

Algebraic D-Modules
Instructor: Alexander Braverman

Typeset by Travis Ens
Last edited September 21, 2017

Contents

1 Algebraic D-Modules 3
1.1 Gamma Functions 3
1.2 The Algebra D_{n} and Modules Over It 4
1.2.1 Functional (Gelfand-Kirillov) Dimension 7
1.2.2 Proof of Bernstein's Inequality (Theorem 1.5) 8
1.2.3 Outlook 9

Lecture Guide

1 Algebraic D-Modules
1.1 Gamma Functions . 3
1.2 The Algebra D_{n} and Modules Over It . 4
1.2.1 Functional (Gelfand-Kirillov) Dimension . 7
1.2.2 Proof of Bernstein's Inequality (Theorem 1.5) 8
1.2.3 Outlook . 9

Chapter 1

Algebraic D-Modules

[14.09.2017]

1.1 Gamma Functions

Recall the gamma function

$$
\Gamma(\lambda+1)=\int_{0}^{\infty} x^{\lambda} e^{-x} d x
$$

for $\lambda \in \mathbb{C}$. This is convergent and defines a holomorphic function of λ for $\operatorname{Re} \lambda>-1$.
Theorem 1.1. The right hand side of the definition of the gamma function extends to a meromorphic function of λ with poles at the negative integers.

Let $p \in \mathbb{R}\left[x_{1}, \cdots, x_{n}\right]$ be a polynomial and let $U \in \mathbb{R}^{n}$ be a connected component of $\mathbb{R}^{n} \backslash \operatorname{Zeros}(p)$. Let φ be a rapidly decreasing function $\varphi: \mathbb{R}^{n} \rightarrow \mathbb{C}$. Recall the Schwartz space

$$
S\left(\mathbb{R}^{n}\right)=\left\{\varphi: \mathbb{R}^{n} \rightarrow \mathbb{C}: C^{\infty}, \begin{array}{l}
\text { any derivative } \psi \text { of any order of } \varphi \text { is such that } \\
\lim _{|\vec{x}| \rightarrow \infty} \mid \psi \cdot f\left(\vec{x}| |=0 \text { for any } f \in \mathbb{R}\left[x_{1}, \cdots, x_{n}\right]\right.
\end{array}\right\}
$$

For $p \in \mathbb{R}\left[x_{1}, \cdots, x_{n}\right]$ and $\varphi \in S\left(\mathbb{R}^{n}\right)$,

$$
\int_{U}|p(x)|^{\lambda} \varphi(x) d x
$$

is absolutely convergent for $R e \lambda \gg 0$ so that in this case we get a functional $S\left(\mathbb{R}^{n}\right) \rightarrow \mathbb{C}$, ie. we get an element $p_{U}^{\lambda} \in S^{*}\left(\mathbb{R}^{n}\right)$.
Example 1.1. $p(x)=x, U=\mathbb{R}_{>0}$. Then $p_{U}^{\lambda}(\varphi)=\int_{0}^{\infty} x^{\lambda} e^{-x} d x$ is the gamma function.

$$
p_{U}^{\lambda}:\{\lambda: \operatorname{Re} \lambda \gg 0\} \rightarrow S^{*}\left(\mathbb{R}^{n}\right)
$$

Question (Gelfand, Sato, 1950s) Is there always a meromorphic continuation?
Theorem 1.2. For all p and U, p_{U}^{λ} has meromorphic continuation to all of \mathbb{C} with poles in finitely many arithmetic progressions with step 1.

This was first preved by Atiyah, Bernstein-S. Gelfand but this is a "bad" proof (it uses reoslution of singularities.) An alternate "better" proof was given in Bernstein's 1972 thesis.
Goal: Produce a purely algebraic statement which implies the theorem.

