

Entropy along the Mandelbrot set

Giulio Tiozzo
University of Toronto

André Aisenstadt Lecture - Montréal, $15^{\text {th }}$ October, 2021

Summary

1. What is... (topological) entropy?

Summary

1. What is... (topological) entropy?
2. Entropy in dynamical systems

Summary

1. What is... (topological) entropy?
2. Entropy in dynamical systems
3. A crash course in complex dynamics

Summary

1. What is... (topological) entropy?
2. Entropy in dynamical systems
3. A crash course in complex dynamics
4. Definition of core entropy

Summary

1. What is... (topological) entropy?
2. Entropy in dynamical systems
3. A crash course in complex dynamics
4. Definition of core entropy
5. The quadratic case

Summary

1. What is... (topological) entropy?
2. Entropy in dynamical systems
3. A crash course in complex dynamics
4. Definition of core entropy
5. The quadratic case
6. The higher degree case

English or Gibberish?

You are a spy, and you intercept two messages: one of them is in English, and another is just a random sequence of letters.

English or Gibberish?

You are a spy, and you intercept two messages: one of them is in English, and another is just a random sequence of letters. Which one is the English one?

English or Gibberish?

You are a spy, and you intercept two messages: one of them is in English, and another is just a random sequence of letters. Which one is the English one? Unfortunately, both messages are encrypted by substituting letters with numbers....

English or Gibberish?

You are a spy, and you intercept two messages: one of them is in English, and another is just a random sequence of letters. Which one is the English one? Unfortunately, both messages are encrypted by substituting letters with numbers....
Text A
$1,14,4,27,20,8,5,14,3,5,27,23,5,27,9,19,19,21,5,4,27,6$, $15,18,20,8,27,20,15,27,19,5,5,27,1,7,1,9,14,27,20,8,5$,
$27,19,20,1,18,19$

English or Gibberish?

You are a spy, and you intercept two messages: one of them is in English, and another is just a random sequence of letters. Which one is the English one? Unfortunately, both messages are encrypted by substituting letters with numbers....

Text A

$1,14,4,27,20,8,5,14,3,5,27,23,5,27,9,19,19,21,5,4,27,6$, $15,18,20,8,27,20,15,27,19,5,5,27,1,7,1,9,14,27,20,8,5$, 27, 19, 20, 1, 18, 19

Text B

$25,18,9,10,5,4,11,20,17,20,9,15,27,3,18,6,26,17,11,6,6$, $18,26,14,16,21,7,17,21,9,13,17,18,27,20,6,4,25,8,22,2$, $3,26,11,19,6,12,5,23$

English or Gibberish?

Idea: natural languages have redundancies

English or Gibberish?

Idea: natural languages have redundancies

Th_art_st is __e creato_ of be__tful th_ng_.
To revea_ a_t and con_ea_the_rtist_s art__ a_m.
The cr_t_c is he wh__an tra_slat_ into ano_he_ manner or a n_w mate_ial hi_impre_sio_ of b_a_tiful_h_ngs.
(Osc \qquad , The Picture \qquad

English or Gibberish?

in 1948, Shannon came up with an idea:

English or Gibberish?

in 1948, Shannon came up with an idea:

$$
h:=\lim _{n \rightarrow \infty} \frac{\log \#\{\text { subsequences of length } n\}}{n}
$$

English or Gibberish?

in 1948, Shannon came up with an idea:

$$
h:=\lim _{n \rightarrow \infty} \frac{\log \#\{\text { subsequences of length } n\}}{n}
$$

Text A
$1,14,4,27,20,8,5,14,3,5,27,23,5,27,9,19,19,21,5,4,27,6$, $15,18,20,8,27,20,15,27,19,5,5,27,1,7,1,9,14,27,20,8,5$, $27,19,20,1,18,19$

English or Gibberish?

in 1948, Shannon came up with an idea:

$$
h:=\lim _{n \rightarrow \infty} \frac{\log \#\{\text { subsequences of length } n\}}{n}
$$

Text A

$1,14,4,27,20,8,5,14,3,5,27,23,5,27,9,19,19,21,5,4,27,6$, $15,18,20,8,27,20,15,27,19,5,5,27,1,7,1,9,14,27,20,8,5$, 27, 19, 20, 1, 18, 19
h $=2.52095$

English or Gibberish?

in 1948, Shannon came up with an idea:

$$
h:=\lim _{n \rightarrow \infty} \frac{\log \#\{\text { subsequences of length } n\}}{n}
$$

Text A

$1,14,4,27,20,8,5,14,3,5,27,23,5,27,9,19,19,21,5,4,27,6$, $15,18,20,8,27,20,15,27,19,5,5,27,1,7,1,9,14,27,20,8,5$, 27, 19, 20, 1, 18, 19
h $=2.52095$

Text B

$25,18,9,10,5,4,11,20,17,20,9,15,27,3,18,6,26,17,11,6,6$, $18,26,14,16,21,7,17,21,9,13,17,18,27,20,6,4,25,8,22,2$, 3, 26, 11, 19, 6, 12, 5, 23
$\mathrm{h}=3.06246$

English or Gibberish?

in 1948, Shannon came up with an idea:

$$
h:=\lim _{n \rightarrow \infty} \frac{\log \#\{\text { subsequences of length } n\}}{n}
$$

Text A

$1,14,4,27,20,8,5,14,3,5,27,23,5,27,9,19,19,21,5,4,27,6$, $15,18,20,8,27,20,15,27,19,5,5,27,1,7,1,9,14,27,20,8,5$, 27, 19, 20, 1, 18, 19
h $=2.52095$

Text B

$25,18,9,10,5,4,11,20,17,20,9,15,27,3,18,6,26,17,11,6,6$, $18,26,14,16,21,7,17,21,9,13,17,18,27,20,6,4,25,8,22,2$, 3, 26, 11, 19, 6, 12, 5, 23
$\mathrm{h}=3.06246$ (Random selection: $\log 27=3.29 \ldots$)

English or Gibberish?

$$
h:=\lim _{n \rightarrow \infty} \frac{\log \#\{\text { subsequences of length } n\}}{n}
$$

English or Gibberish?

$$
h:=\lim _{n \rightarrow \infty} \frac{\log \#\{\text { subsequences of length } n\}}{n}
$$

Text A
"and thence we issued forth to see again the stars" $h=2.52095$

English or Gibberish?

$$
h:=\lim _{n \rightarrow \infty} \frac{\log \#\{\text { subsequences of length } n\}}{n}
$$

Text A
"and thence we issued forth to see again the stars" h = 2.52095

Text B

"yrijedktqtio crfzqkffrznpugquimqr tfdyhvbczksflew"
h = 3.06246

English or Gibberish?

$$
h:=\lim _{n \rightarrow \infty} \frac{\log \#\{\text { subsequences of length } n\}}{n}
$$

Text A
"and thence we issued forth to see again the stars"
h = 2.52095

Text B

"yrijedktqtio crfzqkffrznpugquimqr tfdyhvbczksflew" $\mathrm{h}=3.06246$ (Random selection: $\log 27=3.29 \ldots$..)

English or Chinese?

From: R. Takahira, K.Tanaka-Ishii, L. Debowski (2016)

Sequences produced by dynamical systems

Let $f(x)=x^{2}+c$.

Sequences produced by dynamical systems

Let $f(x)=x^{2}+c$. Let us introduce the partition $I=I_{0} \cup I_{1}$ where $I_{0}=\{x \leq 0\}, I_{1}=\{x>0\}$.

Sequences produced by dynamical systems

Let $f(x)=x^{2}+c$. Let us introduce the partition $I=I_{0} \cup I_{1}$ where $I_{0}=\{x \leq 0\}, I_{1}=\{x>0\}$. For each x, we can produce a binary sequence by looking at the orbit of x :

Sequences produced by dynamical systems

Let $f(x)=x^{2}+c$. Let us introduce the partition $I=I_{0} \cup I_{1}$ where $I_{0}=\{x \leq 0\}, I_{1}=\{x>0\}$. For each x, we can produce a binary sequence by looking at the orbit of x :

Sequences produced by dynamical systems

Let $f(x)=x^{2}+c$. Let us introduce the partition $I=I_{0} \cup I_{1}$ where $I_{0}=\{x \leq 0\}, I_{1}=\{x>0\}$. For each x, we can produce a binary sequence by looking at the orbit of x :

$\Sigma=1$

Sequences produced by dynamical systems

Let $f(x)=x^{2}+c$. Let us introduce the partition $I=I_{0} \cup I_{1}$ where $I_{0}=\{x \leq 0\}, I_{1}=\{x>0\}$. For each x, we can produce a binary sequence by looking at the orbit of x :

$$
\Sigma=10
$$

Sequences produced by dynamical systems

Let $f(x)=x^{2}+c$. Let us introduce the partition $I=I_{0} \cup I_{1}$ where $I_{0}=\{x \leq 0\}, I_{1}=\{x>0\}$. For each x, we can produce a binary sequence by looking at the orbit of x :

$\Sigma=101$

Sequences produced by dynamical systems

Let $f(x)=x^{2}+c$. Let us introduce the partition $I=I_{0} \cup I_{1}$ where $I_{0}=\{x \leq 0\}, I_{1}=\{x>0\}$. For each x, we can produce a binary sequence by looking at the orbit of x :

$\Sigma=1010$

Sequences produced by dynamical systems

Let $f(x)=x^{2}+c$. Let us introduce the partition $I=I_{0} \cup I_{1}$ where $I_{0}=\{x \leq 0\}, I_{1}=\{x>0\}$. For each x, we can produce a binary sequence by looking at the orbit of x :

$$
\Sigma=10100
$$

Sequences produced by dynamical systems

Let $f(x)=x^{2}+c$. Let us introduce the partition $I=I_{0} \cup I_{1}$ where $I_{0}=\{x \leq 0\}, I_{1}=\{x>0\}$. For each x, we can produce a binary sequence by looking at the orbit of x :

$\Sigma=101000100$

Topological entropy of real interval maps

Thus, we have a map $\Sigma: I \rightarrow\{0,1\}^{\mathbb{N}}$
starting point $x \mapsto \Sigma(x)$ infinite binary code.

