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Chapter 1

Algebraic D-Modules

[14.09.2017]

1.1 Gamma Functions
Recall the gamma function
F'(A+1) = / e dx
0
for A € C. This is convergent and defines a holomorphic function of A for ReA > —1.

Theorem 1.1. The right hand side of the definition of the gamma function extends to a meromorphic
function of X\ with poles at the negative integers.

Let p € Rlxy, -+ ,z,] be a polynomial and let U € R"™ be a connected component of R™\ Zeros(p).
Let ¢ be a rapidly decreasing function ¢ : R* — C. Recall the Schwartz space

X . derivative v of any order of ¢ i h that
SR = {o: R C: 0%, SRS T LR )
For p € R[xy,- -+ , 2, and ¢ € S(R"),

/U p(@) P o(a)da

is absolutely convergent for ReX > 0 so that in this case we get a functional S(R™) — C, ie. we get
an element pp, € S*(R™).

Ezample 1.1. p(z) = x, U = Rsq. Then piy(p) = [°

0 r e *dx is the gamma function.

P {N: Red > 0} — S*(R™)
Question (Gelfand, Sato, 1950s) Is there always a meromorphic continuation?

Theorem 1.2. For all p and U, py, has meromorphic continuation to all of C with poles in finitely
many arithmetic progressions with step 1.

This was first preved by Atiyah, Bernstein-S. Gelfand but this is a “bad” proof (it uses reoslution of
singularities.) An alternate “better” proof was given in Bernstein’s 1972 thesis.
Goal: Produce a purely algebraic statement which implies the theorem.
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The idea of the proof of Theorem 1.2 is to emulate the following argument for general polynomials.
Consider the integral [ a*¢(z)dx for ¢ rapidly decreasing. Using the key identity d%(x’\“) =
A+ 1)z*

A d :/ A+1 d
/0 xp(x)dr i _dx(x )—)\—l— 1g0(:1:) x

1 > A+1, 7
=—— x x)dx
A+1 #l)
In the range —2 < Re(A) < —1 there is a problem only at A = —1. Continue in the same way for the
next interval and iterate.
Let D,, be the algebra of linear differential operators in n variables with polynomial coefficients.

D,, C EndcClzy, - -+ , ] is the algebra of linear combinations

(e%} a a2 a Qn
Z (o) (o) - (6n)

Ezxample 1.2.
d d
Di=Clae, 2N /1L 2| =1
=)/ L]
Theorem 1.3. Given p € Clxy,--- ,x,| there exists L € D,[\] and b(\) € Clzy,--- ,x,] such that
L(p*1) = b(\)p* where gp = (g—;) p*t. Such a b(\) is called the b function of p.

Exercise 1.1. Show that Theorem 1.3 implies Theorem 1.2. Morevoer show that the poles will be at
numbers of the form & —n where b(§) = 0 and n € Ny.

Let D, (A\) = D,, ® C(\) where C()) is the field of rational functions in A. Define

M(p {prZ i €L, f € C(\xy,- }/ i L)

This is a D,,(A\)-module.
Claim 1.1. Theorem 1.3 is equivalent to M (p*) being finitely generated over D,,()).

Proof. M(p*) is generated by all p**® for i € Z. Being finitely generated is equivalent to saying
there exists ¢ such that just the single element p*** generates M which is equivalent to saying p**!
generates M. O

1.2 The Algebra D, and Modules Over It

Let k be a field of characteristic 0 (usually & = C,C(\) for us.)

Lemma 1.1 (Definition). The following are equivalent.

1. The algebra D, C Endk[zy,- - ,x,] spanned as a vector space by
AN ALRNEAG
avrnan \ Oy O oz,
foray, -, ay, > 0 ie. the subalgebm of Endklxy, - -, z,| generated by multiplication by x; for
1=1,---, nand forz—l
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2. The algebra D,, generated by symbols z; and % fori=1,--- n subject to the relations
J

0
{a—xi,%‘] = 0y
0

0
{a—%’a—%} =0

[l’i, Ij] =0

3. The algebra of differential operators of order < m is the subalgebra D<,, C End k[z1, -

defined inductively as follows:

m = 0: multiplication by [ € klxy, -+, )
m>0: d:klzy, -, x,] = K[z, -+, x,] is an operator of order < m

iff [d, f] € Depm—y for all f € klxy, -+, xy)

Remark 1.1. There is an anti-automorphism o : D,, — D,, defined by x; +— z; and % —

Hence left modules over D,, are equivalent to right modules.