The idea of the proof of Theorem 1.2 is to emulate the following argument for general polynomials. Consider the integral $\int_{0}^{\infty} x^{\lambda} \varphi(x) d x$ for φ rapidly decreasing. Using the key identity $\frac{d}{d x}\left(x^{\lambda+1}\right)=$ $(\lambda+1) x^{\lambda}$,

$$
\begin{aligned}
\int_{0}^{\infty} x^{\lambda} \varphi(x) d x & =\int_{0}^{\infty} \frac{d}{d x}\left(x^{\lambda+1}\right) \frac{1}{\lambda+1} \varphi(x) d x \\
& =-\frac{1}{\lambda+1} \int_{0}^{\infty} x^{\lambda+1} \varphi^{\prime}(x) d x
\end{aligned}
$$

In the range $-2<\operatorname{Re}(\lambda) \leq-1$ there is a problem only at $\lambda=-1$. Continue in the same way for the next interval and iterate.

Let D_{n} be the algebra of linear differential operators in n variables with polynomial coefficients. $D_{n} \subset \operatorname{End}_{\mathbb{C}} \mathbb{C}\left[x_{1}, \cdots, x_{n}\right]$ is the algebra of linear combinations

$$
\sum_{\alpha_{1}, \cdots, \alpha_{n}} f_{\alpha_{1}, \cdots, \alpha_{n}}\left(\frac{\partial}{\partial x_{1}}\right)^{\alpha_{1}}\left(\frac{\partial}{\partial x_{2}}\right)^{\alpha_{2}} \cdots\left(\frac{\partial}{\partial x_{n}}\right)^{\alpha_{n}}
$$

Example 1.2.

$$
D_{1}=\mathbb{C}\left\langle x, \frac{d}{d x}\right\rangle /\left[\frac{d}{d x}, x\right]=1
$$

Theorem 1.3. Given $p \in \mathbb{C}\left[x_{1}, \cdots, x_{n}\right]$ there exists $L \in D_{n}[\lambda]$ and $b(\lambda) \in \mathbb{C}\left[x_{1}, \cdots, x_{n}\right]$ such that $L\left(p^{\lambda+1}\right)=b(\lambda) p^{\lambda}$ where $\frac{\partial p^{\lambda}}{\partial x_{i}}=\lambda\left(\frac{\partial \varphi}{\partial x_{i}}\right) p^{\lambda-1}$. Such $a b(\lambda)$ is called the b function of p.
Exercise 1.1. Show that Theorem 1.3 implies Theorem 1.2. Morevoer show that the poles will be at numbers of the form $\xi-n$ where $b(\xi)=0$ and $n \in \mathbb{N}_{>0}$.

Let $D_{n}(\lambda)=D_{n} \otimes \mathbb{C}(\lambda)$ where $\mathbb{C}(\lambda)$ is the field of rational functions in λ. Define

$$
M\left(p^{\lambda}\right)=\left\{f p^{\lambda+i}: i \in \mathbb{Z}, f \in \mathbb{C}\left(\lambda\left[x_{1}, \cdots, x_{n}\right]\right\} /\left(p \cdot p^{\lambda+i}=p^{\lambda+i+1}\right)\right.
$$

This is a $D_{n}(\lambda)$-module.
Claim 1.1. Theorem 1.3 is equivalent to $M\left(p^{\lambda}\right)$ being finitely generated over $D_{n}(\lambda)$.
Proof. $M\left(p^{\lambda}\right)$ is generated by all $p^{\lambda+i}$ for $i \in \mathbb{Z}$. Being finitely generated is equivalent to saying there exists i such that just the single element $p^{\lambda+i}$ generates M which is equivalent to saying $p^{\lambda+1}$ generates M.

1.2 The Algebra D_{n} and Modules Over It

Let k be a field of characteristic 0 (usually $k=\mathbb{C}, \mathbb{C}(\lambda)$ for us.)
Lemma 1.1 (Definition). The following are equivalent.

1. The algebra $D_{n} \subset \operatorname{End} k\left[x_{1}, \cdots, x_{n}\right]$ spanned as a vector space by

$$
f_{\alpha_{1}, \cdots, \alpha_{n}}\left(\frac{\partial}{\partial x_{1}}\right)^{\alpha_{1}}\left(\frac{\partial}{\partial x_{2}}\right)^{\alpha_{2}} \cdots\left(\frac{\partial}{\partial x_{n}}\right)^{\alpha_{n}}
$$