Topological entropy of real interval maps

Thus, we have a map $\Sigma: I \rightarrow\{0,1\}^{\mathbb{N}}$
starting point $x \mapsto \Sigma(x)$ infinite binary code.

$$
\Sigma(x)=101000100
$$

Topological entropy of real interval maps

Thus, we have a map $\Sigma: I \rightarrow\{0,1\}^{\mathbb{N}}$
starting point $x \mapsto \Sigma(x)$ infinite binary code.
$\Sigma(x)=101000100$
How many different sequences can I obtain?

Topological entropy of real interval maps

Thus, we have a map $\Sigma: I \rightarrow\{0,1\}^{\mathbb{N}}$
starting point $x \mapsto \Sigma(x)$ infinite binary code.
$\Sigma(x)=101000100$
How many different sequences can I obtain?
The topological entropy of f is the quantity

Topological entropy of real interval maps

Thus, we have a map $\Sigma: I \rightarrow\{0,1\}^{\mathbb{N}}$
starting point $x \mapsto \Sigma(x)$ infinite binary code.
$\Sigma(x)=101000100$ How many different sequences can I obtain?
The topological entropy of f is the quantity

$$
h_{\text {top }}(f):=\lim _{n \rightarrow \infty} \frac{\log \#\{\text { admissible codes of length } n\}}{n}
$$

Topological entropy of real interval maps

Thus, we have a map $\Sigma: I \rightarrow\{0,1\}^{\mathbb{N}}$
starting point $x \mapsto \Sigma(x)$ infinite binary code.
$\Sigma(x)=101000100$
How many different sequences can I obtain?
The topological entropy of f is the quantity

$$
h_{\text {top }}(f):=\lim _{n \rightarrow \infty} \frac{\log \#\{\text { admissible codes of length } n\}}{n}
$$

Note: For quadratic maps $h_{\text {top }}(f) \leq \log 2$.

Topological entropy of real interval maps

Let $f: I \rightarrow I$, continuous, piecewise monotone.

Topological entropy of real interval maps

Let $f: I \rightarrow I$, continuous, piecewise monotone.
A lap of f is a maximal interval on which f is monotone.

Topological entropy of real interval maps

Let $f: I \rightarrow I$, continuous, piecewise monotone.
A lap of f is a maximal interval on which f is monotone. The topological entropy of f also equals

Topological entropy of real interval maps

Let $f: I \rightarrow I$, continuous, piecewise monotone.
A lap of f is a maximal interval on which f is monotone. The topological entropy of f also equals

$$
h_{\text {top }}(f, \mathbb{R})=\lim _{n \rightarrow \infty} \frac{\log \#\left\{\operatorname{laps}\left(f^{n}\right)\right\}}{n}
$$

Topological entropy of real interval maps

Let $f: I \rightarrow I$, continuous, piecewise monotone.
A lap of f is a maximal interval on which f is monotone. The topological entropy of f also equals

$$
h_{\text {top }}(f, \mathbb{R})=\lim _{n \rightarrow \infty} \frac{\log \#\left\{\operatorname{laps}\left(f^{n}\right)\right\}}{n}
$$

Topological entropy of real maps

Let $f: I \rightarrow I$, continuous, piecewise monotone.

$$
h_{\text {top }}(f, \mathbb{R})=\lim _{n \rightarrow \infty} \frac{\log \#\left\{\operatorname{laps}\left(f^{n}\right)\right\}}{n}
$$

Topological entropy of real maps

Let $f: I \rightarrow I$, continuous, piecewise monotone.

$$
h_{\text {top }}(f, \mathbb{R})=\lim _{n \rightarrow \infty} \frac{\log \#\left\{\operatorname{laps}\left(f^{n}\right)\right\}}{n}
$$

Topological entropy of real maps

Let $f: I \rightarrow I$, continuous, piecewise monotone.

$$
h_{\text {top }}(f, \mathbb{R})=\lim _{n \rightarrow \infty} \frac{\log \#\left\{\operatorname{laps}\left(f^{n}\right)\right\}}{n}
$$

Topological entropy of real maps

Let $f: I \rightarrow I$, continuous, piecewise monotone.

$$
h_{\text {top }}(f, \mathbb{R})=\lim _{n \rightarrow \infty} \frac{\log \#\left\{\operatorname{laps}\left(f^{n}\right)\right\}}{n}
$$

Topological entropy of real maps

Let $f: I \rightarrow I$, continuous, piecewise monotone.

$$
h_{\text {top }}(f, \mathbb{R})=\lim _{n \rightarrow \infty} \frac{\log \#\left\{\operatorname{laps}\left(f^{n}\right)\right\}}{n}
$$

Topological entropy of real maps

Let $f: I \rightarrow I$, continuous, piecewise monotone.

$$
h_{\text {top }}(f, \mathbb{R})=\lim _{n \rightarrow \infty} \frac{\log \#\left\{\operatorname{laps}\left(f^{n}\right)\right\}}{n}
$$

Topological entropy of real maps

Let $f: I \rightarrow I$, continuous, piecewise monotone.

$$
h_{\text {top }}(f, \mathbb{R})=\lim _{n \rightarrow \infty} \frac{\log \#\left\{\operatorname{laps}\left(f^{n}\right)\right\}}{n}
$$

Topological entropy of real maps

Let $f: I \rightarrow I$, continuous, piecewise monotone.

$$
h_{\text {top }}(f, \mathbb{R})=\lim _{n \rightarrow \infty} \frac{\log \#\left\{\operatorname{laps}\left(f^{n}\right)\right\}}{n}
$$

Topological entropy of real maps

Let $f: I \rightarrow I$, continuous, piecewise monotone.

$$
h_{\text {top }}(f, \mathbb{R})=\lim _{n \rightarrow \infty} \frac{\log \#\left\{\operatorname{laps}\left(f^{n}\right)\right\}}{n}
$$

Agrees with general definition for maps on compact spaces using open covers (Misiurewicz-Szlenk)

Example: the airplane map

$f: I \rightarrow I$ is postcritically finite if the forward orbits of the critical points of f are finite.

Example: the airplane map

$f: I \rightarrow I$ is postcritically finite if the forward orbits of the critical points of f are finite. Then the entropy is the logarithm of an algebraic number.

Example: the airplane map

$f: I \rightarrow I$ is postcritically finite if the forward orbits of the critical points of f are finite. Then the entropy is the logarithm of an algebraic number.

$\begin{array}{ccc}A & \mapsto & A \cup B \\ B & \mapsto & A\end{array}$

Example: the airplane map

$f: I \rightarrow I$ is postcritically finite if the forward orbits of the critical points of f are finite. Then the entropy is the logarithm of an algebraic number.

$$
\begin{array}{ccc}
A & \mapsto & A \cup B \\
B & \mapsto & A
\end{array} \Rightarrow\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right)
$$

Example: the airplane map

$f: I \rightarrow I$ is postcritically finite if the forward orbits of the critical points of f are finite. Then the entropy is the logarithm of an algebraic number.

$\left.\begin{array}{l}A \\ A\end{array}\right) A \cup B \Rightarrow\left(\begin{array}{ll}1 & 1 \\ B & \mapsto\end{array}\right) \Rightarrow \lambda=\frac{\sqrt{5}+1}{2}$

Example: the airplane map

$f: I \rightarrow I$ is postcritically finite if the forward orbits of the critical points of f are finite. Then the entropy is the logarithm of an algebraic number.

$\left.\begin{array}{l}A \\ \mapsto\end{array}\right) A \cup B \Rightarrow\left(\begin{array}{ll}1 & 1 \\ B & \mapsto\end{array}\right) \Rightarrow \lambda=\frac{\sqrt{5}+1}{2}=e^{h_{\text {top }}\left(f_{c}, \mathbb{R}\right)}$

Topological entropy of real maps

$$
h_{\text {top }}(f, \mathbb{R}):=\lim _{n \rightarrow \infty} \frac{\log \#\left\{\operatorname{laps}\left(f^{n}\right)\right\}}{n}
$$

Consider the real quadratic family

$$
f_{c}(z):=z^{2}+c \quad c \in[-2,1 / 4]
$$

Topological entropy of real maps

$$
h_{\text {top }}(f, \mathbb{R}):=\lim _{n \rightarrow \infty} \frac{\log \#\left\{\operatorname{laps}\left(f^{n}\right)\right\}}{n}
$$

Consider the real quadratic family

$$
f_{c}(z):=z^{2}+c \quad c \in[-2,1 / 4]
$$

How does entropy change with the parameter c ?

