Braidors and Associators
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Abstract. Studying braids in an annulus rather than braids in a
disk yields a theory of braidors, the analogue of Drinfeld associ-
ators. A priori, braidors appear weaker than associators and fur-
thermore the equations make sense in more spaces than the asso-
ciator equations do. However, computational evidence suggests
the braidor equations are in fact equivalent to the associator equa-
tions. This suggests it may be useful to review the array of ideas
related to associators, e.g. Grothendieck-Teichmiiller groups,
multiple zeta values etc., in the simpler context of braidors in
the hopes of gaining new information.

Associators.

PaB = category/operad of parenthesized braids
PaCD = category/operad of parenthesized chord diagrams
Associators <= operad morphisms Z : PaB — PaCD

z = )

) e% is a Drinfeld associator.

Annular Braids.

/

0123
Permutation: (0,3,1,2) € 3

B;,, = n-component braids in the annulus
Ti0i+10i=0i+10iTi+1,
[oi,oj]=1  |i=jI>0,
[r.oTo1]=1,
[roi]l=1 i>1,

= {B € B,y : first strand ends in first position}

= <T’O-1"” 70-}1—1

[B][KP]

For pure braid groups,
PBl,n = PBu1 =t

Definition 1.
For A a commutative, associative Q—algebra, define B, = cate-
gory of braids in the annulus:

ObjBa = finite ordinals n = {0, 1,--- ,n}

M ( ) %] m+n
org, (m,n) =
|_|Pe51,n A [Bf,n] m=n

P €S, is a permutation fixing 0
Bf , = group of annular braids with underlying permutation P

Category With Operations.

{PaB,} e (almost) forms a cosimplicial set
Coface Operators {d;}: strand doubling
Codegeneracies {s;}: strand deletion

Annular Case. Throw away everything except dy, d,,+1
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Monoidal Structure. Can view {PaB,} as an operad in groupoids
with partial composition

Py o; P, = glue P; into the ith strand of P;

Annular Case. B, is a (strict) monoidal category with tensor
product:

On Objects: mn=m+n

On Morphisms:
(| (1117
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Coproduct. Define the coproduct O by making any annular braid
B € By, grouplike.

Claim 1. B, is generated as a strict monoidal category (by re-
peated applications of dy and d,41) by 7' and o*' where
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subject to the relations generated by

e Braid relation:
\ L \
o Mixed relation:
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do
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o Commutativity relation:
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e (Locality in Space and
Scale)

Filtrations and Completions.  Define the unipotent filtra-
tion/completion of the category B, by applying the corresponding
operation to each A[B ].

Let I}, be the augmentation ideal in Lipeg 1,nA[Bf me
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Definition 2. Let B,"™ = B
tient of B,:

MOI‘Ba(m) (n, n) =

o/ FmBg be the mth unipotent quo-

| | B yrat,y

PeS 1,n

Let ZI; = &ln B, be the unipotent completion of B,:
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MOI‘Ba(m) (n, n) =

Chord Diagrams for Annular Braids. Chord diagrams remember
only crossing information:

15

Algebraically, the space of chord diagrams is the associated
graded of the space of braids.

= (1,2) - tiatoat12t12

Definition 3. Let CD, = CD,(A) be the category of chord dia-
grams for annular braids:

ObjCDa = finite ordinals n = {0, 1,--- , n}

Morcp, = A-linear combinations of formal products P - D
with P € Sy, and D € t,1(A).

Structure. CD, can be given all the same structure that was given
Doubling:

AR B AR

Monoidal Structure: Glue into the core and sum all ways of
connecting chords:

HEMA TR

Coproduct: Define O by making individual chords primitive.

Claim 2. CD,, is generated as a strict monoidal category (by re-
peated applications of dy and dy,+1) by

H = IH = IX =

subject to the relations generated by

A S

e Semi-classical braid relation:

e Braid relation:

d() = +

Filtrations and Completions. Chord diagrams are graded by the
number chords. CD, = degree completion of CD, (this is also
the unipotent completion of CD,,.)