for $\alpha_{1}, \cdots, \alpha_{n} \geq 0$, ie. the subalgebra of $\operatorname{End} k\left[x_{1}, \cdots, x_{n}\right]$ generated by multiplication by x_{i} for $i=1, \cdots, n$ and $\frac{\partial}{\partial x_{i}}$ for $i=1, \cdots, n$.
2. The algebra D_{n} generated by symbols x_{i} and $\frac{\partial}{\partial x_{j}}$ for $i=1, \cdots, n$ subject to the relations

$$
\begin{aligned}
& {\left[\frac{\partial}{\partial x_{i}}, x_{j}\right]=\delta_{i j}} \\
& {\left[\frac{\partial}{\partial x_{i}}, \frac{\partial}{\partial x_{j}}\right]=0} \\
& {\left[x_{i}, x_{j}\right]=0}
\end{aligned}
$$

3. The algebra of differential operators of order $\leq m$ is the subalgebra $D_{\leq m} \subset$ End $k\left[x_{1}, \cdots, x_{n}\right]$ defined inductively as follows:

$$
\begin{aligned}
m=0: & \text { multiplication by } f \in k\left[x_{1}, \cdots, x_{n}\right] \\
m>0: & d: k\left[x_{1}, \cdots, x_{n}\right] \rightarrow k\left[x_{1}, \cdots, x_{n}\right] \text { is an operator of order } \leq m \\
& \text { iff }[d, f] \in D_{\leq m-1} \text { for all } f \in k\left[x_{1}, \cdots, x_{n}\right]
\end{aligned}
$$

Remark 1.1. There is an anti-automorphism $\sigma: D_{n} \rightarrow D_{n}$ defined by $x_{i} \mapsto x_{i}$ and $\frac{\partial}{\partial x_{i}} \mapsto-\frac{\partial}{\partial x_{i}}$. Hence left modules over D_{n} are equivalent to right modules.
Remark 1.2. $S\left(\mathbb{R}^{n}\right)$ is a left module over D_{n} and $S^{*}\left(\mathbb{R}^{n}\right)$ is a right module over D_{n} which we can convert to a left module using σ.

The main result we would like to formulate is the Bernstein inequality, which in vague terms says that D_{n} can't be too small.
Example 1.3. Take $n=1$ and suppose that M is a nonzero D_{1}-module. Then $\operatorname{dim}_{k} M=\infty$ (this follows by considering traces in the relation $[d / d x, x]=1$.)

If M is finitely generated we will introduce the functional dimension of M, a number $0 \leq d(M) \leq$ $2 n$. The Bernstein inequality will be $d(M) \geq n$.

Definition 1.1. Let D be any k-algebra. A filtration on D is a decomposition $D=\cup_{i=0}^{\infty} F_{i} D$ where each $F_{i} D$ is a subspace such that $F_{i} D \cdot F_{j} D \subset F_{i+j} D$. We can then define the associated graded

$$
\operatorname{gr} D=\bigoplus_{i=0}^{\infty} F_{i} D / F_{i-1} D=\bigoplus_{i=1}^{\infty} \operatorname{gr}_{i} D
$$

which will satisfy $\operatorname{gr}_{i} D \cdot \operatorname{gr}_{j} D \subset \operatorname{gr}_{i+j} D$.
There are two common filtrations on D_{n}

1. Geometric Filtration: $F_{i} D_{n}=D_{\leq i}$ is the set of differential operators of order $\leq i$ and $F_{0} D_{n}=$ $k\left[x_{1}, \cdots, x_{n}\right]$.
2. Arithmetic Filtration:

$$
\begin{gathered}
x_{1}^{\alpha_{1}} \cdots x_{n}^{\alpha_{n}}\left(\frac{\partial}{\partial x_{1}}\right)^{\beta_{1}} \cdots\left(\frac{\partial}{\partial x_{n}}\right)^{\beta_{n}} \in F_{\sum \alpha_{i}+\sum \beta_{j}} D \\
F_{0} D_{n}=k, F_{1} D_{n}=k \oplus \operatorname{span}\left(x_{1}, \cdots, x_{n}, \frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{n}}\right)
\end{gathered}
$$

For either of these filtrations, $\operatorname{gr} D_{n} \simeq k\left[x_{1}, \cdots, x_{n}, \xi_{1}, \cdots, \xi_{n}\right]$.
Note that in general, $\operatorname{gr}^{F} D$ is commutative $\Longleftrightarrow\left[F_{i} D, F_{j} D\right] \subset F_{i+j-1} D$.