The function $c \rightarrow h_{\text {top }}\left(f_{c}, \mathbb{R}\right)$:

The function $c \rightarrow h_{\text {top }}\left(f_{c}, \mathbb{R}\right)$:

- is continuous

The function $c \rightarrow h_{\text {top }}\left(f_{c}, \mathbb{R}\right)$:

- is continuous and monotone (Milnor-Thurston, 1977).

The function $c \rightarrow h_{\text {top }}\left(f_{c}, \mathbb{R}\right)$:

- is continuous and monotone (Milnor-Thurston, 1977).
- $0 \leq h_{\text {top }}\left(f_{c}, \mathbb{R}\right) \leq \log 2$.

The function $c \rightarrow h_{\text {top }}\left(f_{c}, \mathbb{R}\right)$:

- is continuous and monotone (Milnor-Thurston, 1977).
- $0 \leq h_{\text {top }}\left(f_{c}, \mathbb{R}\right) \leq \log 2$.

The function $c \rightarrow h_{\text {top }}\left(f_{c}, \mathbb{R}\right)$:

- is continuous and monotone (Milnor-Thurston, 1977).
- $0 \leq h_{\text {top }}\left(f_{c}, \mathbb{R}\right) \leq \log 2$.

The function $c \rightarrow h_{\text {top }}\left(f_{c}, \mathbb{R}\right):$

- is continuous and monotone (Milnor-Thurston, 1977).
- $0 \leq h_{\text {top }}\left(f_{c}, \mathbb{R}\right) \leq \log 2$.

Question : Can we extend this theory to complex polynomials?

The function $c \rightarrow h_{\text {top }}\left(f_{c}, \mathbb{R}\right)$:

- is continuous and monotone (Milnor-Thurston, 1977).
- $0 \leq h_{\text {top }}\left(f_{c}, \mathbb{R}\right) \leq \log 2$.

Remark. If we consider $f_{c}: \widehat{\mathbb{C}} \rightarrow \hat{\mathbb{C}}$ entropy is constant $h_{\text {top }}\left(f_{c}, \widehat{\mathbb{C}}\right)=\log 2$. (Lyubich 1980)

Mandelbrot set

The Mandelbrot set \mathcal{M} is the connectedness locus of the quadratic family $f_{c}(z):=z^{2}+c$.

$$
\mathcal{M}=\left\{c \in \mathbb{C}: f_{c}^{n}(0) \nrightarrow \infty\right\}
$$

External rays

Since $\widehat{\mathbb{C}} \backslash \mathcal{M}$ is simply-connected, it can be uniformized by the exterior of the unit disk

$$
\Phi_{\mathcal{M}}: \hat{\mathbb{C}} \backslash \overline{\mathbb{D}} \rightarrow \hat{\mathbb{C}} \backslash \mathcal{M}
$$

External rays

Since $\widehat{\mathbb{C}} \backslash \mathcal{M}$ is simply-connected, it can be uniformized by the exterior of the unit disk

$$
\Phi_{\mathcal{M}}: \hat{\mathbb{C}} \backslash \overline{\mathbb{D}} \rightarrow \hat{\mathbb{C}} \backslash \mathcal{M}
$$

External rays

Since $\hat{\mathbb{C}} \backslash \mathcal{M}$ is simply-connected, it can be uniformized by the exterior of the unit disk

$$
\Phi_{\mathcal{M}}: \hat{\mathbb{C}} \backslash \overline{\mathbb{D}} \rightarrow \hat{\mathbb{C}} \backslash \mathcal{M}
$$

External rays

Since $\hat{\mathbb{C}} \backslash \mathcal{M}$ is simply-connected, it can be uniformized by the exterior of the unit disk

$$
\Phi_{\mathcal{M}}: \hat{\mathbb{C}} \backslash \overline{\mathbb{D}} \rightarrow \hat{\mathbb{C}} \backslash \mathcal{M}
$$

The images of radial arcs in the disk are called external rays. Every angle $\theta \in \mathbb{R} / \mathbb{Z}$ determines an external ray

$$
R(\theta):=\Phi_{\mathcal{M}}\left(\left\{\rho e^{2 \pi i \theta}: \rho>1\right\}\right)
$$

External rays

Since $\hat{\mathbb{C}} \backslash \mathcal{M}$ is simply-connected, it can be uniformized by the exterior of the unit disk

$$
\Phi_{\mathcal{M}}: \hat{\mathbb{C}} \backslash \overline{\mathbb{D}} \rightarrow \hat{\mathbb{C}} \backslash \mathcal{M}
$$

The images of radial arcs in the disk are called external rays. Every angle $\theta \in \mathbb{R} / \mathbb{Z}$ determines an external ray

$$
R(\theta):=\Phi_{\mathcal{M}}\left(\left\{\rho e^{2 \pi i \theta}: \rho>1\right\}\right)
$$

An external ray $R(\theta)$ is said to land at x if

$$
\lim _{\rho \rightarrow 1} \Phi_{\mathcal{M}}\left(\rho e^{2 \pi i \theta}\right)=x
$$

External rays

Since $\widehat{\mathbb{C}} \backslash \mathcal{M}$ is simply-connected, it can be uniformized by the exterior of the unit disk

$$
\Phi_{\mathcal{M}}: \hat{\mathbb{C}} \backslash \overline{\mathbb{D}} \rightarrow \hat{\mathbb{C}} \backslash \mathcal{M}
$$

The images of radial arcs in the disk are called external rays. Every angle $\theta \in \mathbb{R} / \mathbb{Z}$ determines an external ray

$$
R(\theta):=\Phi_{\mathcal{M}}\left(\left\{\rho e^{2 \pi i \theta}: \rho>1\right\}\right)
$$

An external ray $R(\theta)$ is said to land at x if

$$
\lim _{\rho \rightarrow 1} \Phi_{\mathcal{M}}\left(\rho e^{2 \pi i \theta}\right)=x
$$

Rational rays land

Theorem (Douady-Hubbard, '84)

If $\theta \in \mathbb{Q} / \mathbb{Z}$, then the external ray $R(\theta)$ lands and determines a postcritically finite quadratic polynomial f_{θ}.

Rational rays land

Theorem (Douady-Hubbard, '84)
If $\theta \in \mathbb{Q} / \mathbb{Z}$, then the external ray $R(\theta)$ lands and determines a postcritically finite quadratic polynomial f_{θ}.

Conjecture (Douady-Hubbard, MLC)
All rays land, and the boundary map $\mathbb{R} / \mathbb{Z} \rightarrow \partial \mathcal{M}$ is continuous.

Rational rays land

Theorem (Douady-Hubbard, '84)
If $\theta \in \mathbb{Q} / \mathbb{Z}$, then the external ray $R(\theta)$ lands and determines a postcritically finite quadratic polynomial f_{θ}.

Conjecture (Douady-Hubbard, MLC)
All rays land, and the boundary map $\mathbb{R} / \mathbb{Z} \rightarrow \partial \mathcal{M}$ is continuous.
As a consequence, the Mandelbrot set is homeomorphic to a quotient of the closed disk

Rational rays land

Theorem (Douady-Hubbard, '84)
If $\theta \in \mathbb{Q} / \mathbb{Z}$, then the external ray $R(\theta)$ lands and determines a postcritically finite quadratic polynomial f_{θ}.

Conjecture (Douady-Hubbard, MLC)
All rays land, and the boundary map $\mathbb{R} / \mathbb{Z} \rightarrow \partial \mathcal{M}$ is continuous.
As a consequence, the Mandelbrot set is homeomorphic to a quotient of the closed disk (hence locally connected).

Thurston's quadratic minor lamination (QML)

Define $\theta_{1} \sim_{M} \theta_{2}$ on \mathbb{Q} / \mathbb{Z} if $R_{M}\left(\theta_{1}\right)$ and $R_{M}\left(\theta_{2}\right)$ land together.

Thurston's quadratic minor lamination (QML)

Define $\theta_{1} \sim_{M} \theta_{2}$ on \mathbb{Q} / \mathbb{Z} if $R_{M}\left(\theta_{1}\right)$ and $R_{M}\left(\theta_{2}\right)$ land together. The closure of this equivalence relation defines a lamination on the disk

Thurston's quadratic minor lamination (QML)

Define $\theta_{1} \sim{ }_{M} \theta_{2}$ on \mathbb{Q} / \mathbb{Z} if $R_{M}\left(\theta_{1}\right)$ and $R_{M}\left(\theta_{2}\right)$ land together. The closure of this equivalence relation defines a lamination on the disk

Thurston's quadratic minor lamination (QML)

Define $\theta_{1} \sim M \theta_{2}$ on \mathbb{Q} / \mathbb{Z} if $R_{M}\left(\theta_{1}\right)$ and $R_{M}\left(\theta_{2}\right)$ land together. The closure of this equivalence relation defines a lamination on the disk

The quotient $\mathcal{M}_{\text {abs }}$ of the disk by the lamination is a (locally connected) model for the Mandelbrot set, and homeomorphic to it if MLC holds.

