
Braidors and Associators Travis Ens: Talks: Geneva-1611

Abstract. Studying braids in an annulus rather than braids in a
disk yields a theory of braidors, the analogue of Drinfeld associ-
ators. A priori, braidors appear weaker than associators and fur-
thermore the equations make sense in more spaces than the asso-
ciator equations do. However, computational evidence suggests
the braidor equations are in fact equivalent to the associator equa-
tions. This suggests it may be useful to review the array of ideas
related to associators, e.g. Grothendieck-Teichmüller groups,
multiple zeta values etc., in the simpler context of braidors in
the hopes of gaining new information.

Associators.
PaB = category/operad of parenthesized braids
PaCD = category/operad of parenthesized chord diagrams
Associators ⇐⇒ operad morphisms Z : PaB→ PaCD

Z


 = · Φ

Φ ∈ t̂3 is a Drinfeld associator.

Annular Braids.

0 1 2 3
Permutation: (0, 3, 1, 2) ∈ S 1,3

B1,n = n-component braids in the annulus

=

〈
τ, σ1, · · · , σn−1

∣∣∣∣∣∣
σiσi+1σi=σi+1σiσi+1,
[σi,σ j]=1 |i− j|>0,

[τ,σ1τσ1]=1,
[τ,σi]=1 i>1,

〉
= {B ∈ Bn+1 : first strand ends in first position} [B][KP]

For pure braid groups,
PB1,n = PBn+1 = tn+1

Definition 1.
For A a commutative, associative Q–algebra, define Ba = cate-
gory of braids in the annulus:

ObjBa
= finite ordinals n = {0, 1, · · · , n}

MorBa(m, n) =

∅ m , n⊔
P∈S 1,n A

[
BP

1,n

]
m = n

P ∈ S 1,n is a permutation fixing 0
BP

1,n = group of annular braids with underlying permutation P

Category With Operations.
{PaBn}n∈N (almost) forms a cosimplicial set
Coface Operators {di}: strand doubling
Codegeneracies {si}: strand deletion

Annular Case. Throw away everything except d0, dn+1

d0


 = d4


 =

Monoidal Structure. Can view {PaBn} as an operad in groupoids
with partial composition

P1 ◦i P2 = glue P2 into the ith strand of P1

Annular Case. Ba is a (strict) monoidal category with tensor
product:

On Objects: m⊗ n = m + n

On Morphisms:

⊗
=

Coproduct. Define the coproduct � by making any annular braid
B ∈ B1,n grouplike.

Claim 1. Ba is generated as a strict monoidal category (by re-
peated applications of d0 and dn+1) by τ±1 and σ±1 where

τ = σ =

subject to the relations generated by

• Braid relation:

=

• Mixed relation:

d0


 =

• Commutativity relation:

=

• (Locality in Space and
Scale)

Filtrations and Completions. Define the unipotent filtra-
tion/completion of the category Ba by applying the corresponding
operation to each A[Bp

1,n].
Let I1,n be the augmentation ideal in tP∈S 1,n A[BP

1,n].
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Definition 2. Let Ba
(m) = Ba/FmBa be the mth unipotent quo-

tient of Ba:
MorBa

(m)(n,n) =
⊔

P∈S 1,n

A[Bp
1,n]/(IP

1,n)m

Let B̂a = lim
←−−m→∞

Ba
(m) be the unipotent completion of Ba:

MorBa
(m)(n,n) =

⊔
P∈S 1,n

lim
←−−

m→∞

A[Bp
1,n]/(IP

1,n)m

Chord Diagrams for Annular Braids. Chord diagrams remember
only crossing information:

= (1, 2) · t12t02t12t12

Algebraically, the space of chord diagrams is the associated
graded of the space of braids.

Definition 3. Let CDa = CDa(A) be the category of chord dia-
grams for annular braids:

ObjCDa
= finite ordinals n = {0, 1, · · · , n}

MorCDa = A-linear combinations of formal products P · D
with P ∈ S 1,n and D ∈ tn+1(A).

