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Chapter 1

Algebraic D-Modules

[14.09.2017]

1.1 Gamma Functions
Recall the gamma function

Γ(λ+ 1) =

∫ ∞

0

xλe−xdx

for λ ∈ C. This is convergent and defines a holomorphic function of λ for Reλ > −1.

Theorem 1.1. The right hand side of the definition of the gamma function extends to a meromorphic
function of λ with poles at the negative integers.

Let p ∈ R[x1, · · · , xn] be a polynomial and let U ∈ Rn be a connected component of Rn\Zeros(p).
Let φ be a rapidly decreasing function φ : Rn → C. Recall the Schwartz space

S(Rn) =
{
φ : Rn → C : C∞,

any derivative ψ of any order of φ is such that
lim|x⃗|→∞ |ψ · f(x⃗)| = 0 for any f ∈ R[x1, · · · , xn]

}
For p ∈ R[x1, · · · , xn] and φ ∈ S(Rn), ∫

U

|p(x)|λφ(x)dx

is absolutely convergent for Reλ ≫ 0 so that in this case we get a functional S(Rn) → C, ie. we get
an element pλU ∈ S∗(Rn).
Example 1.1. p(x) = x, U = R>0. Then pλU(φ) =

∫∞
0

xλe−xdx is the gamma function.

pλU : {λ : Reλ ≫ 0} → S∗(Rn)

Question (Gelfand, Sato, 1950s) Is there always a meromorphic continuation?

Theorem 1.2. For all p and U , pλU has meromorphic continuation to all of C with poles in finitely
many arithmetic progressions with step 1.

This was first preved by Atiyah, Bernstein-S. Gelfand but this is a “bad” proof (it uses reoslution of
singularities.) An alternate “better” proof was given in Bernstein’s 1972 thesis.
Goal: Produce a purely algebraic statement which implies the theorem.
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CHAPTER 1. ALGEBRAIC D-MODULES Alexander Braverman

The idea of the proof of Theorem 1.2 is to emulate the following argument for general polynomials.
Consider the integral

∫∞
0

xλφ(x)dx for φ rapidly decreasing. Using the key identity d
dx
(xλ+1) =

(λ+ 1)xλ, ∫ ∞

0

xλφ(x)dx =

∫ ∞

0

d

dx
(xλ+1)

1

λ+ 1
φ(x)dx

= − 1

λ+ 1

∫ ∞

0

xλ+1φ′(x)dx

In the range −2 < Re(λ) ≤ −1 there is a problem only at λ = −1. Continue in the same way for the
next interval and iterate.

Let Dn be the algebra of linear differential operators in n variables with polynomial coefficients.
Dn ⊂ EndCC[x1, · · · , xn] is the algebra of linear combinations∑

α1,··· ,αn

fα1,··· ,αn

(
∂

∂x1

)α1
(

∂

∂x2

)α2

· · ·
(

∂

∂xn

)αn

Example 1.2.

D1 = C
⟨
x,

d

dx

⟩/[
d

dx
, x

]
= 1

Theorem 1.3. Given p ∈ C[x1, · · · , xn] there exists L ∈ Dn[λ] and b(λ) ∈ C[x1, · · · , xn] such that
L(pλ+1) = b(λ)pλ where ∂pλ

∂xi
= λ

(
∂φ
∂xi

)
pλ−1. Such a b(λ) is called the b function of p.

Exercise 1.1. Show that Theorem 1.3 implies Theorem 1.2. Morevoer show that the poles will be at
numbers of the form ξ − n where b(ξ) = 0 and n ∈ N>0.

Let Dn(λ) = Dn ⊗ C(λ) where C(λ) is the field of rational functions in λ. Define

M(pλ) =
{
fpλ+i : i ∈ Z, f ∈ C(λ[x1, · · · , xn]

}/
(p · pλ+i = pλ+i+1).

This is a Dn(λ)-module.
Claim 1.1. Theorem 1.3 is equivalent to M(pλ) being finitely generated over Dn(λ).

Proof. M(pλ) is generated by all pλ+i for i ∈ Z. Being finitely generated is equivalent to saying
there exists i such that just the single element pλ+i generates M which is equivalent to saying pλ+1

generates M .

1.2 The Algebra Dn and Modules Over It
Let k be a field of characteristic 0 (usually k = C,C(λ) for us.)

Lemma 1.1 (Definition). The following are equivalent.