Julia sets

Let $f_{c}(z)=z^{2}+c$. Then the filled Julia set of f_{c} is the set of points which do not escape to infinity under forward iteration:

$$
K\left(f_{c}\right):=\left\{z \in \mathbb{C}: f_{c}^{n}(z) \text { is bounded }\right\}
$$

Julia sets

Let $f_{c}(z)=z^{2}+c$. Then the filled Julia set of f_{c} is the set of points which do not escape to infinity under forward iteration:

$$
K\left(f_{c}\right):=\left\{z \in \mathbb{C}: f_{c}^{n}(z) \text { is bounded }\right\}
$$

and the Julia set is its boundary:

$$
J\left(f_{c}\right):=\partial K\left(f_{c}\right)
$$

Julia sets

Let $f_{c}(z)=z^{2}+c$. Then the filled Julia set of f_{c} is the set of points which do not escape to infinity under forward iteration:

$$
K\left(f_{c}\right):=\left\{z \in \mathbb{C}: f_{c}^{n}(z) \text { is bounded }\right\}
$$

and the Julia set is its boundary:

$$
J\left(f_{c}\right):=\partial K\left(f_{c}\right)
$$

The complex case: Hubbard trees

The Hubbard tree T_{c} of a quadratic polynomial is a forward invariant, connected subset of the filled Julia set which contains the critical orbit.

The complex case: Hubbard trees

The Hubbard tree T_{c} of a quadratic polynomial is a forward invariant, connected subset of the filled Julia set which contains the critical orbit.

Complex Hubbard trees

The Hubbard tree T_{c} of a quadratic polynomial is a forward invariant, connected subset of the filled Julia set which contains the critical orbit.

Complex Hubbard trees

The Hubbard tree T_{c} of a quadratic polynomial is a forward invariant, connected subset of the filled Julia set which contains the critical orbit. The map f_{c} acts on it.

The core entropy

Definition (W. Thurston)
Let f be a polynomial whose Julia set is connected and locally connected

The core entropy

Definition (W. Thurston)
Let f be a polynomial whose Julia set is connected and locally connected (e.g. a postcritically finite f).

The core entropy

Definition (W. Thurston)
Let f be a polynomial whose Julia set is connected and locally connected (e.g. a postcritically finite f). Then the core entropy of f

The core entropy

Definition (W. Thurston)
Let f be a polynomial whose Julia set is connected and locally connected (e.g. a postcritically finite f). Then the core entropy of f is the entropy of the restriction

The core entropy

Definition (W. Thurston)

Let f be a polynomial whose Julia set is connected and locally connected (e.g. a postcritically finite f). Then the core entropy of f is the entropy of the restriction

$$
h(f):=h\left(\left.f\right|_{T_{f}}\right)
$$

The core entropy

Definition (W. Thurston)

Let f be a polynomial whose Julia set is connected and locally connected (e.g. a postcritically finite f). Then the core entropy of f is the entropy of the restriction

$$
h(f):=h\left(\left.f\right|_{T_{f}}\right)
$$

where T_{f} is the Hubbard tree of f.

The core entropy - example

$$
h(f):=h\left(\left.f\right|_{T_{f}}\right)
$$

The core entropy - example

$$
h(f):=h\left(\left.f\right|_{T_{t}}\right)
$$

The core entropy - example

$$
h(f):=h\left(\left.f\right|_{T_{t}}\right)
$$

$A \rightarrow B$

The core entropy - example

$$
h(f):=h\left(\left.f\right|_{T_{f}}\right)
$$

The core entropy - example

$$
h(f):=h\left(\left.f\right|_{T_{f}}\right)
$$

$$
\begin{aligned}
& A \rightarrow B \\
& B \rightarrow C \\
& C \rightarrow A \cup D
\end{aligned}
$$

The core entropy - example

$$
h(f):=h\left(\left.f\right|_{T_{f}}\right)
$$

$$
\begin{aligned}
& A \rightarrow B \\
& B \rightarrow C \\
& C \rightarrow A \cup D \\
& D \rightarrow A \cup B
\end{aligned}
$$

The core entropy - example

$$
h(f):=h\left(\left.f\right|_{T_{f}}\right)
$$

$$
M=\left(\begin{array}{llll}
0 & 0 & 1 & 1 \\
1 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right)
$$

The core entropy - example

$$
h(f):=h\left(\left.f\right|_{T_{t}}\right)
$$

$A \rightarrow B$
$B \rightarrow C$
$C \rightarrow A \cup D$
$D \rightarrow A \cup B$

1 \& 0 \& 0 \& 1

0 \& 1 \& 0 \& 0

0 \& 0 \& 1 \& 0\end{array}\right) \quad\)| $\operatorname{det}(M-x I)=$ |
| :--- |
| $=-1-2 x+x^{4}$ |

The core entropy - example

$$
h(f):=h\left(\left.f\right|_{T_{f}}\right)
$$

$A \rightarrow B$
$B \rightarrow C$
$C \rightarrow A \cup D$
$D \rightarrow A \cup B$

1 \& 0 \& 0 \& 1

0 \& 1 \& 0 \& 0

0 \& 0 \& 1 \& 0\end{array}\right) \quad\)| $\operatorname{det}(M-x I)=$ |
| :--- |
| $=-1-2 x+x^{4}$ |
| $\lambda \approx 1.39534$ |

The core entropy - example

$$
h(f):=h\left(\left.f\right|_{T_{t}}\right)
$$

$A \rightarrow B$
$B \rightarrow C$
$C \rightarrow A \cup D$
$D \rightarrow A \cup B$

$$
M=\left(\begin{array}{llll}
0 & 0 & 1 & 1 \\
1 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right)
$$

$$
\begin{aligned}
& \operatorname{det}(M-x I)= \\
& =-1-2 x+x^{4} \\
& \lambda \approx 1.39534 \\
& h \approx \log 1.39534
\end{aligned}
$$

The core entropy

Let $\theta \in \mathbb{Q} / \mathbb{Z}$. Then the external ray at angle θ lands, and determines a postcritically finite quadratic polynomial f_{θ}, with Hubbard tree T_{θ}.

The core entropy

Let $\theta \in \mathbb{Q} / \mathbb{Z}$. Then the external ray at angle θ lands, and determines a postcritically finite quadratic polynomial f_{θ}, with Hubbard tree T_{θ}.
Definition (W. Thurston)
The core entropy of f_{θ} is

$$
h(\theta):=h\left(\left.f_{\theta}\right|_{T_{\theta}}\right)
$$

The core entropy

Let $\theta \in \mathbb{Q} / \mathbb{Z}$. Then the external ray at angle θ lands, and determines a postcritically finite quadratic polynomial f_{θ}, with Hubbard tree T_{θ}.

Definition (W. Thurston)
The core entropy of f_{θ} is

$$
h(\theta):=h\left(\left.f_{\theta}\right|_{T_{\theta}}\right)
$$

Question: How does $h(\theta)$ vary with the parameter θ ?

Core entropy as a function of external angle (W. Thurston)

Core entropy as a function of external angle (W. Thurston)

Core entropy as a function of external angle (W. Thurston)

Question Can you see the Mandelbrot set in this picture?

Monotonicity of entropy

Observation.

Monotonicity of entropy

Observation.
If $R_{M}\left(\theta_{1}\right)$ and $R_{M}\left(\theta_{2}\right)$ land together, then $h\left(\theta_{1}\right)=h\left(\theta_{2}\right)$.

Monotonicity of entropy

Observation.
If $R_{M}\left(\theta_{1}\right)$ and $R_{M}\left(\theta_{2}\right)$ land together, then $h\left(\theta_{1}\right)=h\left(\theta_{2}\right)$.
Monotonicity still holds along veins.

Monotonicity of entropy

Observation.
If $R_{M}\left(\theta_{1}\right)$ and $R_{M}\left(\theta_{2}\right)$ land together, then $h\left(\theta_{1}\right)=h\left(\theta_{2}\right)$.
Monotonicity still holds along veins.
Let us take two rays θ_{1} landing at c_{1} and θ_{2} landing at c_{2}.

Monotonicity of entropy

Observation.
If $R_{M}\left(\theta_{1}\right)$ and $R_{M}\left(\theta_{2}\right)$ land together, then $h\left(\theta_{1}\right)=h\left(\theta_{2}\right)$.
Monotonicity still holds along veins.
Let us take two rays θ_{1} landing at c_{1} and θ_{2} landing at c_{2}. Then we define $\theta_{1}<_{M} \theta_{2}$ if c_{1} lies on the $\operatorname{arc}\left[0, c_{2}\right]$.

Monotonicity of entropy

Observation.
If $R_{M}\left(\theta_{1}\right)$ and $R_{M}\left(\theta_{2}\right)$ land together, then $h\left(\theta_{1}\right)=h\left(\theta_{2}\right)$.
Monotonicity still holds along veins.
Let us take two rays θ_{1} landing at c_{1} and θ_{2} landing at c_{2}. Then we define $\theta_{1}<_{M} \theta_{2}$ if c_{1} lies on the arc [$0, c_{2}$].
Theorem (Li Tao; Penrose; Tan Lei; Zeng Jinsong) If $\theta_{1}<M \theta_{2}$, then

$$
h\left(\theta_{1}\right) \leq h\left(\theta_{2}\right)
$$

Monotonicity of entropy

Observation.
If $R_{M}\left(\theta_{1}\right)$ and $R_{M}\left(\theta_{2}\right)$ land together, then $h\left(\theta_{1}\right)=h\left(\theta_{2}\right)$.
Monotonicity still holds along veins.
Let us take two rays θ_{1} landing at c_{1} and θ_{2} landing at c_{2}. Then we define $\theta_{1}<_{M} \theta_{2}$ if c_{1} lies on the arc [$0, c_{2}$].
Theorem (Li Tao; Penrose; Tan Lei; Zeng Jinsong) If $\theta_{1}<{ }_{M} \theta_{2}$, then

$$
h\left(\theta_{1}\right) \leq h\left(\theta_{2}\right)
$$

In fact, entropy determines the lamination.