.. 7$n]

_ 0
89:{

Remark 1.2. S(R™) is a left module over D,, and S*(R") is a right module over D,, which we can

convert to a left module using o.

The main result we would like to formulate is the Bernstein inequality, which in vague terms says

that D,, can’t be too small.

Ezample 1.3. Take n = 1 and suppose that M is a nonzero D;-module. Then dimy M = oo (this

follows by considering traces in the relation [d/dz, z] = 1.)

If M is finitely generated we will introduce the functional dimension of M, a number 0 < d(M) <

2n. The Bernstein inequality will be d(M) > n.

Definition 1.1. Let D be any k-algebra. A filtration on D is a decomposition D = U, F;D where
each F;D is a subspace such that F;D - F;D C F;;D. We can then define the associated graded

gI‘D = é FzD/E_lD = égrzD
1=0 i=1

which will satisty gr; D - gr;D C gr;,;D.

There are two common filtrations on D,

1. Geometric Filtration: F;D,, = D, is the set of differential operators of order < i and FyD,, =

Elxy, -,z

2. Arithmetic Filtration:

o B81 o Bn
ol 2O | T (- F o D
i Tn (8x1) (8%) 20t

FyD,, =k, Fan:k:@span(xh... 7$n>a%1v"' L)

? Oxn

For either of these filtrations, grD,, >~ k[xq, -+ , 2., &1, , &l
Note that in general, gr’’ D is commutative <= [F;D, F;D] C F;;;_1D.

5
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Definition 1.2. Consider any D-algebra with filtration and let M be a D-module. A filtration on
M is a union M = ;- , F;M such that F;D - F;M C F,;;M. The associated graded of M is

oM =P F;M/F; M = @ er,M
j=0 Jj=0
grM is naturally a graded module over grD with gr,D - gr; M C gr;, ;M.
Lemma 1.2. If gt M is finitely generated then so is M.
Proof. Exercise. O]
Definition 1.3.
1. A filtration F on M is called good if gr’ M is finitely generated over grD.

2. Two filtrations I’ and F’ on M are called equivalent if there exist j, and j; such that

Fi M C F;MC F]

J+i1

M

for all j.
Proposition 1.1. Let M be a finitely generated D-module. Then
1. M has a good filtration.

2. If F is a good filtration and F' is any filtration then there exists j; such that F;M C F!_. M

J+i1
for all j. In particular, any 2 good filtrations are equivalent.
Proof.

1. F'is a good filtration if there exists N > 0 such that for all ¢, F;D - FxM = Fy;M where
Fy is finitely generated over FyD. Pick W C M which generates M and is finite-dimensional.
Then F;M = F;D - W.

2. Exercise.

]

Example 1.4. Let D = C[z]| and F; be polynomials of degree < i. Take M = D and F;M = M for
all j. This is a bad filtration.

Lemma 1.3. If grD is left (or right) Noetherian then so is D. Recall that D is left Noetherian <=
any submodule of a finitely generated left module is finitely generated.

Proof. Let M be a finitely generated D-module and N C M a submodule. Let F;M be a good
filtration on M. Define F;N = N N F;M. Then grN C grM which implies that grN is finitely
generated over grD. Hence N is finitely generated over D by a previous lemma. Il

Corollary 1.1. D, is left and right Noetherian and grD,, ~ kl[z1,- -+ ,xn, &1, , &l
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1.2.1 Functional (Gelfand-Kirillov) Dimension

Let D be an algebra (over a field of any characteristic) with a filtration that satisfies the conditions
1. dimF;D < oo Vi

2. grD = klyi, -+, Y]
Theorem 1.4. Let M be a finitely generated D-module.