1. The algebra Dn ⊂ Endk[x1, · · · , xn] spanned as a vector space by

fα1,··· ,αn

(
∂

∂x1

)α1
(

∂

∂x2

)α2

· · ·
(

∂

∂xn

)αn

for α1, · · · , αn ≥ 0, ie. the subalgebra of Endk[x1, · · · , xn] generated by multiplication by xi for
i = 1, · · · , n and ∂

∂xi
for i = 1, · · · , n.
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2. The algebra Dn generated by symbols xi and ∂
∂xj

for i = 1, · · · , n subject to the relations[
∂

∂xi
, xj

]
= δij[

∂

∂xi
,

∂

∂xj

]
= 0

[xi, xj] = 0

3. The algebra of differential operators of order ≤ m is the subalgebra D≤m ⊂ End k[x1, · · · , xn]
defined inductively as follows:

m = 0 : multiplication by f ∈ k[x1, · · · , xn]
m > 0 : d : k[x1, · · · , xn] → k[x1, · · · , xn] is an operator of order ≤ m

iff [d, f ] ∈ D≤m−1 for all f ∈ k[x1, · · · , xn]

Remark 1.1. There is an anti-automorphism σ : Dn → Dn defined by xi 7→ xi and ∂
∂xi

7→ − ∂
∂xi

.
Hence left modules over Dn are equivalent to right modules.
Remark 1.2. S(Rn) is a left module over Dn and S∗(Rn) is a right module over Dn which we can
convert to a left module using σ.

The main result we would like to formulate is the Bernstein inequality, which in vague terms says
that Dn can’t be too small.
Example 1.3. Take n = 1 and suppose that M is a nonzero D1-module. Then dimkM = ∞ (this
follows by considering traces in the relation [d/dx, x] = 1.)

If M is finitely generated we will introduce the functional dimension of M , a number 0 ≤ d(M) ≤
2n. The Bernstein inequality will be d(M) ≥ n.

Definition 1.1. Let D be any k-algebra. A filtration on D is a decomposition D = ∪∞
i=0FiD where

each FiD is a subspace such that FiD · FjD ⊂ Fi+jD. We can then define the associated graded

grD =
∞⊕
i=0

FiD
/
Fi−1D =

∞⊕
i=1

griD

which will satisfy griD · grjD ⊂ gri+jD.

There are two common filtrations on Dn

1. Geometric Filtration: FiDn = D≤i is the set of differential operators of order ≤ i and F0Dn =
k[x1, · · · , xn].

2. Arithmetic Filtration:

xα1
1 · · ·xαn

n

(
∂

∂x1

)β1

· · ·
(

∂

∂xn

)βn

∈ F∑
αi+

∑
βjD

F0Dn = k, F1Dn = k ⊕ span
(
x1, · · · , xn, ∂

∂x1
, · · · , ∂

∂xn

)
For either of these filtrations, grDn ≃ k[x1, · · · , xn, ξ1, · · · , ξn].
Note that in general, grFD is commutative ⇐⇒ [FiD,FjD] ⊂ Fi+j−1D.
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Definition 1.2. Consider any D-algebra with filtration and let M be a D-module. A filtration on
M is a union M =

∪∞
k=0 FjM such that FiD · FjM ⊂ Fi+jM . The associated graded of M is

grM =
∞⊕
j=0

FjM
/
Fj−1M =

∞⊕
j=0

grjM

grM is naturally a graded module over grD with griD · grjM ⊂ gri+jM .

Lemma 1.2. If grFM is finitely generated then so is M .

Proof. Exercise.

Definition 1.3.

1. A filtration F on M is called good if grFM is finitely generated over grD.

2. Two filtrations F and F ′ on M are called equivalent if there exist j0 and j1 such that

F ′
j−j0M ⊂ FjM ⊂ F ′

j+j1
M

for all j.

Proposition 1.1. Let M be a finitely generated D-module. Then

1. M has a good filtration.

2. If F is a good filtration and F ′ is any filtration then there exists j1 such that FjM ⊂ F ′
j+j1

M
for all j. In particular, any 2 good filtrations are equivalent.

Proof.

1. F is a good filtration if there exists N ≥ 0 such that for all i, FjD · FNM = FN+iM where
FN is finitely generated over F0D. Pick W ⊂ M which generates M and is finite-dimensional.
Then FjM = FjD ·W .

2. Exercise.

Example 1.4. Let D = C[x] and Fi be polynomials of degree ≤ i. Take M = D and FjM = M for
all j. This is a bad filtration.

Lemma 1.3. If grD is left (or right) Noetherian then so is D. Recall that D is left Noetherian ⇐⇒
any submodule of a finitely generated left module is finitely generated.

Proof. Let M be a finitely generated D-module and N ⊂ M a submodule. Let FjM be a good
filtration on M . Define FjN = N ∩ FiM . Then grN ⊂ grM which implies that grN is finitely
generated over grD. Hence N is finitely generated over D by a previous lemma.