Monotonicity of entropy

Observation.
If $R_{M}\left(\theta_{1}\right)$ and $R_{M}\left(\theta_{2}\right)$ land together, then $h\left(\theta_{1}\right)=h\left(\theta_{2}\right)$.
Monotonicity still holds along veins.
Let us take two rays θ_{1} landing at c_{1} and θ_{2} landing at c_{2}. Then we define $\theta_{1}<_{M} \theta_{2}$ if c_{1} lies on the arc [$0, c_{2}$].
Theorem (Li Tao; Penrose; Tan Lei; Zeng Jinsong) If $\theta_{1}<{ }_{M} \theta_{2}$, then

$$
h\left(\theta_{1}\right) \leq h\left(\theta_{2}\right)
$$

In fact, entropy determines the lamination.
Proposition
If $h\left(\theta_{1}\right)=h\left(\theta_{2}\right)$

Monotonicity of entropy

Observation.
If $R_{M}\left(\theta_{1}\right)$ and $R_{M}\left(\theta_{2}\right)$ land together, then $h\left(\theta_{1}\right)=h\left(\theta_{2}\right)$.
Monotonicity still holds along veins.
Let us take two rays θ_{1} landing at c_{1} and θ_{2} landing at c_{2}. Then we define $\theta_{1}<_{M} \theta_{2}$ if c_{1} lies on the arc [$0, c_{2}$].
Theorem (Li Tao; Penrose; Tan Lei; Zeng Jinsong)
If $\theta_{1}<M \theta_{2}$, then

$$
h\left(\theta_{1}\right) \leq h\left(\theta_{2}\right)
$$

In fact, entropy determines the lamination.
Proposition
If $h\left(\theta_{1}\right)=h\left(\theta_{2}\right)$ and $h(\theta)>h\left(\theta_{1}\right)$ for all $\theta \in\left(\theta_{1}, \theta_{2}\right)$,

Monotonicity of entropy

Observation.
If $R_{M}\left(\theta_{1}\right)$ and $R_{M}\left(\theta_{2}\right)$ land together, then $h\left(\theta_{1}\right)=h\left(\theta_{2}\right)$.
Monotonicity still holds along veins.
Let us take two rays θ_{1} landing at c_{1} and θ_{2} landing at c_{2}. Then we define $\theta_{1}<{ }_{M} \theta_{2}$ if c_{1} lies on the arc [$0, c_{2}$].
Theorem (Li Tao; Penrose; Tan Lei; Zeng Jinsong)
If $\theta_{1}<{ }_{M} \theta_{2}$, then

$$
h\left(\theta_{1}\right) \leq h\left(\theta_{2}\right)
$$

In fact, entropy determines the lamination.
Proposition
If $h\left(\theta_{1}\right)=h\left(\theta_{2}\right)$ and $h(\theta)>h\left(\theta_{1}\right)$ for all $\theta \in\left(\theta_{1}, \theta_{2}\right)$, then $\theta_{1} \sim M$ θ_{2}.

Rays landing on the real slice of the Mandelbrot set

Harmonic measure

Given a subset A of $\partial \mathcal{M}$, the harmonic measure $\nu_{\mathcal{M}}$ is the probability that a random ray lands on A :

$$
\nu_{\mathcal{M}}(A):=\operatorname{Leb}\left(\left\{\theta \in S^{1}: R(\theta) \text { lands on } A\right\}\right)
$$

Harmonic measure

Given a subset A of $\partial \mathcal{M}$, the harmonic measure $\nu_{\mathcal{M}}$ is the probability that a random ray lands on A :

$$
\nu_{\mathcal{M}}(A):=\operatorname{Leb}\left(\left\{\theta \in S^{1}: R(\theta) \text { lands on } A\right\}\right)
$$

For instance, take $A=\mathcal{M} \cap \mathbb{R}$ the real section of the Mandelbrot set.

Harmonic measure

Given a subset A of $\partial \mathcal{M}$, the harmonic measure $\nu_{\mathcal{M}}$ is the probability that a random ray lands on A :

$$
\nu_{\mathcal{M}}(A):=\operatorname{Leb}\left(\left\{\theta \in S^{1}: R(\theta) \text { lands on } A\right\}\right)
$$

For instance, take $A=\mathcal{M} \cap \mathbb{R}$ the real section of the Mandelbrot set. How common is it for a ray to land on the real axis?

Real section of the Mandelbrot set

Theorem (Zakeri, '00)
The harmonic measure of the real axis is 0 .

Real section of the Mandelbrot set

Theorem (Zakeri, '00)
The harmonic measure of the real axis is 0 . However,

Real section of the Mandelbrot set

Theorem (Zakeri, '00)
The harmonic measure of the real axis is 0 . However, the Hausdorff dimension of the set of rays landing on the real axis is 1 .

Real section of the Mandelbrot set

Theorem (Zakeri, '00)
The harmonic measure of the real axis is 0 . However, the Hausdorff dimension of the set of rays landing on the real axis is 1 .

Sectioning \mathcal{M}

Given $c \in[-2,1 / 4]$, we can consider the set of external rays which land on the real axis to the right of c :

$$
P_{c}:=\left\{\theta \in S^{1}: R(\theta) \text { lands on } \partial \mathcal{M} \cap[c, 1 / 4]\right\}
$$

Sectioning \mathcal{M}

Given $c \in[-2,1 / 4]$, we can consider the set of external rays which land on the real axis to the right of c :

$$
P_{c}:=\left\{\theta \in S^{1}: R(\theta) \text { lands on } \partial \mathcal{M} \cap[c, 1 / 4]\right\}
$$

Sectioning \mathcal{M}

Given $c \in[-2,1 / 4]$, we can consider the set of external rays which land on the real axis to the right of c :

$$
P_{c}:=\left\{\theta \in S^{1}: R(\theta) \text { lands on } \partial \mathcal{M} \cap[c, 1 / 4]\right\}
$$

Sectioning \mathcal{M}

Given $c \in[-2,1 / 4]$, we can consider the set of external rays which land on the real axis to the right of c :

$$
P_{c}:=\left\{\theta \in S^{1}: R(\theta) \text { lands on } \partial \mathcal{M} \cap[c, 1 / 4]\right\}
$$

Sectioning \mathcal{M}

Given $c \in[-2,1 / 4]$, we can consider the set of external rays which land on the real axis to the right of c :

$$
P_{c}:=\left\{\theta \in S^{1}: R(\theta) \text { lands on } \partial \mathcal{M} \cap[c, 1 / 4]\right\}
$$

$$
P_{c}:=\left\{\theta \in S^{1}: R(\theta) \text { lands on } \partial \mathcal{M} \cap[c, 1 / 4]\right\}
$$

The function

$$
c \mapsto \mathrm{H} \cdot \operatorname{dim} P_{c}
$$

decreases with c, taking values between 0 and 1 .

$$
P_{c}:=\left\{\theta \in S^{1}: R(\theta) \text { lands on } \partial \mathcal{M} \cap[c, 1 / 4]\right\}
$$

The function

$$
c \mapsto \mathrm{H} \cdot \operatorname{dim} P_{c}
$$

decreases with c, taking values between 0 and 1 .

$$
P_{c}:=\left\{\theta \in S^{1}: R(\theta) \text { lands on } \partial \mathcal{M} \cap[c, 1 / 4]\right\}
$$

The function

$$
c \mapsto \mathrm{H} \cdot \operatorname{dim} P_{c}
$$

decreases with c, taking values between 0 and 1 .

$$
P_{c}:=\left\{\theta \in S^{1}: R(\theta) \text { lands on } \partial \mathcal{M} \cap[c, 1 / 4]\right\}
$$

The function

$$
c \mapsto \mathrm{H} \cdot \operatorname{dim} P_{c}
$$

decreases with c, taking values between 0 and 1 .

Entropy formula, real case

Theorem (T.)
Let $c \in[-2,1 / 4]$. Then

$$
\frac{h_{\text {top }}\left(f_{c}, \mathbb{R}\right)}{\log 2}=\mathrm{H} \cdot \operatorname{dim} P_{c}
$$

Entropy formula, real case

Theorem (T.)
Let $c \in[-2,1 / 4]$. Then

$$
\frac{h_{t o p}\left(f_{c}, \mathbb{R}\right)}{\log 2}=\mathrm{H} \cdot \operatorname{dim} P_{c}
$$

Entropy formula, real case

Theorem (T.)
Let $c \in[-2,1 / 4]$. Then

$$
\frac{h_{\text {top }}\left(f_{c}, \mathbb{R}\right)}{\log 2}=\mathrm{H} \cdot \operatorname{dim} P_{c}
$$

Entropy formula, real case

Theorem (T.)
Let $c \in[-2,1 / 4]$. Then

$$
\frac{h_{\text {top }}\left(f_{c}, \mathbb{R}\right)}{\log 2}=\mathrm{H} \cdot \operatorname{dim} P_{c}
$$

- It relates dynamical properties of a particular map to the geometry of parameter space near the chosen parameter.