1. Let F;M be a good filtration on M. Then there exists a polynomial hp(M)(t) € Q[t], called the
Hilbert polynomial of M and F, such that dimy F;M = hp(M)(j) for j > 0. Moreover

.44

hp(M)(t) = i + lower order terms

for0<d<mandceZ > 0.

2. The numbers ¢ and d do not depend on F'. d = d(M) is called the functional or Gelfand-Kirillov
dimension of M.

Proof.

1. Tt is enough to assume that D = kly;, -+ ,y,] at which point it reduces to a standard result
from commutative algebra.

2. Let F, F’ be two good filtrations on M. Then there exist numbers jo,j; such that Fj_, C
F;M C ‘Fj]{‘i’jl' But then climFJLj0 < dim F;M < dimFJ(ﬂ-1 and so hp (] — jo) < hp(y) <
hg(j 4+ j + 1). This implies that hp and A} have the same leading term.

Ezample 1.5. d(M) =0 <= dim M < oo.
Theorem 1.5 (Bernstein Inequality). For any finitely generated module M over D,,, 2n > d(M) > n.
Definition 1.4. Let M be a finitely generated D,-module. M is called holonomic if d(M) = n.
Ezxample 1.6.

1. k[zq, -+ ,x,] is a D, module. Let F;M be the filtration by degree of polynomials. grM is

isomorphic to k[xy,--- ,x,] as a vector space again and ; € grD,, acts by 0.

— = — 4 lower order terms
n! n!

dim Fik[z1, - ,xn] = (nﬂ) (i) i+1) am

n
so it is holonomic. Here d = n and —c = 1.

2. For M =D,,d=2n and c = 1.
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[21.09.2017]
Missed material
Claim 1.2. Let M be any D-module and let F;M be some filtration on M (maybe not good.) Assume

that there exists a polynomial i € Q[f] such that h(j) = dim F;M for j > 0 and h(t) = c- & +---.
Then M is holonomic and length(M) < ¢. In particular, M is finitely generated.

Proof. Let N C M be any finitely generated submodule. First we show N is holonomic and ¢(N) < ¢
(in particular, length(N) < c.)

There is a filtration on N given by F;N = F;M N N and we can find a good filtration F;N such
that F;N C F;N for all j > 0. Take any jo such that Fj, N generatdes N. For j < jo let F;N =0
and for j > jo let F;N = F; ;D - F;, N C F;N. This is a good filtration.

Since dim F/N < dim F;N < dim F;M it follows that hp(N)(j) < h(j) for j > 0. Because
deg hp/(N) > n and deg h = n this implies deg hp(N) = n and so ¢(N) < c.

Next, assume that ) C M; C M)2 C My C My C --- C M are finitely generated submodules
with M; / M;_1 # 0 for all i. Then m < ¢ so M is finitely generated and so by the previous argument
that M is holonomic of length < c. O]

Take the base field C(\), pick p € Clzy, -+ ,x,] and define
M(pA) — {q .p)\+i7 q€ C(/\)[xl’ e 7xn]}/<pQ)p)\+Z _ qp)\+i+1

Note that D,, acts on M (p*).
Theorem 1.6. M (P?) is holonomic (in particular finitely generated.)

Proof. Define _
F;M = {qp*7 :degq < j(m+1)}

where m = degp.
To see that this is a filtration observe that z;qp*~7 = z;pgp* 7 ~!.

0 dq Ai oy @p,\ﬁel :p’\*jfl ( dp 361)

and

A7y
dim F, M = (j (mt}””) = polynomials in j of degree n, which proves M (p*) is holonomic and this
implies M (p*) is finitely generated. O

1.2.2 Proof of Bernstein’s Inequality (Theorem 1.5)
Let F;M be a good filtration on a module M. Assume FyM # 0.
Lemma 1.4. The map F;D to Hom(F;M, Fy;M) is injective.