Structure. CDa can be given all the same structure that was given
to Ba:

Doubling:

d0


 = + d4


 =

Monoidal Structure: Glue into the core and sum all ways of
connecting chords:⊗

= + +

Coproduct: Define � by making individual chords primitive.

Claim 2. CDa is generated as a strict monoidal category (by re-
peated applications of d0 and dn+1) by

H = IH = IX =

subject to the relations generated by

• Braid relation:

=

• Semi-classical braid relation:

d0


 = +

Filtrations and Completions. Chord diagrams are graded by the
number chords. ĈDa = degree completion of CDa (this is also
the unipotent completion of CDa.)

General Setup.

Aut(O) O P Aut(P)
Iso(O,P)

Aut(O) and Aut(P) act simply and transitively on Iso(O,P)
Example. O = P̂aB, P = P̂aCD. Then Iso(P̂aB, P̂aCD)
is the set of Drinfeld associators, and Aut(P̂aB) = ĜT and
Aut(P̂aCD) = ĜRT are the (pro-unipotent versions of the)
Grothendieck-Teichmüller groups as defined by Drinfeld [BN,
D].

Braidors. Braidor are monoidal functors Z ∈ Iso(B̂a, ĈDa) where
Z is required to preserve the underlying permutation of a braid
and grZ must be the identity.
Determined by

Z(σ) = IX · B Z(τ) = R
where B ∈ t̂3 and R = exp(t01). Ensuring the relations in Ba are
satisfied yields:

Definition 4. A braidor is a grouplike (nondegenerate) element
B ∈ t̂3 which satisfies the equations

B0,1,2B02,1,3B0,2,3 = B01,2,3B0,1,3B03,1,2 (Braidor Eqn.)
d0(R) = R01,2 = BR0,2B0,2,1 (Mixed Eqn.)
R0,1BR0,2B0,2,1 = BR0,2B0,2,1R0,1 (Commutativity Eqn.)

Annular Grothendieck-Teichmüller Groups.

ĜTa : ψ ∈ Aut(B̂a) is determined by
ψ(σ) = Σ1, ψ(τ) = Σ2,

where Σ1 ∈ P̂B1,2, Σ2 ∈ P̂B1,2 and the the relations in Claim
2 must hold.

Definition 5. As a set, the group ĜTa is the collection of
all grouplike nondegenerate pairs (Γ1,Γ2) ∈ P̂B1,1 × P̂B1,2
which satisfy the equations
Σ

0,1,2
1 Σ

02,1,3
1 Σ

0,2,3
1 = Σ

01,2,3
1 Σ

0,1,3
1 Σ

03,1,2
1 (Braidor Eqn.)

d0(Σ2) = Σ
01,2
2 = Σ1Σ

0,2
2 Σ

0,2,1
1 (Mixed Eqn.)

Σ
0,1
2 Σ1Σ

0,2
2 Σ

0,2,1
1 = Σ1Σ

0,2
2 Σ

0,2,1
1 Σ

0,1
2 (Commutativity Eqn.)

ĜRTa : φ ∈ Aut(ĈDa) is determined by
φ(H) = Γ1, φ(IH) = Γ2, φ(IX) = IX · Γ3,

Γ1 ∈ t̂2 and Γ2,Γ3 ∈ t̂3
Requiring φ to preserve the relations in Claim 2,

Definition 6. As a set, the group ĜRTa is the collection of
all grouplike nondegenerate triples (Γ1,Γ2,Γ3) ∈ t̂2× t̂3× t̂3
which satisfy the equations

Γ
0,1,2
3 Γ

02,1,3
3 Γ

0,3,2
3 = Γ

01,2,3
3 Γ

0,1,3
3 Γ

03,1,2
3

(Classical Braidor Eqn.)
d0(Γ1) = Γ2 + Γ3Γ

0,2
1 Γ

0,2,1
3

(Semiclassical Braidor Eqn.)
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From Associators to Braidors. Every associators yields a braidor;
there is a map C : Iso(P̂aB, P̂aCD) ↪→ BRAID

C(Φ)


 = Φ




ie. C(Φ) = Φe
1
2 t12Φ−0,2,1.