Entropy formula, real case

Theorem (T.)
Let $c \in[-2,1 / 4]$. Then

$$
\frac{h_{\text {top }}\left(f_{c}, \mathbb{R}\right)}{\log 2}=H \cdot \operatorname{dim} P_{c}
$$

- It relates dynamical properties of a particular map to the geometry of parameter space near the chosen parameter.
- Entropy formula: relates dimension, entropy and Lyapunov exponent (Manning, Bowen, Ledrappier, Young, ...).

Entropy formula, real case

Theorem (T.)
Let $c \in[-2,1 / 4]$. Then

$$
\frac{h_{\text {top }}\left(f_{c}, \mathbb{R}\right)}{\log 2}=H \cdot \operatorname{dim} P_{c}
$$

- It relates dynamical properties of a particular map to the geometry of parameter space near the chosen parameter.
- Entropy formula: relates dimension, entropy and Lyapunov exponent (Manning, Bowen, Ledrappier, Young, ...).
- It does not depend on MLC.

Entropy formula, real case

Theorem (T.)
Let $c \in[-2,1 / 4]$. Then

$$
\frac{h_{\text {top }}\left(f_{c}, \mathbb{R}\right)}{\log 2}=\mathrm{H} \cdot \operatorname{dim} P_{c}
$$

- It relates dynamical properties of a particular map to the geometry of parameter space near the chosen parameter.
- Entropy formula: relates dimension, entropy and Lyapunov exponent (Manning, Bowen, Ledrappier, Young, ...).
- It does not depend on MLC.
- If $B_{c}:=\left\{\theta \in \mathbb{R} / \mathbb{Z}: \theta\right.$ biaccessible for $\left.f_{c}\right\}$

Entropy formula, real case

Theorem (T.)
Let $c \in[-2,1 / 4]$. Then

$$
\frac{h_{\text {top }}\left(f_{c}, \mathbb{R}\right)}{\log 2}=\mathrm{H} \cdot \operatorname{dim} P_{c}
$$

- It relates dynamical properties of a particular map to the geometry of parameter space near the chosen parameter.
- Entropy formula: relates dimension, entropy and Lyapunov exponent (Manning, Bowen, Ledrappier, Young, ...).
- It does not depend on MLC.
- If $B_{c}:=\left\{\theta \in \mathbb{R} / \mathbb{Z}: \theta\right.$ biaccessible for $\left.f_{c}\right\}=\mathcal{L}_{c} \cap \partial \mathbb{D}$ (see e.g. Zakeri, Smirnov, Zdunik, Bruin-Schleicher ...) then also

Entropy formula, real case

Theorem (T.)
Let $c \in[-2,1 / 4]$. Then

$$
\frac{h_{\text {top }}\left(f_{c}, \mathbb{R}\right)}{\log 2}=\text { H.dim } P_{c}
$$

- It relates dynamical properties of a particular map to the geometry of parameter space near the chosen parameter.
- Entropy formula: relates dimension, entropy and Lyapunov exponent (Manning, Bowen, Ledrappier, Young, ...).
- It does not depend on MLC.
- If $B_{c}:=\left\{\theta \in \mathbb{R} / \mathbb{Z}: \theta\right.$ biaccessible for $\left.f_{c}\right\}=\mathcal{L}_{c} \cap \partial \mathbb{D}$ (see e.g. Zakeri, Smirnov, Zdunik, Bruin-Schleicher ...) then also

$$
\frac{h_{\text {top }}\left(f_{c}, \mathbb{R}\right)}{\log 2}=\mathrm{H} \cdot \operatorname{dim} B_{c}
$$

Entropy formula, real case

Theorem (T.)
Let $c \in[-2,1 / 4]$. Then

$$
\frac{h_{\text {top }}\left(f_{c}, \mathbb{R}\right)}{\log 2}=H \cdot \operatorname{dim} P_{c}
$$

- It relates dynamical properties of a particular map to the geometry of parameter space near the chosen parameter.
- Entropy formula: relates dimension, entropy and Lyapunov exponent (Manning, Bowen, Ledrappier, Young, ...).
- It does not depend on MLC.
- If $B_{c}:=\left\{\theta \in \mathbb{R} / \mathbb{Z}: \theta\right.$ biaccessible for $\left.f_{c}\right\}=\mathcal{L}_{c} \cap \partial \mathbb{D}$ (see e.g. Zakeri, Smirnov, Zdunik, Bruin-Schleicher ...) then also

$$
\frac{h_{\text {top }}\left(f_{c}, \mathbb{R}\right)}{\log 2}=\mathrm{H} \cdot \operatorname{dim} B_{c}
$$

- It can be generalized to non-real veins.

Entropy formula along complex veins

A vein is an embedded arc in the Mandelbrot set.

Entropy formula, complex case

A vein is an embedded arc in the Mandelbrot set.

Given a parameter c along a vein, we can look at the set P_{c} of parameter rays which land on the vein between 0 and c.

Entropy formula along complex veins

Theorem (T.; Jung)
Let v be a vein in the Mandelbrot set, and let $c \in v$.

Entropy formula along complex veins

Theorem (T.; Jung)
Let v be a vein in the Mandelbrot set, and let $c \in v$. Then

$$
\frac{h\left(f_{c}\right)}{\log 2}=
$$

Entropy formula along complex veins

Theorem (T.; Jung)
Let v be a vein in the Mandelbrot set, and let $c \in v$. Then

$$
\frac{h\left(f_{c}\right)}{\log 2}=\mathrm{H} \cdot \operatorname{dim} B_{c}
$$

Entropy formula along complex veins

Theorem (T.; Jung)
Let v be a vein in the Mandelbrot set, and let $c \in v$. Then

$$
\frac{h\left(f_{c}\right)}{\log 2}=\mathrm{H} \cdot \operatorname{dim} B_{c}=\mathrm{H} \cdot \operatorname{dim} P_{c}
$$

Entropy formula along complex veins

Theorem (T.; Jung)
Let v be a vein in the Mandelbrot set, and let $c \in v$. Then

$$
\frac{h\left(f_{c}\right)}{\log 2}=\text { H.dim } B_{c}=\text { H.dim } P_{c}
$$

The core entropy as a function of external angle
Question (Thurston, Hubbard):
Is $h(\theta)$ a continuous function of θ ?

The Main Theorem: Continuity

Theorem (T.)
The core entropy function $h(\theta)$ extends to a continuous function from \mathbb{R} / \mathbb{Z} to \mathbb{R}.

Regularity properties of the core entropy

In fact:
Theorem (T.)
The core entropy is locally Hölder continuous at θ if $h(\theta)>0$, and not locally Hölder at θ where $h(\theta)=0$.

Regularity properties of the core entropy

In fact:
Theorem (T.)
The core entropy is locally Hölder continuous at θ if $h(\theta)>0$, and not locally Hölder at θ where $h(\theta)=0$.

Regularity properties of the core entropy

In fact:
Theorem (T.)
The core entropy is locally Hölder continuous at θ if $h(\theta)>0$, and not locally Hölder at θ where $h(\theta)=0$.

Regularity properties of the core entropy

In fact:
Theorem (T.)
The core entropy is locally Hölder continuous at θ if $h(\theta)>0$, and not locally Hölder at θ where $h(\theta)=0$.

Theorem (T.)
Let $h(\theta)$ be the entropy of the real quadratic polynomial with external ray θ.

Regularity properties of the core entropy

In fact:
Theorem (T.)
The core entropy is locally Hölder continuous at θ if $h(\theta)>0$, and not locally Hölder at θ where $h(\theta)=0$.

Theorem (T.)
Let $h(\theta)$ be the entropy of the real quadratic polynomial with external ray θ. Then the local Hölder exponent $\alpha(h, \theta)$ of h at θ satisfies

Regularity properties of the core entropy

In fact:

Theorem (T.)

The core entropy is locally Hölder continuous at θ if $h(\theta)>0$, and not locally Hölder at θ where $h(\theta)=0$.

Theorem (T.)
Let $h(\theta)$ be the entropy of the real quadratic polynomial with external ray θ. Then the local Hölder exponent $\alpha(h, \theta)$ of h at θ satisfies

$$
\alpha(h, \theta):=\frac{h(\theta)}{\log 2}
$$

Regularity properties of the core entropy

In fact:

Theorem (T.)

The core entropy is locally Hölder continuous at θ if $h(\theta)>0$, and not locally Hölder at θ where $h(\theta)=0$.