Proof. There is always a map F;D — Hom(F; M, Fj 11 M) so the map in the lemma is the i = j case.
For all a € F;D there exists a € F; such that a(a) # 0. Observe that [F;D, F;D] C Fiij_oD.
Assuming a is not constant, there exists m = 1,--- ,n such that either [a, z,,] # 0 or [a, 0,,] # 0,

and this is equivalent to D having center the constants. Lets assume WLOG that [a, z,,] # 0. If

a € F;D then [a,z,,] € F;_1D. i
We will show that a(F;M) # 0. By induction we assssume that this is true for all smaller ’s.

Then there exists a € F;_1M such that [a, x,](a) = azp, (@) — xpa(a) # 0.

8
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a(a) = 0 since o € F;_1M C F;M and if a(F;M) = 0, then azx,,(«) = 0 which would contradict
la, x| () # 0. Hence a(F;M) # 0.
[

To see that the lemma implies the theorem, notice that

2
n
dim F;D = —— + lower order terms

(2n!)

but also
217 (2i)

dim F;D < dim FM - dim Fyy(M) = h(i) - h(2i) = e(M)* 52—

4+ lower order terms.

Comparing the degrees of these two polynomials in 7, we get n < d proving the theorem.

1.2.3 Outlook

We want a systematic theory of modules over D,,. Or, more generally, of D(X )-modules where X is
a smooth affine algebraic variety X = Spec R. Recall that we defined differential operators of order
< k to be maps L : R — R such that [L, f] is a differential operator of order < m — 1 for all f € R.
Alternatively, D(X) is the algebra generated by R = O(X) and by Vecty = vector fields on X.

D,-modules ~ to a system of linear PDE’s with polynomial coefficients, ie. we have functions
fi,+++, fr which we want to satisfy the equation Z” L;;(fi) =0 for L;; € D,.

A finitely generated D-module M has generators &, - - - , &, with relation ), L;;(&). So, a system
of differential equations is equivalent to a D-module plus a system of generators D" — M. A solution
in some functional space F is then an element of Homp (M, F). Using this dictionary can say a system
of differential equations is holonomic if it’s associated D-module is.

If we have a cyclic system (ie. generated by one element)

(%) Li(f)=0,--- , Ly(f) =0

for Ly, -+, L, € D,, this is equivalent to M = D/] where [ is the left ideal generated by Ly, --- , L.
So, a solution of (x) in some function space F <= an element of Homp (M, F). Conversely, given
f € F get amodule M(f)=D- f.

Theorem 1.7. Any holonomic D,, module is cyclic (ie. generated by one element.)

Example 1.7. In the n = 1 case, Clr,x7!] is a D-module generated by z~! ie. Clzr,z7!] =
D/@%+U.

Claim 1.3. D,, is a simple algebra.

Proof. Assume that [ is a proper two-sided ideal in D,,. Pick some 0 # L € I. Then there exists m
such that either [L,m]| # 0 or [L, 0,,] # 0. Both of these commutators lie in the ideal I still.

L € F;D for some i and [L, z,,], [L, 0,y] € F;_1D. Iterate this procedure and after ¢ steps, observe
that there exists L' € Fo,D N I. L' is a nonzero constant and hence I = D,,. O

As a result notice that D — EndM is injective.

Claim 1.4. Let A be any simple algebra which as a left module over itself has infinite length. Then
any A-module of finite length is cyclic.
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Proof. Let M be a module of finite length. Use induction on length(M). Given an exact sequence
0= K— M N —=0,if K, N #0 then {(N),{(K) < (M) so K,N is cyclic: N=A-n,n¢c N.
Let [ = Anny(n)

I # 0 since I = 0 would imply N is free. Let m € 7~ '(n). M’ = A-m, M’ — N is surjective.
ker(M' — N) C K implies either 0 or k.

If kernel=K, then M’ = M and M is cyclic. If kernel=0, then M’'—N. Annu(m) = Annu(n) = I.
Anny(m +v) = I for all v € K which implies [ kills K.

A5 EndK, K # 0 is not injective. But then Keraw C A is a proper two-sided ideal, a contradic-
tion.

]

Exercise 1.2. D,, has infinite length as a module over itself.

10
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