Results.

Theorem 1. Braidors can be constructed degree by degree (and
rational braidors exist.)

The proof of this theorem is inspired by and very similar to Drin-
feld’s proof of the same result for associators, especially as re-
formulated in [BN] although each step is simpler in the annular
case.

Lemma 1. The braid equation implies the semiclassical braid
equation.

Proof. Assume Γ3 ∈ t3 satisfies the braidor and locality relations
and let E be the error in the semiclassical braidor equation, ie.

1 + E = d0(Γ1) − Γ2 − Γ3Γ
0,2
1 Γ

0,2,1
3 .

The semiclassical braidor can be derived from the mixed rela-
tion in Ba, so to find an equation satisfied by E, we need to
find a relation between mixed relations as shown in the diagram:

Each move in the diagram in which the mixed relation is applied
will pick up an error E installed on the relevant strands. Compar-
ing the errors along the two paths in the diagram, we get

E01,2,3 − E02,1,3 + E0,1,3 − E0,2,3 = 0. (1)

Consider the free Lie algebras FL[u, v] and FL[x, y, z] contained
in t2 and t3 as indicated in the following diagrams:

u

v

x

y

z

Every term in Equation 1 lies in FL[x, y, z] so upon restriction, E
becomes a Lie polynomial F ∈ Lie[u, v] and Equation 1 becomes

F(x + y, z) − F(x + z, y) + F(x, y) − F(x, z) = 0 (2)

Applying the Lie morphism FL3 7→ FL2, {x 7→ x, y 7→ y, z 7→ 0}
to equation 2 implies 〈F, u〉 = 0 while applying the Lie morphism
{x 7→ 0, y 7→ y, z 7→ z} implies F(u, v)− F(v, u) = 〈F, v〉(v− u), ie.
that F is symmetric up to an error in degree 1.
We have the following diagram of maps between free lie algebras
and free associative algebras:

FL[u, v] FL[x, y, z]

FA[u, v] FA[x, y, z] FA[x, y] · z FA[x, y].

Ψ

Ψ

Θ

π

Ψ, and Ψ are obtained by sending a series f to f (x + y, z) − f (x +

z, y) + f (x, y) − f (x, z) and π is the projection onto words ending
in z. Notice that ker Ψ ⊆ ker Θ.
Regarding F ∈ FL[u, v] ⊆ FA[u, v] as an element in the algebra
of noncommutative series in u and v, write F(u, v) = F1(u, v)u +

F2(u, v)v. Symmetry of F implies F1(u, v) = F2(v, u) − 〈F, v〉.
Tracing through the maps, ΘF = 0 is equivalent to

F2(x, y) =

∞∑
n=0

〈F2, un〉

(
(x + y)n − yn

)
− 〈F, v〉

and hence

F(u, v) =

∞∑
n=0

〈F2, un〉

( [
(u + v)n − un] u+

[
(u + v)n − vn] v

)
−〈F, v〉v

(3)
In order for F(u, v) to be a Lie polynomial, F must be primitive
but it is clear from equation 3 that primitivity implies F2 = 0.
Thus F(u, v) = 〈F, v〉v and since braidors are fixed in degree 1,
F = 0. �

Lemma 2. The natural homomorphism ĜRT
(m)
a → ĜRT

(m−1)
a is

surjective.

Proof. Since ĜRT
(m)
a are connected reduced algebraic group

schemes, it is enough to prove the statement on the level of Lie
algebras, defined by the linearization

γ0,1,2 + γ02,1,3 + γ0,3,2 = γ01,2,3 + γ0,1,3 + γ03,1,2.