Definition 1.2. Consider any D-algebra with filtration and let M be a D-module. A filtration on M is a union $M=\bigcup_{k=0}^{\infty} F_{j} M$ such that $F_{i} D \cdot F_{j} M \subset F_{i+j} M$. The associated graded of M is

$$
\operatorname{gr} M=\bigoplus_{j=0}^{\infty} F_{j} M / F_{j-1} M=\bigoplus_{j=0}^{\infty} \operatorname{gr}_{j} M
$$

$\operatorname{gr} M$ is naturally a graded module over $\operatorname{gr} D$ with $\operatorname{gr}_{i} D \cdot \operatorname{gr}_{j} M \subset \operatorname{gr}_{i+j} M$.
Lemma 1.2. If $\mathrm{gr}^{F} M$ is finitely generated then so is M.
Proof. Exercise.

Definition 1.3.

1. A filtration F on M is called good if $\operatorname{gr}^{F} M$ is finitely generated over $\operatorname{gr} D$.
2. Two filtrations F and F^{\prime} on M are called equivalent if there exist j_{0} and j_{1} such that

$$
F_{j-j_{0}}^{\prime} M \subset F_{j} M \subset F_{j+j_{1}}^{\prime} M
$$

for all j.
Proposition 1.1. Let M be a finitely generated D-module. Then

1. M has a good filtration.
2. If F is a good filtration and F^{\prime} is any filtration then there exists j_{1} such that $F_{j} M \subset F_{j+j_{1}}^{\prime} M$ for all j. In particular, any 2 good filtrations are equivalent.

Proof.

1. F is a good filtration if there exists $N \geq 0$ such that for all $i, F_{j} D \cdot F_{N} M=F_{N+i} M$ where F_{N} is finitely generated over $F_{0} D$. Pick $W \subset M$ which generates M and is finite-dimensional. Then $F_{j} M=F_{j} D \cdot W$.

2. Exercise.

Example 1.4. Let $D=\mathbb{C}[x]$ and F_{i} be polynomials of degree $\leq i$. Take $M=D$ and $F_{j} M=M$ for all j. This is a bad filtration.

Lemma 1.3. If $\operatorname{gr} D$ is left (or right) Noetherian then so is D. Recall that D is left Noetherian \Longleftrightarrow any submodule of a finitely generated left module is finitely generated.

Proof. Let M be a finitely generated D-module and $N \subset M$ a submodule. Let $F_{j} M$ be a good filtration on M. Define $F_{j} N=N \cap F_{i} M$. Then $\operatorname{gr} N \subset \operatorname{gr} M$ which implies that $\operatorname{gr} N$ is finitely generated over $\operatorname{gr} D$. Hence N is finitely generated over D by a previous lemma.

Corollary 1.1. D_{n} is left and right Noetherian and $\operatorname{gr} D_{n} \simeq k\left[x_{1}, \cdots, x_{n}, \xi_{1}, \cdots, \xi_{n}\right]$.

1.2.1 Functional (Gelfand-Kirillov) Dimension

Let D be an algebra (over a field of any characteristic) with a filtration that satisfies the conditions

1. $\operatorname{dim} F_{i} D<\infty \quad \forall i$
2. $\operatorname{gr} D \simeq k\left[y_{1}, \cdots, y_{m}\right]$

Theorem 1.4. Let M be a finitely generated D-module.

1. Let $F_{j} M$ be a good filtration on M. Then there exists a polynomial $h_{F}(M)(t) \in \mathbb{Q}[t]$, called the Hilbert polynomial of M and F, such that $\operatorname{dim}_{k} F_{j} M=h_{F}(M)(j)$ for $j \gg 0$. Moreover

$$
h_{F}(M)(t)=\frac{c \cdot t^{d}}{d!}+\text { lower order terms }
$$

for $0 \leq d \leq m$ and $c \in \mathbb{Z}>0$.
2. The numbers c and d do not depend on $F . d=d(M)$ is called the functional or Gelfand-Kirillov dimension of M.

