
- ▶ G a word hyperbolic group, X = Cay(G, S)
- ► *G* a relatively hyperbolic group, *X* = coned-off space
- ► *G* a mapping class group, *X* = curve complex

#### Definition

Two loxodromic elements are independent if their fixed point sets are disjoint. A semigroup of isometries of *X* is non-elementary if it contains 2 independent hyperbolic elements.

#### Definition

A group is weakly hyperbolic if it admits a non-elementary action on a (possibly non-proper) hyperbolic metric space.

- $G = \mathbb{F}_2, X = \operatorname{Cay}(\mathbb{F}_2, S)$
- ▶ G a word hyperbolic group, X = Cay(G, S)
- ► *G* a relatively hyperbolic group, *X* = coned-off space
- ▶ G a mapping class group, X = curve complex
- G a right-angled Artin group,

#### Definition

Two loxodromic elements are independent if their fixed point sets are disjoint. A semigroup of isometries of *X* is non-elementary if it contains 2 independent hyperbolic elements.

#### Definition

A group is weakly hyperbolic if it admits a non-elementary action on a (possibly non-proper) hyperbolic metric space.

- $G = \mathbb{F}_2, X = \operatorname{Cay}(\mathbb{F}_2, S)$
- ▶ G a word hyperbolic group, X = Cay(G, S)
- ► *G* a relatively hyperbolic group, *X* = coned-off space
- ▶ G a mapping class group, X = curve complex
- ► *G* a right-angled Artin group, *X* = extension graph

#### Definition

Two loxodromic elements are independent if their fixed point sets are disjoint. A semigroup of isometries of *X* is non-elementary if it contains 2 independent hyperbolic elements.

#### Definition

A group is weakly hyperbolic if it admits a non-elementary action on a (possibly non-proper) hyperbolic metric space.

- $G = \mathbb{F}_2, X = \text{Cay}(\mathbb{F}_2, S)$
- ▶ G a word hyperbolic group, X = Cay(G, S)
- ► *G* a relatively hyperbolic group, *X* = coned-off space
- ▶ G a mapping class group, X = curve complex
- ightharpoonup G a right-angled Artin group, X = extension graph
- $G = \operatorname{Out}(F_n)$ ,

#### Definition

Two loxodromic elements are independent if their fixed point sets are disjoint. A semigroup of isometries of *X* is non-elementary if it contains 2 independent hyperbolic elements.

#### Definition

A group is weakly hyperbolic if it admits a non-elementary action on a (possibly non-proper) hyperbolic metric space.

- $G = \mathbb{F}_2, X = \operatorname{Cay}(\mathbb{F}_2, S)$
- ▶ G a word hyperbolic group, X = Cay(G, S)
- ► *G* a relatively hyperbolic group, *X* = coned-off space
- ► *G* a mapping class group, *X* = curve complex
- ightharpoonup G a right-angled Artin group, X = extension graph
- ▶  $G = \text{Out}(F_n)$ , X = free splitting/free factor complex

#### Definition

Two loxodromic elements are independent if their fixed point sets are disjoint. A semigroup of isometries of *X* is non-elementary if it contains 2 independent hyperbolic elements.

#### **Definition**

A group is weakly hyperbolic if it admits a non-elementary action on a (possibly non-proper) hyperbolic metric space.

- $ightharpoonup G = \mathbb{F}_2, X = \operatorname{Cay}(\mathbb{F}_2, S)$
- ▶ G a word hyperbolic group, X = Cay(G, S)
- ► *G* a relatively hyperbolic group, *X* = coned-off space
- ► *G* a mapping class group, *X* = curve complex
- ightharpoonup G a right-angled Artin group, X = extension graph
- ▶  $G = \text{Out}(F_n)$ , X = free splitting/free factor complex
- G = Cremona group.

#### Definition

Two loxodromic elements are independent if their fixed point sets are disjoint. A semigroup of isometries of *X* is non-elementary if it contains 2 independent hyperbolic elements.

#### **Definition**

A group is weakly hyperbolic if it admits a non-elementary action on a (possibly non-proper) hyperbolic metric space.

- $ightharpoonup G = \mathbb{F}_2, X = \operatorname{Cay}(\mathbb{F}_2, S)$
- ► *G* a word hyperbolic group, *X* = Cay(G, S)
- ightharpoonup G a relatively hyperbolic group, X = coned-off space
- ightharpoonup G a mapping class group, X = curve complex
- ightharpoonup G a right-angled Artin group, X = extension graph
- $G = \text{Out}(F_n)$ , X = free splitting/free factor complex
- G = Cremona group, X = Picard-Manin hyperboloid

Theorem (Maher-T. '18)

Let G be a countable group of isometries of a  $\delta$ -hyperbolic metric space X,

### Theorem (Maher-T. '18)

Let G be a countable group of isometries of a  $\delta$ -hyperbolic metric space X, such that the semigroup generated by the support of  $\mu$  is non-elementary.