General Setup.
Iso(O,P)

au©) (0= 7) Aup)

Aut(O) and Aut(%) act simply and transmvely on Iso(O P)
Example. O = PaB, # = PaCD. Then Iso(PaB PaCD)
is the set of Drinfeld associators, and Aut(PaB) GT and
Aut(PaCD) = GRT are the (pro-unipotent versions of the)
Grothendieck-Teichmiiller groups as defined by Drinfeld [BN,
D].

Braidors. Braidor are monoidal functors Z € Iso(E\a, CTD\,,) where
Z is required to preserve the underlying permutation of a braid
and grZ must be the identity.

Determined by

Z(o)=1X-B Z(r)=
where B € {3 and R = exp(to1). Ensuring the relations in B, are
satisfied yields:

Definition 4. A braidor is a grouplike (nondegenerate) element
B € 13 which satisfies the equations

3012302133023 30123301330212 (Braidor Eqn.)
do(R) = R°'? = BRO2p%2! (Mixed Eqn.)
R!'BRO2p%>1 = pRO-2gO21 RO (Commutativity Eqn.)

Annular Grothendieck-Teichmiiller Groups.

G/\Ta T Ye Aut(E) is determined by

Y(o) =%, ¥() =2,
where £, € PB),, %, € PB), and the the relations in Claim

2 must hold.

Definition 5. As a set, the group (ﬁa is the collection of
all grouplike nondegenerate pairs (I';,I';) € PBy | X PBi,
which satisfy the equations
0,1,2502,1,35:0,23 _ $01,2,350,1,3503,1,2
DI ) =X DI}

do(Zp) = 217 = 2,275
0,1 0,250,2,1 _ 0,250,2,15:0,1
PILD P et SGLIESD 3D R M 3

(Braidor Eqn.)
(Mixed Eqn.)
(Commutativity Eqn.)

GRT, w: Q€ Aut(CTBa) is determined by
¢(H) =T'1, ¢(IH) =T,
I'e %2 and Ih,I5 € %3
Requiring ¢ to preserve the relations in Claim 2,

$(IX) = IX - T3,

Definition 6. As a set, the group GRT,, is the collection of
all grouplike nondegenerate triples (I'y,[,13) € thxty x1s
which satisfy the equations
l-(3),1,21-02,1,3ro,3,2 — 0123p0.1.3103,1.2
(Classical Braidor Eqn.)
do(T'y) = Ty + T5002T9>!
(Semiclassical Braidor Eqn.)



From Associators to Braidors. Every associators yields a braidor;
there is a map C : Iso(PaB, PEC\D) — BRAID

~

C(D) =0
l

)

ie. C(®) = Ger12@021

Results.

Theorem 1. Braidors can be constructed degree by degree (and
rational braidors exist.)

The proof of this theorem is inspired by and very similar to Drin-
feld’s proof of the same result for associators, especially as re-
formulated in [BN] although each step is simpler in the annular
case.

Lemma 1. The braid equation implies the semiclassical braid
equation.

Proof. Assume I'; € t3 satisfies the braidor and locality relations
and let E be the error in the semiclassical braidor equation, ie.

1+ E = dy(Ty) - Tp - [0°T9>
The semiclassical braidor can be derived from the mixed rela-

tion in B,, so to find an equation satisfied by E, we need to
find a relation between mixed relations as shown in the diagram:

T

R
w

4
01,2,3 013 _ 02,13 0,2,3
E +EY° =F +E q

N
E0123
I
CJ Toas
\ E

\

Each move in the diagram in which the mixed relation is applied
will pick up an error E installed on the relevant strands. Compar-
ing the errors along the two paths in the diagram, we get

E01,2,3 _ E02,1,3 + EO,1,3 _ E0,2,3 =0. (1)