Proof.

1. It is enough to assume that $D=k\left[y_{1}, \cdots, y_{n}\right]$ at which point it reduces to a standard result from commutative algebra.
2. Let F, F^{\prime} be two good filtrations on M. Then there exist numbers j_{0}, j_{1} such that $F_{j-j_{0}}^{\prime} \subset$ $F_{j} M \subset F_{j+j_{1}}^{\prime}$. But then $\operatorname{dim} F_{j-j_{0}}^{\prime} \leq \operatorname{dim} F_{j} M \leq \operatorname{dim} F_{j+j_{1}}^{\prime}$ and so $h_{F^{\prime}}\left(j-j_{0}\right) \leq h_{F}(j) \leq$ $h_{F^{\prime}}(j+j+1)$. This implies that h_{F} and h_{F}^{\prime} have the same leading term.

Example 1.5. $d(M)=0 \Longleftrightarrow \operatorname{dim} M<\infty$.
Theorem 1.5 (Bernstein Inequality). For any finitely generated module M over $D_{n}, 2 n \geq d(M) \geq n$.
Definition 1.4. Let M be a finitely generated D_{n}-module. M is called holonomic if $d(M)=n$.
Example 1.6.

1. $k\left[x_{1}, \cdots, x_{n}\right]$ is a D_{n} module. Let $F_{i} M$ be the filtration by degree of polynomials. $\operatorname{gr} M$ is isomorphic to $k\left[x_{1}, \cdots, x_{n}\right]$ as a vector space again and $\xi_{i} \in \operatorname{gr} D_{n}$ acts by 0 .

$$
\operatorname{dim} F_{i} k\left[x_{1}, \cdots, x_{n}\right]=\binom{n+i}{n}=\frac{(n+i) \cdots(i+1)}{n!}=\frac{i^{n}}{n!}+\text { lower order terms }
$$

so it is holonomic. Here $d=n$ and $-c=1$.
2. For $M=D_{n}, d=2 n$ and $c=1$.

[21.09.2017]

Missed material

Claim 1.2. Let M be any D-module and let $F_{j} M$ be some filtration on M (maybe not good.) Assume that there exists a polynomial $h \in \mathbb{Q}[t]$ such that $h(j)=\operatorname{dim} F_{j} M$ for $j \gg 0$ and $h(t)=c \cdot \frac{t^{n}}{n!}+\cdots$. Then M is holonomic and length $(M) \leq c$. In particular, M is finitely generated.

Proof. Let $N \subset M$ be any finitely generated submodule. First we show N is holonomic and $c(N) \leq c$ (in particular, length $(N) \leq c$.)

There is a filtration on N given by $F_{j} N=F_{j} M \cap N$ and we can find a good filtration $F_{j}^{\prime} N$ such that $F_{j}^{\prime} N \subset F_{j} N$ for all $j \gg 0$. Take any j_{0} such that $F_{j_{0}} N$ generat4es N. For $j<j_{0}$ let $F_{j}^{\prime} N=0$ and for $j \geq j_{0}$ let $F_{j}^{\prime} N=F_{j-j_{0}} D \cdot F_{j_{0}} N \subset F_{j} N$. This is a good filtration.

Since $\operatorname{dim} F_{j}^{\prime} N \leq \operatorname{dim} F_{j} N \leq \operatorname{dim} F_{j} M$ it follows that $h_{F^{\prime}}(N)(j) \leq h(j)$ for $j \gg 0$. Because $\operatorname{deg} h_{F^{\prime}}(N) \geq n$ and $\operatorname{deg} h=n$ this implies $\operatorname{deg} h_{F^{\prime}}(N)=n$ and so $c(N) \leq c$.

Next, assume that $\left.) \subset M_{1} \subset M\right) 2 \subset M_{3} \subset M_{4} \subset \cdots \subset M$ are finitely generated submodules with $M_{i} / M_{i-1} \neq 0$ for all i. Then $m \leq c$ so M is finitely generated and so by the previous argument that M is holonomic of length $\leq c$.

