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English or Gibberish?

You are a spy, and you intercept two messages: one of them is
in English, and another is just a random sequence of letters.

Which one is the English one? Unfortunately, both messages
are encrypted by substituting letters with numbers....

Text A
1, 14, 4, 27, 20, 8, 5, 14, 3, 5, 27, 23, 5, 27, 9, 19, 19, 21, 5, 4, 27, 6,
15, 18, 20, 8, 27, 20, 15, 27, 19, 5, 5, 27, 1, 7, 1, 9, 14, 27, 20, 8, 5,
27, 19, 20, 1, 18, 19

Text B
25, 18, 9, 10, 5, 4, 11, 20, 17, 20, 9, 15, 27, 3, 18, 6, 26, 17, 11, 6, 6,
18, 26, 14, 16, 21, 7, 17, 21, 9, 13, 17, 18, 27, 20, 6, 4, 25, 8, 22, 2,
3, 26, 11, 19, 6, 12, 5, 23
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English or Gibberish?

Idea: natural languages have redundancies

Th_ art_st is __e creato_ of be__t_ful th_ng_.
To revea_ a_t and con_ea_ the _rtist _s art’_ a_m.
The cr_t_c is he wh_ _an tra_slat_ into ano_he_ manner
or a n_w mate_ial hi_ impre_sio_ of b_a_tiful _h_ngs.

(Osc__ Wil__, The Picture __ ______ ____)"
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English or Gibberish?

in 1948, Shannon came up with an idea:

h := lim
n→∞

log #{subsequences of length n}
n

Text A
1, 14, 4, 27, 20, 8, 5, 14, 3, 5, 27, 23, 5, 27, 9, 19, 19, 21, 5, 4, 27, 6,
15, 18, 20, 8, 27, 20, 15, 27, 19, 5, 5, 27, 1, 7, 1, 9, 14, 27, 20, 8, 5,
27, 19, 20, 1, 18, 19
h = 2.52095

Text B
25, 18, 9, 10, 5, 4, 11, 20, 17, 20, 9, 15, 27, 3, 18, 6, 26, 17, 11, 6, 6,
18, 26, 14, 16, 21, 7, 17, 21, 9, 13, 17, 18, 27, 20, 6, 4, 25, 8, 22, 2,
3, 26, 11, 19, 6, 12, 5, 23
h = 3.06246 (Random selection: log 27 = 3.29...)
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English or Gibberish?

h := lim
n→∞

log #{subsequences of length n}
n

Text A
“and thence we issued forth to see again the stars"
h = 2.52095

Text B
“yrijedktqtio crfzqkffrznpugquimqr tfdyhvbczksflew"
h = 3.06246 (Random selection: log 27 = 3.29...)
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English or Chinese?

From: R. Takahira, K.Tanaka-Ishii, L. Debowski (2016)



Sequences produced by dynamical systems

Let f (x) = x2 + c.

Let us introduce the partition I = I0 ∪ I1
where I0 = {x ≤ 0}, I1 = {x > 0}. For each x , we can produce
a binary sequence by looking at the orbit of x :

-1.5 -1.0 -0.5 0.5 1.0 1.5

-1.0

-0.5

0.5

1.0

1.5

Σ = 1



Sequences produced by dynamical systems

Let f (x) = x2 + c. Let us introduce the partition I = I0 ∪ I1
where I0 = {x ≤ 0}, I1 = {x > 0}.

For each x , we can produce
a binary sequence by looking at the orbit of x :

-1.5 -1.0 -0.5 0.5 1.0 1.5

-1.0

-0.5

0.5

1.0

1.5

Σ = 1



Sequences produced by dynamical systems

Let f (x) = x2 + c. Let us introduce the partition I = I0 ∪ I1
where I0 = {x ≤ 0}, I1 = {x > 0}. For each x , we can produce
a binary sequence by looking at the orbit of x :

-1.5 -1.0 -0.5 0.5 1.0 1.5

-1.0

-0.5

0.5

1.0

1.5

Σ = 1



Sequences produced by dynamical systems

Let f (x) = x2 + c. Let us introduce the partition I = I0 ∪ I1
where I0 = {x ≤ 0}, I1 = {x > 0}. For each x , we can produce
a binary sequence by looking at the orbit of x :

-1.5 -1.0 -0.5 0.5 1.0 1.5

-1.0

-0.5

0.5

1.0

1.5

Σ = 1



Sequences produced by dynamical systems

Let f (x) = x2 + c. Let us introduce the partition I = I0 ∪ I1
where I0 = {x ≤ 0}, I1 = {x > 0}. For each x , we can produce
a binary sequence by looking at the orbit of x :