### Theorem (Maher-T. '18)

Let G be a countable group of isometries of a  $\delta$ -hyperbolic metric space X, such that the semigroup generated by the support of  $\mu$  is non-elementary. Then:

### Theorem (Maher-T. '18)

Let G be a countable group of isometries of a  $\delta$ -hyperbolic metric space X, such that the semigroup generated by the support of  $\mu$  is non-elementary. Then:

1. (Boundary convergence) For a.e.  $(w_n)$  and every  $x \in X$ 

$$\lim_{n\to\infty} w_n x = \xi \in \partial X \text{ exists.}$$

### Theorem (Maher-T. '18)

Let G be a countable group of isometries of a  $\delta$ -hyperbolic metric space X, such that the semigroup generated by the support of  $\mu$  is non-elementary. Then:

1. (Boundary convergence) For a.e.  $(w_n)$  and every  $x \in X$ 

$$\lim_{n\to\infty} w_n x = \xi \in \partial X \text{ exists.}$$

2. (Positive drift)  $\exists L > 0$  *s.t.* 

$$\liminf_{n\to\infty}\frac{d(w_nx,x)}{n}=L>0.$$

### Theorem (Maher-T. '18)

Let G be a countable group of isometries of a  $\delta$ -hyperbolic metric space X, such that the semigroup generated by the support of  $\mu$  is non-elementary. Then:

1. (Boundary convergence) For a.e.  $(w_n)$  and every  $x \in X$ 

$$\lim_{n\to\infty} w_n x = \xi \in \partial X \text{ exists.}$$

2. (Positive drift)  $\exists L > 0$  *s.t.* 

$$\liminf_{n\to\infty}\frac{d(w_nx,x)}{n}=L>0.$$

If  $\mu$  has finite 1<sup>st</sup> moment then

$$\lim_{n\to\infty}\frac{d(w_nx,x)}{n}=L>0 \text{ exists a.s.}$$

### Theorem (Maher-T. '18)

Let G be a countable group of isometries of a  $\delta$ -hyperbolic metric space X, such that the semigroup generated by the support of  $\mu$  is non-elementary. Then:

1. (Boundary convergence) For a.e.  $(w_n)$  and every  $x \in X$ 

$$\lim_{n\to\infty} w_n x = \xi \in \partial X \text{ exists.}$$

2. (Positive drift)  $\exists L > 0$  *s.t.* 

$$\liminf_{n\to\infty}\frac{d(w_nx,x)}{n}=L>0.$$

If  $\mu$  has finite 1<sup>st</sup> moment then

$$\lim_{n\to\infty}\frac{d(w_nx,x)}{n}=L>0 \text{ exists a.s.}$$

3. (Growth of translation length) For any  $\epsilon > 0$  we have

$$\mathbb{P}(\tau(w_n) \geq n(L - \epsilon)) \to 1$$

as  $n \to \infty$ .

3. (Growth of translation length) For any  $\epsilon > 0$  we have

$$\mathbb{P}(\tau(w_n) \geq n(L - \epsilon)) \to 1$$

as  $n \to \infty$ .

Corollary.

 $\mathbb{P}(w_n \text{ is loxodromic }) \to 1$ 

3. (Growth of translation length) For any  $\epsilon > 0$  we have

$$\mathbb{P}(\tau(w_n) \geq n(L - \epsilon)) \to 1$$

as  $n \to \infty$ .

Corollary.

$$\mathbb{P}(w_n \text{ is loxodromic }) \to 1$$

 (Poisson boundary) If the action is weakly properly discontinuous (WPD),

3. (Growth of translation length) For any  $\epsilon > 0$  we have

$$\mathbb{P}(\tau(w_n) \geq n(L - \epsilon)) \to 1$$

as  $n \to \infty$ .

Corollary.

$$\mathbb{P}(w_n \text{ is loxodromic }) \to 1$$

 (Poisson boundary) If the action is weakly properly discontinuous (WPD), and the measure has finite logarithmic moment and finite entropy,

3. (Growth of translation length) For any  $\epsilon > 0$  we have

$$\mathbb{P}(\tau(w_n) \geq n(L - \epsilon)) \to 1$$

as  $n \to \infty$ .

Corollary.

$$\mathbb{P}(w_n \text{ is loxodromic }) \to 1$$

4. (Poisson boundary) If the action is weakly properly discontinuous (WPD), and the measure has finite logarithmic moment and finite entropy, then the Gromov boundary  $(\partial X, \nu)$ 

3. (Growth of translation length) For any  $\epsilon > 0$  we have

$$\mathbb{P}(\tau(w_n) \geq n(L - \epsilon)) \to 1$$

as  $n \to \infty$ .

Corollary.

$$\mathbb{P}(w_n \text{ is loxodromic }) \to 1$$

4. (Poisson boundary) If the action is weakly properly discontinuous (WPD), and the measure has finite logarithmic moment and finite entropy, then the Gromov boundary  $(\partial X, \nu)$  is a model for the Poisson boundary of  $(G, \mu)$ .