Take the base field $\mathbb{C}(\lambda)$, pick $p \in \mathbb{C}\left[x_{1}, \cdots, x_{n}\right]$ and define

$$
M\left(p^{\lambda}\right)=\left\{q \cdot p^{\lambda+i}, q \in \mathbb{C}(\lambda)\left[x_{1}, \cdots, x_{n}\right]\right\} /(p q) p^{\lambda+i}=q p^{\lambda+i+1}
$$

Note that D_{n} acts on $M\left(p^{\lambda}\right)$.
Theorem 1.6. $M\left(P^{\lambda}\right)$ is holonomic (in particular finitely generated.)
Proof. Define

$$
F_{j} M=\left\{q p^{\lambda-j}: \operatorname{deg} q \leq j(m+1)\right\}
$$

where $m=\operatorname{deg} p$.
To see that this is a filtration observe that $x_{i} q p^{\lambda-j}=x_{i} p q p^{\lambda-j-1}$. and

$$
\frac{\partial}{\partial x_{i}}\left(q p^{\lambda-j}\right)=\frac{\partial q}{\partial x_{i}} p^{\lambda-j}+q \frac{\partial p}{\partial x_{i}} p^{\lambda-j-1}=p^{\lambda-j-1}\left(q \frac{\partial p}{\partial x_{i}}+p \frac{\partial q}{\partial x_{i}}\right)
$$

$\operatorname{dim} F_{k} M=(\underset{n}{(\underset{n}{(m+1)+n}})=$ polynomials in j of degree n, which proves $M\left(p^{\lambda}\right)$ is holonomic and this implies $M\left(p^{\lambda}\right)$ is finitely generated.

1.2.2 Proof of Bernstein's Inequality (Theorem 1.5)

Let $F_{j} M$ be a good filtration on a module M. Assume $F_{0} M \neq 0$.
Lemma 1.4. The map $F_{i} \mathcal{D}$ to $\operatorname{Hom}\left(F_{i} M, F_{2 i} M\right)$ is injective.
Proof. There is always a map $F_{i} D \rightarrow \operatorname{Hom}\left(F_{j} M, F_{j+1} M\right)$ so the map in the lemma is the $i=j$ case.
For all $a \in F_{i} D$ there exists $\alpha \in F_{i}$ such that $a(\alpha) \neq 0$. Observe that $\left[F_{i} D, F_{j} D\right] \subset F_{i+j-2} D$.
Assuming a is not constant, there exists $m=1, \cdots, n$ such that either $\left[a, x_{m}\right] \neq 0$ or $\left[a, \partial_{m}\right] \neq 0$, and this is equivalent to D having center the constants. Lets assume WLOG that $\left[a, x_{m}\right] \neq 0$. If $a \in F_{i} D$ then $\left[a, x_{m}\right] \in F_{i-1} D$. i

We will show that $a\left(F_{i} M\right) \neq 0$. By induction we assssume that this is true for all smaller i 's. Then there exists $\alpha \in F_{i-1} M$ such that $\left[a, x_{m}\right](\alpha)=a x_{m}(\alpha)-x_{m} a(\alpha) \neq 0$.
$a(\alpha)=0$ since $\alpha \in F_{i-1} M \subset F_{i} M$ and if $a\left(F_{i} M\right)=0$, then $a x_{m}(\alpha)=0$ which would contradict $\left[a, x_{m}\right](\alpha) \neq 0$. Hence $a\left(F_{i} M\right) \neq 0$.

To see that the lemma implies the theorem, notice that

$$
\operatorname{dim} F_{i} D=\frac{i^{2} n}{(2 n!)}+\text { lower order terms }
$$

but also

$$
\operatorname{dim} F_{i} \mathcal{D} \leq \operatorname{dim} F_{i} M \cdot \operatorname{dim} F_{2 i}(M)=h(i) \cdot h(2 i)=c(M)^{2} \frac{i^{d}}{d!} \frac{(2 i)^{d}}{d!}+\text { lower order terms }
$$

Comparing the degrees of these two polynomials in i, we get $n \leq d$ proving the theorem.