Corollary 1.1. Dn is left and right Noetherian and grDn ≃ k[x1, · · · , xn, ξ1, · · · , ξn].
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1.2.1 Functional (Gelfand-Kirillov) Dimension
Let D be an algebra (over a field of any characteristic) with a filtration that satisfies the conditions

1. dimFiD < ∞ ∀i

2. grD ≃ k[y1, · · · , ym]

Theorem 1.4. Let M be a finitely generated D-module.

1. Let FjM be a good filtration on M . Then there exists a polynomial hF (M)(t) ∈ Q[t], called the
Hilbert polynomial of M and F , such that dimk FjM = hF (M)(j) for j ≫ 0. Moreover

hF (M)(t) =
c · td

d!
+ lower order terms

for 0 ≤ d ≤ m and c ∈ Z > 0.

2. The numbers c and d do not depend on F . d = d(M) is called the functional or Gelfand-Kirillov
dimension of M .

Proof.

1. It is enough to assume that D = k[y1, · · · , yn] at which point it reduces to a standard result
from commutative algebra.

2. Let F, F ′ be two good filtrations on M . Then there exist numbers j0, j1 such that F ′
j−j0 ⊂

FjM ⊂ F ′
j+j1

. But then dimF ′
j−j0 ≤ dimFjM ≤ dimF ′

j+j1
and so hF ′(j − j0) ≤ hF (j) ≤

hF ′(j + j + 1). This implies that hF and h′
F have the same leading term.

Example 1.5. d(M) = 0 ⇐⇒ dimM < ∞.

Theorem 1.5 (Bernstein Inequality). For any finitely generated module M over Dn, 2n ≥ d(M) ≥ n.

Definition 1.4. Let M be a finitely generated Dn-module. M is called holonomic if d(M) = n.

Example 1.6.

1. k[x1, · · · , xn] is a Dn module. Let FiM be the filtration by degree of polynomials. grM is
isomorphic to k[x1, · · · , xn] as a vector space again and ξi ∈ grDn acts by 0.

dimFik[x1, · · · , xn] =
(
n+ i

n

)
=

(n+ i) · · · (i+ 1)

n!
=

in

n!
+ lower order terms

so it is holonomic. Here d = n and −c = 1.

2. For M = Dn, d = 2n and c = 1.
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[21.09.2017]

Missed material
Claim 1.2. Let M be any D-module and let FjM be some filtration on M (maybe not good.) Assume
that there exists a polynomial h ∈ Q[t] such that h(j) = dimFjM for j ≫ 0 and h(t) = c · tn

n!
+ · · · .

Then M is holonomic and length(M) ≤ c. In particular, M is finitely generated.

Proof. Let N ⊂ M be any finitely generated submodule. First we show N is holonomic and c(N) ≤ c
(in particular, length(N) ≤ c.)

There is a filtration on N given by FjN = FjM ∩N and we can find a good filtration F ′
jN such

that F ′
jN ⊂ FjN for all j ≫ 0. Take any j0 such that Fj0N generat4es N . For j < j0 let F ′

jN = 0
and for j ≥ j0 let F ′

jN = Fj−j0D · Fj0N ⊂ FjN . This is a good filtration.
Since dimF ′

jN ≤ dimFjN ≤ dimFjM it follows that hF ′(N)(j) ≤ h(j) for j ≫ 0. Because
deg hF ′(N) ≥ n and deg h = n this implies deg hF ′(N) = n and so c(N) ≤ c.

Next, assume that ) ⊂ M1 ⊂ M)2 ⊂ M3 ⊂ M4 ⊂ · · · ⊂ M are finitely generated submodules
with Mi

/
Mi−1 ̸= 0 for all i. Then m ≤ c so M is finitely generated and so by the previous argument

that M is holonomic of length ≤ c.

Take the base field C(λ), pick p ∈ C[x1, · · · , xn] and define

M(pλ) = {q · pλ+i, q ∈ C(λ)[x1, · · · , xn]}
/

(pq)pλ+i = qpλ+i+1

Note that Dn acts on M(pλ).

Theorem 1.6. M(P λ) is holonomic (in particular finitely generated.)

Proof. Define
FjM =

{
qpλ−j : deg q ≤ j(m+ 1)

}
where m = deg p.

To see that this is a filtration observe that xiqp
λ−j = xipqp

λ−j−1. and

∂

∂xi
(qpλ−j) =

∂q

∂xi
pλ−j + q

∂p

∂xi
pλ−j−1 = pλ−j−1

(
q
∂p

∂xi
+ p

∂q

∂xi

)
dimFkM =

(
j(m+1)+n

n

)
= polynomials in j of degree n, which proves M(pλ) is holonomic and this

implies M(pλ) is finitely generated.

1.2.2 Proof of Bernstein’s Inequality (Theorem 1.5)
Let FjM be a good filtration on a module M . Assume F0M ̸= 0.

Lemma 1.4. The map FiD to Hom(FiM,F2iM) is injective.