-1.5 -1.0 -0.5 0.5 1.0 1.5

-1.0

-0.5

0.5

1.0

1.5

Σ = 1



Sequences produced by dynamical systems

Let f (x) = x2 + c. Let us introduce the partition I = I0 ∪ I1
where I0 = {x ≤ 0}, I1 = {x > 0}. For each x , we can produce
a binary sequence by looking at the orbit of x :

-1.5 -1.0 -0.5 0.5 1.0 1.5

-1.0

-0.5

0.5

1.0

1.5

Σ = 10



Sequences produced by dynamical systems

Let f (x) = x2 + c. Let us introduce the partition I = I0 ∪ I1
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Let f (x) = x2 + c. Let us introduce the partition I = I0 ∪ I1
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Sequences produced by dynamical systems

Let f (x) = x2 + c. Let us introduce the partition I = I0 ∪ I1
where I0 = {x ≤ 0}, I1 = {x > 0}. For each x , we can produce
a binary sequence by looking at the orbit of x :

-1.5 -1.0 -0.5 0.5 1.0 1.5

-1.0

-0.5

0.5

1.0

1.5

Σ = 10100



Sequences produced by dynamical systems

Let f (x) = x2 + c. Let us introduce the partition I = I0 ∪ I1
where I0 = {x ≤ 0}, I1 = {x > 0}. For each x , we can produce
a binary sequence by looking at the orbit of x :

-1.5 -1.0 -0.5 0.5 1.0 1.5

-1.0

-0.5

0.5

1.0

1.5

Σ = 101000100



Topological entropy of real interval maps

Thus, we have a map Σ : I → {0,1}N

starting point x 7→ Σ(x) infinite binary code.

Σ(x) = 101000100
How many different sequences can I obtain?
The topological entropy of f is the quantity

htop(f ) := lim
n→∞

log #{admissible codes of length n}
n

Note: For quadratic maps htop(f ) ≤ log 2.
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Topological entropy of real interval maps

Let f : I → I, continuous, piecewise monotone.

A lap of f is a maximal interval on which f is monotone.
The topological entropy of f also equals

htop(f ,R) = lim
n→∞

log #{laps(f n)}
n
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Topological entropy of real maps

Let f : I → I, continuous, piecewise monotone.

htop(f ,R) = lim
n→∞

log #{laps(f n)}
n

Agrees with general definition for maps on compact spaces
using open covers (Misiurewicz-Szlenk)
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Example: the airplane map
f : I → I is postcritically finite if the forward orbits of the critical
points of f are finite.

Then the entropy is the logarithm of an
algebraic number.

A 7→ A ∪ B
B 7→ A

⇒
(

1 1
1 0

)
⇒ λ =

√
5+1
2 = ehtop(fc ,R)
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Topological entropy of real maps

htop(f ,R) := lim
n→∞

log #{laps(f n)}
n

Consider the real quadratic family

fc(z) := z2 + c c ∈ [−2,1/4]

How does entropy change with the parameter c?
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The function c → htop(fc ,R):

I is continuous and monotone (Milnor-Thurston, 1977).
I 0 ≤ htop(fc ,R) ≤ log 2.
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The function c → htop(fc ,R):

I is continuous and monotone (Milnor-Thurston, 1977).
I 0 ≤ htop(fc ,R) ≤ log 2.

Question : Can we extend this theory to complex polynomials?



The function c → htop(fc ,R):

I is continuous and monotone (Milnor-Thurston, 1977).
I 0 ≤ htop(fc ,R) ≤ log 2.

Remark. If we consider fc : Ĉ→ Ĉ entropy is constant
htop(fc , Ĉ) = log 2. (Lyubich 1980)



Mandelbrot set

The Mandelbrot setM is the connectedness locus of the
quadratic family fc(z) := z2 + c.

M = {c ∈ C : f n
c (0) 9∞}
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The images of radial arcs in the disk are called external rays.
Every angle θ ∈ R/Z determines an external ray

R(θ) := ΦM({ρe2πiθ : ρ > 1})
An external ray R(θ) is said to land at x if

lim
ρ→1

ΦM(ρe2πiθ) = x



Rational rays land
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Thurston’s quadratic minor lamination (QML)
Define θ1 ∼M θ2 on Q/Z if RM(θ1) and RM(θ2) land together.
The closure of this equivalence relation defines a lamination
on the disk

The quotientMabs of the disk by the lamination is a (locally
connected) model for the Mandelbrot set, and homeomorphic
to it if MLC holds.
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Monotonicity of entropy

Observation.