1.2.3 Outlook

We want a systematic theory of modules over D_{n}. Or, more generally, of $D(X)$-modules where X is a smooth affine algebraic variety $X=\operatorname{Spec} R$. Recall that we defined differential operators of order $\leq k$ to be maps $L: R \rightarrow R$ such that $[L, f]$ is a differential operator of order $\leq m-1$ for all $f \in R$. Alternatively, $D(X)$ is the algebra generated by $R=\mathcal{O}(X)$ and by $\operatorname{Vect}_{X}=$ vector fields on X.
D_{n}-modules \sim to a system of linear PDE's with polynomial coefficients, ie. we have functions f_{1}, \cdots, f_{r} which we want to satisfy the equation $\sum_{i, j} L_{i j}\left(f_{i}\right)=0$ for $L_{i j} \in D_{n}$.

A finitely generated D-module M has generators ξ_{1}, \cdots, ξ_{r} with relation $\sum_{i} L_{i j}\left(\xi_{i}\right)$. So, a system of differential equations is equivalent to a D-module plus a system of generators $D^{r} \rightarrow M$. A solution in some functional space \mathcal{F} is then an element of $\operatorname{Hom}_{D}(M, \mathcal{F})$. Using this dictionary can say a system of differential equations is holonomic if it's associated D-module is.

If we have a cyclic system (ie. generated by one element)

$$
\begin{equation*}
L_{1}(f)=0, \cdots, L_{k}(f)=0 \tag{*}
\end{equation*}
$$

for $L_{1}, \cdots, L_{k} \in D_{n}$, this is equivalent to $M=D / I$ where I is the left ideal generated by L_{1}, \cdots, L_{k}. So, a solution of $(*)$ in some function space $\mathcal{F} \Longleftrightarrow$ an element of $\operatorname{Hom}_{D}(M, \mathcal{F})$. Conversely, given $f \in \mathcal{F}$ get a module $M(f)=D \cdot f$.

Theorem 1.7. Any holonomic D_{n} module is cyclic (ie. generated by one element.)
Example 1.7. In the $n=1$ case, $\mathbb{C}\left[x, x^{-1}\right]$ is a D-module generated by x^{-1}, ie. $\mathbb{C}\left[x, x^{-1}\right]=$ $D /\left(x \frac{d}{d x}+1\right)$.
Claim 1.3. D_{n} is a simple algebra.
Proof. Assume that I is a proper two-sided ideal in D_{n}. Pick some $0 \neq L \in I$. Then there exists m such that either $[L, m] \neq 0$ or $\left[L, \partial_{m}\right] \neq 0$. Both of these commutators lie in the ideal I still.
$L \in F_{i} D$ for some i and $\left[L, x_{m}\right],\left[L, \partial_{m}\right] \in F_{i-1} D$. Iterate this procedure and after i steps, observe that there exists $L^{\prime} \in F_{0} D \cap I . L^{\prime}$ is a nonzero constant and hence $I=D_{n}$.

As a result notice that $D \rightarrow \operatorname{End} M$ is injective.
Claim 1.4. Let A be any simple algebra which as a left module over itself has infinite length. Then any A-module of finite length is cyclic.

Proof. Let M be a module of finite length. Use induction on length (M). Given an exact sequence $0 \rightarrow K \rightarrow M \xrightarrow{\pi} N \rightarrow 0$, if $K, N \neq 0$ then $\ell(N), \ell(K)<\ell(M)$ so K, N is cyclic: $N=A \cdot n, n \in N$. Let $I=\operatorname{Ann}_{A}(n)$
$I \neq 0$ since $I=0$ would imply N is free. Let $m \in \pi^{-1}(n) . M^{\prime}=A \cdot m, M^{\prime} \rightarrow N$ is surjective. $\operatorname{ker}\left(M^{\prime} \rightarrow N\right) \subset K$ implies either 0 or k.

If kernel $=K$, then $M^{\prime}=M$ and M is cyclic. If kernel=0, then $M^{\prime}-N . \operatorname{Ann}_{A}(m)=\operatorname{Ann}_{A}(n)=I$. $\operatorname{Ann}_{A}(m+v)=I$ for all $v \in K$ which implies I kills K.
$A \xrightarrow{\alpha} \operatorname{End} K, K \neq 0$ is not injective. But then $\operatorname{Ker} \alpha \subset A$ is a proper two-sided ideal, a contradiction.

Exercise 1.2. D_{n} has infinite length as a module over itself.