Consider the free Lie algebras FL[u,v] and FL[x,y, z] contained
in t and t3 as indicated in the following diagrams:

u ;
Y
v

E0,2,3

‘ L \ Braidor and locality relations

\

=

Every term in Equation 1 lies in FL[x,y, z] so upon restriction, E
becomes a Lie polynomial F € Lie[u, v] and Equation 1 becomes

Fx+y,2)—-F(x+z,y)+ F(x,y)—F(x,2) =0 )

Applying the Lie morphism FL3 — FLy, {x — x,y = y,z — 0}
to equation 2 implies (F, u) = 0 while applying the Lie morphism
{x = 0,y — y,z+ z} implies F(u,v) — F(v,u) = (F,v)(v — u), ie.
that F' is symmetric up to an error in degree 1.

We have the following diagram of maps between free lie algebras
and free associative algebras:

FL[U, V] L FL[X,y,Z]

| [

FAlu,v] i} FA[x,y,7] SELEEN FA[x,y] -z —— FA[x,y].

0

¥, and ¥ are obtained by sending a series f to f(x+y,2) — f(x+
z,y) + f(x,¥) — f(x,z) and 7 is the projection onto words ending
in z. Notice that ker ¥ C ker ©.

Regarding F € FL[u,v] C FA[u,v] as an element in the algebra
of noncommutative series in # and v, write F'(u,v) = F1(u, v)u +
Fo(u,v)v. Symmetry of F implies F(u,v) = Fa(v,u) — (F, V).
Tracing through the maps, ®F = 0 is equivalent to

Fai,y) = Y (Fa( e+ 3 =) = CFov)
n=0
and hence
F(u,v) = Z<F2’ u")( [+ v)" =" u+[(u+v)" V"] v)—(F, V)V
n=0
3)

In order for F(u,v) to be a Lie polynomial, F must be primitive
but it is clear from equation 3 that primitivity implies F, = 0.
Thus F(u,v) = (F,v)v and since braidors are fixed in degree 1,
F=0. m]

~m(m=1)

Lemma 2. The natural homomorphism GRT ;m) — GRT, is

surjective.

Proof. Since GRT (am) are connected reduced algebraic group
schemes, it is enough to prove the statement on the level of Lie

algebras, defined by the linearization

0,12, 0213, 032 _ 0123
Yy oty Ty =Y

But clearly if vy is of degree m and satisfies this, it can be extended
by taking the m + 1st degree component to be O for example. O

+ ,y0,1,3 + )/03,1,2‘

Lemma 3. The natural map BRAID"™ — BRAID"D js sur-
Jjective.

Proof. Since Iso(l;a\B,PgC\D) — BRAID, there exists at least
one braidor, so there is one degree m — 1 braidor which extends
to degree m. Since GRTY" ™" acts transitively all degree m — 1
braidors must extend by the previous lemma. O




Twists for Associators.

TWiStSTangles C ASSOCTangles

fid) = Twists, (_ Assocy,

Twists, invertible, nondegenerate elements in E, act on associa-
tors via

b - Fz_éFl_’%(DFlggF],z
Problem: No nontrivial twists in t,.
Solution [LM]: Embed E into chord diagrams for tangles. Then
twists act transitively.

Twists for Braidors. Instead of embedding the Drinfeld-Kohno
algebra into chord diagrams for tangles, we can instead embed
it into spaces of derivations of free Lie algebras as considered in
[AT].

Let A = TDer, SDer, KV or KV.

Definition 7. A braidor in A is an B € A which satisfies the all
the conditions and equations a braidor in t3 did.

Definition 8. A twist in A is an invertible nondegenerate element
F € A,. Twists act on braidors in A via

B BF — F—l,ZF—12,3BFl,3F13,2
Then
C(cDF ) = C(®)F.

Lemma 4. If twists act transitively on braidors in KV, then every
usual braidor B is of the form C(®) for some associator .