But clearly if γ is of degree m and satisfies this, it can be extended
by taking the m + 1st degree component to be 0 for example. �

Lemma 3. The natural map BRAID(m) → BRAID(m−1) is sur-
jective.

Proof. Since Iso(P̂aB, P̂aCD) ↪→ BRAID, there exists at least
one braidor, so there is one degree m − 1 braidor which extends
to degree m. Since GRT(m−1)

a acts transitively all degree m − 1
braidors must extend by the previous lemma. �
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Twists for Associators.

TwistsTangles AssocTangles

{id} = Twistst2 Assoct3

Twists, invertible, nondegenerate elements in t̂2, act on associa-
tors via

Φ 7→ F−1
2,3F−1

1,23ΦF12,3F1,2

Problem: No nontrivial twists in t̂2.
Solution [LM]: Embed t̂2 into chord diagrams for tangles. Then
twists act transitively.

Twists for Braidors. Instead of embedding the Drinfeld-Kohno
algebra into chord diagrams for tangles, we can instead embed
it into spaces of derivations of free Lie algebras as considered in
[AT].
Let A = TDer,SDer,KV or K̂V.

Definition 7. A braidor in A is an B ∈ A which satisfies the all
the conditions and equations a braidor in t̂3 did.

Definition 8. A twist in A is an invertible nondegenerate element
F ∈ A2. Twists act on braidors in A via

B 7→ BF = F−1,2F−12,3BF1,3F13,2

Then
C

(
ΦF

)
= C(Φ)F .

Lemma 4. If twists act transitively on braidors in KV, then every
usual braidor B is of the form C(Φ) for some associator Φ.

Proof. Pick an associator Φ0 and let B0 = C(Φ0). Given any
other braidor B, can write B = BF

0 . But then B = C(ΦF
0 ).

�

Question: If C(ΦF
0 ) and Φ0 are in t̂3, is ΦF

0 is in t̂3 also?

Conjectures/Computational Evidence.

Conjecture 1. The braid equation implies the commutativity and
mixed equations.

- Verified to degree 10 in the Drinfeld-Kohno algebra.

Conjecture 2. C : Iso
(
P̂aB, P̂aCD

)
→ BRAID is a bijection.

- Up to degree 10, the dimension of the space of braidors is
equal to that of associators.

Conjecture 3. ĜTa � ĜT and ĜRTa � ĜRT.

Conjecture 4. Braidors in TAut and SAut generally fail to ex-
tend but braidors in KV do extend. Furthermore all braidors in
KV come from braidors in the Drinfeld-Kohno algebra.

- Verified up to degree 8.

Conjecture 5. Twists act transitively in K̂V but not in KV,SDer
or TDer.

- Define differential graded complexes

· · · → an
dn

−−→ an+1 → · · ·

where an = tdern, sdern, kvn or k̂vn and the differential is
given by

dn =

n∑
j=1

(−1) j
(
Φ(0 j),1,··· , ĵ,···n+1 − Φ1,··· , ĵ,··· ,n+1

)
.

Transitivity of the action by twists ⇐⇒ H2(A) = 0.

- Computations show
Degree tder sder kv k̂v

1 5 4 2 0
2 3 0 0 0
3 5 2 1 0
4 7 0 0 0
5 13 6 1 0
6 19 0 0 0

where the entries of the table are the dimension of H2(A) in
the given degree

Future Work.

• Prove the conjectures!

• In order to compute cohomology, it is useful to know
tder, sder, trn etc. admit decompositions of the form

sdern =
⊕

m

Lie(1,··· ,1)
m ⊗S m+1 (Qn)⊗(m+1)

2

1 1 5

=

1

2

2

1

3

1

4

5

Question: How does div : tder → trn interact with this
decomposition?

• Does GRTa inject into k̂v? What about the relationship
with double shuffle?

• An associator gives a solution to the Kashiwara-Vergne
problem. Does a braidor also?
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