Proof. There is always a map FiD → Hom(FjM,Fj+1M) so the map in the lemma is the i = j case.
For all a ∈ FiD there exists α ∈ Fi such that a(α) ̸= 0. Observe that [FiD,FjD] ⊂ Fi+j−2D.
Assuming a is not constant, there exists m = 1, · · · , n such that either [a, xm] ̸= 0 or [a, ∂m] ̸= 0,

and this is equivalent to D having center the constants. Lets assume WLOG that [a, xm] ̸= 0. If
a ∈ FiD then [a, xm] ∈ Fi−1D. i

We will show that a(FiM) ̸= 0. By induction we assssume that this is true for all smaller i’s.
Then there exists α ∈ Fi−1M such that [a, xm](α) = axm(α)− xma(α) ̸= 0.
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a(α) = 0 since α ∈ Fi−1M ⊂ FiM and if a(FiM) = 0, then axm(α) = 0 which would contradict
[a, xm](α) ̸= 0. Hence a(FiM) ̸= 0.

To see that the lemma implies the theorem, notice that

dimFiD =
i2n

(2n!)
+ lower order terms

but also

dimFiD ≤ dimFiM · dimF2i(M) = h(i) · h(2i) = c(M)2
id

d!

(2i)d

d!
+ lower order terms.

Comparing the degrees of these two polynomials in i, we get n ≤ d proving the theorem.

1.2.3 Outlook
We want a systematic theory of modules over Dn. Or, more generally, of D(X)-modules where X is
a smooth affine algebraic variety X = SpecR. Recall that we defined differential operators of order
≤ k to be maps L : R → R such that [L, f ] is a differential operator of order ≤ m− 1 for all f ∈ R.
Alternatively, D(X) is the algebra generated by R = O(X) and by VectX = vector fields on X.

Dn-modules ∼ to a system of linear PDE’s with polynomial coefficients, ie. we have functions
f1, · · · , fr which we want to satisfy the equation

∑
i,j Lij(fi) = 0 for Lij ∈ Dn.

A finitely generated D-module M has generators ξ1, · · · , ξr with relation
∑

i Lij(ξi). So, a system
of differential equations is equivalent to a D-module plus a system of generators Dr ↠ M . A solution
in some functional space F is then an element of HomD(M,F). Using this dictionary can say a system
of differential equations is holonomic if it’s associated D-module is.

If we have a cyclic system (ie. generated by one element)

(∗) L1(f) = 0, · · · , Lk(f) = 0

for L1, · · · , Lk ∈ Dn, this is equivalent to M = D
/
I where I is the left ideal generated by L1, · · · , Lk.

So, a solution of (∗) in some function space F ⇐⇒ an element of HomD(M,F). Conversely, given
f ∈ F get a module M(f) = D · f .

Theorem 1.7. Any holonomic Dn module is cyclic (ie. generated by one element.)

Example 1.7. In the n = 1 case, C[x, x−1] is a D-module generated by x−1, ie. C[x, x−1] =

D

/(
x d
dx

+ 1
)
.

Claim 1.3. Dn is a simple algebra.

Proof. Assume that I is a proper two-sided ideal in Dn. Pick some 0 ̸= L ∈ I. Then there exists m
such that either [L,m] ̸= 0 or [L, ∂m] ̸= 0. Both of these commutators lie in the ideal I still.

L ∈ FiD for some i and [L, xm], [L, ∂m] ∈ Fi−1D. Iterate this procedure and after i steps, observe
that there exists L′ ∈ F0D ∩ I. L′ is a nonzero constant and hence I = Dn.

As a result notice that D → EndM is injective.
Claim 1.4. Let A be any simple algebra which as a left module over itself has infinite length. Then
any A-module of finite length is cyclic.
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Proof. Let M be a module of finite length. Use induction on length(M). Given an exact sequence
0 −→ K −→ M

π−→ N −→ 0, if K,N ̸= 0 then ℓ(N), ℓ(K) < ℓ(M) so K,N is cyclic: N = A · n, n ∈ N .
Let I = AnnA(n)

I ̸= 0 since I = 0 would imply N is free. Let m ∈ π−1(n). M ′ = A ·m, M ′ → N is surjective.
ker(M ′ → N) ⊂ K implies either 0 or k.

If kernel=K, then M ′ = M and M is cyclic. If kernel=0, then M ′−N . AnnA(m) = AnnA(n) = I.
AnnA(m+ v) = I for all v ∈ K which implies I kills K.

A
α−→ EndK, K ̸= 0 is not injective. But then Kerα ⊂ A is a proper two-sided ideal, a contradic-

tion.

Exercise 1.2. Dn has infinite length as a module over itself.
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