If RM(θ1) and RM(θ2) land together, then h(θ1) = h(θ2).

Monotonicity still holds along veins.

Let us take two rays θ1 landing at c1 and θ2 landing at c2.
Then we define θ1 <M θ2 if c1 lies on the arc [0, c2].

Theorem (Li Tao; Penrose; Tan Lei; Zeng Jinsong)
If θ1 <M θ2, then

h(θ1) ≤ h(θ2)

In fact, entropy determines the lamination.

Proposition
If h(θ1) = h(θ2) and h(θ) > h(θ1) for all θ ∈ (θ1, θ2), then
θ1 ∼M θ2.
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Harmonic measure
Given a subset A of ∂M, the harmonic measure νM is the
probability that a random ray lands on A:

νM(A) := Leb({θ ∈ S1 : R(θ) lands on A})

For instance, take A =M∩R the real section of the Mandelbrot
set. How common is it for a ray to land on the real axis?
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I It relates dynamical properties of a particular map to the
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I It does not depend on MLC.
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parameter rays which land on the vein between 0 and c.
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The core entropy as a function of external angle

Question (Thurston, Hubbard):
Is h(θ) a continuous function of θ?
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The Main Theorem: Continuity

Theorem (T.)
The core entropy function h(θ) extends to a continuous function
from R/Z to R.
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Regularity properties of the core entropy
In fact:

Theorem (T.)
The core entropy is locally Hölder continuous at θ if h(θ) > 0,
and not locally Hölder at θ where h(θ) = 0.
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(Conjectured by Isola-Politi, 1990)
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Maxima of core entropy
Given θ1 < θ2 with θ1 ∼M θ2 (= landing together),

define their
pseudocenter θ? as the dyadic rational in [θ1, θ2] of lowest complexity

θ? := {x = p/2q : x ∈ [θ1, θ2],q minimal}

E.g.: θ1 = 1/7, θ2 = 2/7, θ? = 1/4
(Carminati-T. for continued fractions)

Conjecture (T.)
The maximum of the entropy on [θ1, θ2] is achieved at θ = θ?.
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Maxima of core entropy
Given θ1 < θ2 with θ1 ∼M θ2 (= landing together), define their
pseudocenter θ? as the dyadic rational in [θ1, θ2] of lowest complexity

θ? := {x = p/2q : x ∈ [θ1, θ2],q minimal}

E.g.: θ1 = 1/7, θ2 = 2/7, θ? = 1/4

Theorem (Dudko-Schleicher)
The maximum of the entropy on [θ1, θ2] is achieved at θ = θ?.



The core entropy for cubic polynomials



The core entropy for cubic polynomials



The core entropy for cubic polynomials



The unicritical slice
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Continuity in higher degree, combinatorial version
For polynomials of degree d , the analog of the circle at infinity
for the Mandelbrot set is the set PM(d) of primitive majors.

Theorem (W. Thurston)

PM(d) ∼= K (Bd ,1)

where Bd is the braid group on d strands.
(see Baik, Gao, Hubbard, Lindsey, Tan, D. Thurston)
Example. π1(PM(3)) = 〈x , y : x2 = y3〉
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Continuity in higher degree, combinatorial version
Theorem (T. - Yan Gao)
Fix d ≥ 2. Then the core entropy extends to a continuous
function on the space PM(d) of primitive majors.
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Continuity in higher degree, analytic version

Define Pd as the space of monic, centered polynomials of
degree d .

One says fn → f if the coefficients of fn converge to
the coefficients of f .

Theorem (T. - Yan Gao)
Let d ≥ 2. Then the core entropy is a continuous function on
the space of monic, centered, postcritically finite polynomials of
degree d.
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Further questions

1. What are the local maxima of the core entropy in d > 3?

How
many are there?

2. Can you use core entropy in higher degree case to define a
hierarchical structure of parameter space?
(Compare veins for d = 2)

3. Jung’s conjecture: self-similarity of entropy graph near
Misiurewicz points
(where the Mandelbrot set is self-similar! (Tan Lei))

4. Can we us core entropy to define transverse measures on the
lamination?
Thurston: surface laminations (Teichmüller theory) carry a
transverse measure
Sullivan dictionary: Teichmüller theory⇔ complex dynamics
(Answer: Yes! [T. ’21])

5. What about the other eigenvalues of the transition matrix?
(Bray-Davis-Lindsey-Wu, ...)
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Coda: Laminations
Theorem (W. Thurston)
Let θ ∈ R/Z.

Then there exists a lamination Lθ on the disk such
that θ1 ∼ θ2 if R(θ1) and R(θ2) “land" at the same point.
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