Theorem (T.)
Let $h(\theta)$ be the entropy of the real quadratic polynomial with external ray θ. Then the local Hölder exponent $\alpha(h, \theta)$ of h at θ satisfies

$$
\alpha(h, \theta):=\frac{h(\theta)}{\log 2}
$$

(Conjectured by Isola-Politi, 1990)

Maxima of core entropy

Given $\theta_{1}<\theta_{2}$ with $\theta_{1} \sim_{M} \theta_{2}$ (= landing together),

Maxima of core entropy

Given $\theta_{1}<\theta_{2}$ with $\theta_{1} \sim_{m} \theta_{2}$ (= landing together), define their pseudocenter θ_{\star} as the dyadic rational in $\left[\theta_{1}, \theta_{2}\right]$ of lowest complexity

Maxima of core entropy

Given $\theta_{1}<\theta_{2}$ with $\theta_{1} \sim_{M} \theta_{2}$ (= landing together), define their pseudocenter θ_{\star} as the dyadic rational in $\left[\theta_{1}, \theta_{2}\right]$ of lowest complexity

$$
\theta_{\star}:=\left\{x=p / 2^{q}: x \in\left[\theta_{1}, \theta_{2}\right], q \text { minimal }\right\}
$$

Maxima of core entropy

Given $\theta_{1}<\theta_{2}$ with $\theta_{1} \sim_{M} \theta_{2}$ (= landing together), define their pseudocenter θ_{\star} as the dyadic rational in $\left[\theta_{1}, \theta_{2}\right]$ of lowest complexity

$$
\theta_{\star}:=\left\{x=p / 2^{q}: x \in\left[\theta_{1}, \theta_{2}\right], q \text { minimal }\right\}
$$

E.g.: $\theta_{1}=1 / 7, \theta_{2}=2 / 7$,

Maxima of core entropy

Given $\theta_{1}<\theta_{2}$ with $\theta_{1} \sim_{M} \theta_{2}$ (= landing together), define their pseudocenter θ_{\star} as the dyadic rational in $\left[\theta_{1}, \theta_{2}\right]$ of lowest complexity

$$
\theta_{\star}:=\left\{x=p / 2^{q}: x \in\left[\theta_{1}, \theta_{2}\right], q \text { minimal }\right\}
$$

E.g.: $\theta_{1}=1 / 7, \theta_{2}=2 / 7, \theta_{\star}=1 / 4$

Maxima of core entropy

Given $\theta_{1}<\theta_{2}$ with $\theta_{1} \sim_{M} \theta_{2}$ (= landing together), define their pseudocenter θ_{\star} as the dyadic rational in $\left[\theta_{1}, \theta_{2}\right]$ of lowest complexity

$$
\theta_{\star}:=\left\{x=p / 2^{q}: x \in\left[\theta_{1}, \theta_{2}\right], q \text { minimal }\right\}
$$

E.g.: $\theta_{1}=1 / 7, \theta_{2}=2 / 7, \theta_{\star}=1 / 4$ (Carminati-T. for continued fractions)

Maxima of core entropy

Given $\theta_{1}<\theta_{2}$ with $\theta_{1} \sim_{M} \theta_{2}$ (= landing together), define their pseudocenter θ_{\star} as the dyadic rational in $\left[\theta_{1}, \theta_{2}\right]$ of lowest complexity

$$
\theta_{\star}:=\left\{x=p / 2^{q}: x \in\left[\theta_{1}, \theta_{2}\right], q \text { minimal }\right\}
$$

E.g.: $\theta_{1}=1 / 7, \theta_{2}=2 / 7, \theta_{\star}=1 / 4$
(Carminati-T. for continued fractions)
Conjecture (T.)
The maximum of the entropy on $\left[\theta_{1}, \theta_{2}\right]$ is achieved at $\theta=\theta_{\star}$.

Maxima of core entropy

Given $\theta_{1}<\theta_{2}$ with $\theta_{1} \sim_{M} \theta_{2}$ (= landing together), define their pseudocenter θ_{\star} as the dyadic rational in $\left[\theta_{1}, \theta_{2}\right.$] of lowest complexity

$$
\theta_{\star}:=\left\{x=p / 2^{q}: x \in\left[\theta_{1}, \theta_{2}\right], q \text { minimal }\right\}
$$

E.g.: $\theta_{1}=1 / 7, \theta_{2}=2 / 7, \theta_{\star}=1 / 4$
(Carminati-T. for continued fractions)
Conjecture (T.)
The maximum of the entropy on $\left[\theta_{1}, \theta_{2}\right]$ is achieved at $\theta=\theta_{\star}$.

Maxima of core entropy

Given $\theta_{1}<\theta_{2}$ with $\theta_{1} \sim_{M} \theta_{2}$ (= landing together), define their pseudocenter θ_{\star} as the dyadic rational in $\left[\theta_{1}, \theta_{2}\right]$ of lowest complexity

$$
\theta_{\star}:=\left\{x=p / 2^{q}: x \in\left[\theta_{1}, \theta_{2}\right], q \text { minimal }\right\}
$$

E.g.: $\theta_{1}=1 / 7, \theta_{2}=2 / 7, \theta_{\star}=1 / 4$

Conjecture (T.)
The maximum of the entropy on $\left[\theta_{1}, \theta_{2}\right]$ is achieved at $\theta=\theta_{\star}$.

Maxima of core entropy

Given $\theta_{1}<\theta_{2}$ with $\theta_{1} \sim_{M} \theta_{2}$ (= landing together), define their pseudocenter θ_{\star} as the dyadic rational in $\left[\theta_{1}, \theta_{2}\right]$ of lowest complexity

$$
\theta_{\star}:=\left\{x=p / 2^{q}: x \in\left[\theta_{1}, \theta_{2}\right], q \text { minimal }\right\}
$$

E.g.: $\theta_{1}=1 / 7, \theta_{2}=2 / 7, \theta_{\star}=1 / 4$

Theorem (Dudko-Schleicher)
The maximum of the entropy on $\left[\theta_{1}, \theta_{2}\right]$ is achieved at $\theta=\theta_{\star}$.

The core entropy for cubic polynomials

The core entropy for cubic polynomials

The core entropy for cubic polynomials

The unicritical slice

The symmetric slice

$$
f(z)=z^{3}+c z
$$

Continuity in higher degree, combinatorial version

For polynomials of degree d, the analog of the circle at infinity for the Mandelbrot set is the set $P M(d)$ of primitive majors.

Continuity in higher degree, combinatorial version

 For polynomials of degree d, the analog of the circle at infinity for the Mandelbrot set is the set $P M(d)$ of primitive majors.

Continuity in higher degree, combinatorial version

 For polynomials of degree d, the analog of the circle at infinity for the Mandelbrot set is the set $P M(d)$ of primitive majors.

Theorem (W. Thurston)

$$
P M(d) \cong K\left(B_{d}, 1\right)
$$

where B_{d} is the braid group on d strands.

Continuity in higher degree, combinatorial version

 For polynomials of degree d, the analog of the circle at infinity for the Mandelbrot set is the set $P M(d)$ of primitive majors.

Theorem (W. Thurston)

$$
P M(d) \cong K\left(B_{d}, 1\right)
$$

where B_{d} is the braid group on d strands. (see Baik, Gao, Hubbard, Lindsey, Tan, D. Thurston)

Continuity in higher degree, combinatorial version

 For polynomials of degree d, the analog of the circle at infinity for the Mandelbrot set is the set $P M(d)$ of primitive majors.

Theorem (W. Thurston)

$$
P M(d) \cong K\left(B_{d}, 1\right)
$$

where B_{d} is the braid group on d strands. (see Baik, Gao, Hubbard, Lindsey, Tan, D. Thurston)
Example.

$$
\pi_{1}(P M(3))=\left\langle x, y: x^{2}=y^{3}\right\rangle
$$

Continuity in higher degree, combinatorial version

Theorem (T. - Yan Gao)
Fix $d \geq 2$. Then the core entropy extends to a continuous function on the space $P M(d)$ of primitive majors.

Continuity in higher degree, combinatorial version Theorem (T. - Yan Gao)
Fix $d \geq 2$. Then the core entropy extends to a continuous function on the space $P M(d)$ of primitive majors.

Continuity in higher degree, analytic version

Define \mathcal{P}_{d} as the space of monic, centered polynomials of degree d.

Continuity in higher degree, analytic version

Define \mathcal{P}_{d} as the space of monic, centered polynomials of degree d. One says $f_{n} \rightarrow f$ if the coefficients of f_{n} converge to the coefficients of f.

Continuity in higher degree, analytic version

Define \mathcal{P}_{d} as the space of monic, centered polynomials of degree d. One says $f_{n} \rightarrow f$ if the coefficients of f_{n} converge to the coefficients of f.

Theorem (T. - Yan Gao)
Let $d \geq 2$. Then the core entropy is a continuous function on the space of monic, centered, postcritically finite polynomials of degree d.

Further questions

1. What are the local maxima of the core entropy in $d>3$?

Further questions

1. What are the local maxima of the core entropy in $d>3$? How many are there?

Further questions

1. What are the local maxima of the core entropy in $d>3$? How many are there?
2. Can you use core entropy in higher degree case to define a hierarchical structure of parameter space?

Further questions

1. What are the local maxima of the core entropy in $d>3$? How many are there?
2. Can you use core entropy in higher degree case to define a hierarchical structure of parameter space?
(Compare veins for $d=2$)

Further questions

1. What are the local maxima of the core entropy in $d>3$? How many are there?
2. Can you use core entropy in higher degree case to define a hierarchical structure of parameter space?
(Compare veins for $d=2$)
3. Jung's conjecture: self-similarity of entropy graph near Misiurewicz points

Further questions

1. What are the local maxima of the core entropy in $d>3$? How many are there?
2. Can you use core entropy in higher degree case to define a hierarchical structure of parameter space?
(Compare veins for $d=2$)
3. Jung's conjecture: self-similarity of entropy graph near Misiurewicz points (where the Mandelbrot set is self-similar! (Tan Lei))

Further questions

1. What are the local maxima of the core entropy in $d>3$? How many are there?
2. Can you use core entropy in higher degree case to define a hierarchical structure of parameter space?
(Compare veins for $d=2$)
3. Jung's conjecture: self-similarity of entropy graph near Misiurewicz points (where the Mandelbrot set is self-similar! (Tan Lei))
4. Can we us core entropy to define transverse measures on the lamination?