Proof. Pick an associator @y and let By = C(®p). Given any
other braidor B, can write B = B{. But then B = C(®}).
O

Question: If C ((Dg ) and @ are in%, is (Dg is in E also?

Conjectures/Computational Evidence.

Conjecture 1. The braid equation implies the commutativity and
mixed equations.

- Verified to degree 10 in the Drinfeld-Kohno algebra.
Conjecture 2. C : Iso (IT:HS, PEC\D) — BRAID is a bijection.

- Up to degree 10, the dimension of the space of braidors is
equal to that of associators.

Conjecture 3. GT, = GT and GRT, = GRT.

Conjecture 4. Braidors in TAut and SAut generally fail to ex-
tend but braidors in KV do extend. Furthermore all braidors in
KV come from braidors in the Drinfeld-Kohno algebra.

- Verified up to degree 8.

Conjecture 5. Twists act transitively in KV but not in KV, SDer
or TDer.

- Define differential graded complexes

dn
Sy > Qg

where a, = tder,, sder,, v, or f’D; and the differential is
given by

n
dn — Z(_l)j ((D(Oj),l,"' ,j,~--n+1 _ (I)l,-" ,j,"' ,n+1) .

j=1
Transitivity of the action by twists &= H*(A) = 0.

- Computations show

Degree | ther sber o fo
1 5 4 2 0
2 3 0 0 O
3 5 2 1 0
4 7 0 0 O
5 13 6 1 0
6 19 0 0 O

where the entries of the table are the dimension of Hy(A) in
the given degree

Future Work.

e Prove the conjectures!

e In order to compute cohomology, it is useful to know
tder, sber, tr, etc. admit decompositions of the form

sver, = (P Liely " @s,,,, (@)
m

1 15 IS
2 34
2 1
|
2
Question: How does div : tder — tr, interact with this

decomposition?

e Does GRT, inject into tn? What about the relationship
with double shuffle?

e An associator gives a solution to the Kashiwara-Vergne
problem. Does a braidor also?

References. ) ) )
[AT] A. Alekseev and C. Torossian, The Kashiwara-Vergne Conjecture and

Drinfeld’s Associators, Ann. Math. 175(2) (2012) 415-463. arXiv:math/q-
alg/0802.4300.

[B] P. Bellingeri, On Presentations of Surface Braid Groups, Journal of Alge-
bra 274 (2003) 543-563. arXiv:math/0110129.

[BN] D. Bar-Natan, On Associators and the Grothendieck-Teichmiiller
Group I, Selecta Mathematica, New Series 4 (1998) 183-2012. arXiv:q-
alg/9606021

[D] V. Drinfeld, On Quasitriangular Quasi-Hopf Algebras and a Group
Closely Connected With Gal(Q/Q), Leningrad Math. J. 2 (1991) 829-860.

[KP] R.P. Kent, IV and D. Peifer, A Geometric and Algebraic Description of
Annular Braid Groups, Int. J. Algebra Comput. 12 (2002) 85-97.

[LM] T.Q.T. Le and J. Murakami, The Universal Vassiliev-Kontsevich Invari-
ant for Framed Oriented Links, Compositio Mathematica, Tome 102, no. 1
(1996) 41-64.

[SW] P. Severa and T. Willwacher, The cubical complex of a permutation
group representation - or however you want to call it, arXiv:math/q-
alg/1103.3283.


http://front.math.ucdavis.edu/math/q-alg/0802.4300
http://front.math.ucdavis.edu/math/q-alg/0802.4300
http://front.math.ucdavis.edu/math/0110129
http://front.math.ucdavis.edu/q-alg/9606021
http://front.math.ucdavis.edu/q-alg/9606021
http://front.math.ucdavis.edu/math/q-alg/1103.3283
http://front.math.ucdavis.edu/math/q-alg/1103.3283