Further questions

1. What are the local maxima of the core entropy in $d>3$? How many are there?
2. Can you use core entropy in higher degree case to define a hierarchical structure of parameter space?
(Compare veins for $d=2$)
3. Jung's conjecture: self-similarity of entropy graph near Misiurewicz points (where the Mandelbrot set is self-similar! (Tan Lei))
4. Can we us core entropy to define transverse measures on the lamination?
Thurston: surface laminations (Teichmüller theory) carry a transverse measure

Further questions

1. What are the local maxima of the core entropy in $d>3$? How many are there?
2. Can you use core entropy in higher degree case to define a hierarchical structure of parameter space?
(Compare veins for $d=2$)
3. Jung's conjecture: self-similarity of entropy graph near Misiurewicz points (where the Mandelbrot set is self-similar! (Tan Lei))
4. Can we us core entropy to define transverse measures on the lamination?
Thurston: surface laminations (Teichmüller theory) carry a transverse measure
Sullivan dictionary: Teichmüller theory \Leftrightarrow complex dynamics

Further questions

1. What are the local maxima of the core entropy in $d>3$? How many are there?
2. Can you use core entropy in higher degree case to define a hierarchical structure of parameter space?
(Compare veins for $d=2$)
3. Jung's conjecture: self-similarity of entropy graph near Misiurewicz points (where the Mandelbrot set is self-similar! (Tan Lei))
4. Can we us core entropy to define transverse measures on the lamination?
Thurston: surface laminations (Teichmüller theory) carry a transverse measure
Sullivan dictionary: Teichmüller theory \Leftrightarrow complex dynamics (Answer: Yes! [T. '21])

Further questions

1. What are the local maxima of the core entropy in $d>3$? How many are there?
2. Can you use core entropy in higher degree case to define a hierarchical structure of parameter space?
(Compare veins for $d=2$)
3. Jung's conjecture: self-similarity of entropy graph near Misiurewicz points (where the Mandelbrot set is self-similar! (Tan Lei))
4. Can we us core entropy to define transverse measures on the lamination?
Thurston: surface laminations (Teichmüller theory) carry a transverse measure
Sullivan dictionary: Teichmüller theory \Leftrightarrow complex dynamics (Answer: Yes! [T. '21])
5. What about the other eigenvalues of the transition matrix?

Further questions

1. What are the local maxima of the core entropy in $d>3$? How many are there?
2. Can you use core entropy in higher degree case to define a hierarchical structure of parameter space?
(Compare veins for $d=2$)
3. Jung's conjecture: self-similarity of entropy graph near Misiurewicz points (where the Mandelbrot set is self-similar! (Tan Lei))
4. Can we us core entropy to define transverse measures on the lamination?
Thurston: surface laminations (Teichmüller theory) carry a transverse measure
Sullivan dictionary: Teichmüller theory \Leftrightarrow complex dynamics (Answer: Yes! [T. '21])
5. What about the other eigenvalues of the transition matrix? (Bray-Davis-Lindsey-Wu, ...)

Coda: Laminations

Theorem (W. Thurston)
Let $\theta \in \mathbb{R} / \mathbb{Z}$.

Coda: Laminations

Theorem (W. Thurston)
Let $\theta \in \mathbb{R} / \mathbb{Z}$. Then there exists a lamination \mathcal{L}_{θ} on the disk such that

Coda: Laminations

Theorem (W. Thurston)
Let $\theta \in \mathbb{R} / \mathbb{Z}$. Then there exists a lamination \mathcal{L}_{θ} on the disk such that $\theta_{1} \sim \theta_{2}$ if $R\left(\theta_{1}\right)$ and $R\left(\theta_{2}\right)$ "land" at the same point.

Coda: Laminations

Theorem (W. Thurston)
Let $\theta \in \mathbb{R} / \mathbb{Z}$. Then there exists a lamination \mathcal{L}_{θ} on the disk such that $\theta_{1} \sim \theta_{2}$ if $R\left(\theta_{1}\right)$ and $R\left(\theta_{2}\right)$ "land" at the same point.

Laminations

Theorem (W. Thurston)

Let $\theta \in \mathbb{R} / \mathbb{Z}$. Then there exists a lamination \mathcal{L}_{θ} on the disk such that $\theta_{1} \sim \theta_{2}$ if $R\left(\theta_{1}\right)$ and $R\left(\theta_{2}\right)$ "land" at the same point.

Laminations

Theorem (W. Thurston)

Let $\theta \in \mathbb{R} / \mathbb{Z}$. Then there exists a lamination \mathcal{L}_{θ} on the disk such that $\theta_{1} \sim \theta_{2}$ if $R\left(\theta_{1}\right)$ and $R\left(\theta_{2}\right)$ "land" at the same point.

Also Thurston: surface laminations (Teichmüller theory) carry a transverse measure

Laminations

Theorem (W. Thurston)

$\operatorname{Let} \theta \in \mathbb{R} / \mathbb{Z}$. Then there exists a lamination \mathcal{L}_{θ} on the disk such that $\theta_{1} \sim \theta_{2}$ if $R\left(\theta_{1}\right)$ and $R\left(\theta_{2}\right)$ "land" at the same point.

Also Thurston: surface laminations (Teichmüller theory) carry a transverse measure Sullivan dictionary:

Teichmüller theory \Leftrightarrow complex dynamics

Laminations

Theorem (W. Thurston)

Let $\theta \in \mathbb{R} / \mathbb{Z}$. Then there exists a lamination \mathcal{L}_{θ} on the disk such that $\theta_{1} \sim \theta_{2}$ if $R\left(\theta_{1}\right)$ and $R\left(\theta_{2}\right)$ "land" at the same point.

Also Thurston: surface laminations (Teichmüller theory) carry a transverse measure Sullivan dictionary: Teichmüller theory \Leftrightarrow complex dynamics Question. Can we define a transverse measure on \mathcal{L}_{θ} ?

Laminations

Question. Can we define a transverse measure on \mathcal{L}_{θ} ?
Theorem (T. '21)
There exists a transverse measure m_{θ} on \mathcal{L}_{θ} such that

$$
f_{\theta}^{\star}\left(m_{\theta}\right)=\lambda_{\theta} m_{\theta}
$$

Laminations

Question. Can we define a transverse measure on \mathcal{L}_{θ} ?
Theorem (T. '21)
There exists a transverse measure m_{θ} on \mathcal{L}_{θ} such that

$$
f_{\theta}^{\star}\left(m_{\theta}\right)=\lambda_{\theta} m_{\theta}
$$

and $h(\theta)=\log \lambda_{\theta}$.

Laminations

Question. Can we define a transverse measure on \mathcal{L}_{θ} ?
Theorem (T. '21)
There exists a transverse measure m_{θ} on \mathcal{L}_{θ} such that

$$
f_{\theta}^{\star}\left(m_{\theta}\right)=\lambda_{\theta} m_{\theta}
$$

and $h(\theta)=\log \lambda_{\theta}$.
Such a measure induces a semiconjugacy between $f_{\theta}: T_{\theta} \rightarrow T_{\theta}$ and a piecewise linear model with slope λ_{θ}.

Laminations

Question. Can we define a transverse measure on \mathcal{L}_{θ} ?
Theorem (T. '21)
There exists a transverse measure m_{θ} on \mathcal{L}_{θ} such that

$$
f_{\theta}^{\star}\left(m_{\theta}\right)=\lambda_{\theta} m_{\theta}
$$

and $h(\theta)=\log \lambda_{\theta}$.
Such a measure induces a semiconjugacy between $f_{\theta}: T_{\theta} \rightarrow T_{\theta}$ and a piecewise linear model with slope λ_{θ}. (Compare: Milnor-Thurston, Baillif-deCarvalho, Sousa-Ramos, ...)

A transverse measure on QML

Let $\ell_{1}<\ell_{2}$ two leaves, and τ a transverse arc connecting them.

A transverse measure on QML

Let $\ell_{1}<\ell_{2}$ two leaves, and τ a transverse arc connecting them. Then we define

$$
\mu(\tau):=h\left(f_{c_{2}}\right)-h\left(f_{c_{1}}\right)
$$

A transverse measure on QML

Let $\ell_{1}<\ell_{2}$ two leaves, and τ a transverse arc connecting them. Then we define

$$
\mu(\tau):=h\left(f_{c_{2}}\right)-h\left(f_{c_{1}}\right)
$$

It gives $\mathcal{M}_{\text {abs }}$ (rather, a quotient) the structure of a metric tree.

A transverse measure on QML

Let $\ell_{1}<\ell_{2}$ two leaves, and τ a transverse arc connecting them. Then we define

$$
\mu(\tau):=h\left(f_{c_{2}}\right)-h\left(f_{c_{1}}\right)
$$

It gives $\mathcal{M}_{\text {abs }}$ (rather, a quotient) the structure of a metric tree.
"Combinatorial bifurcation measure"?

