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1 History

Hyperkähler geometry and instantons

Hitchen (87-88)

Kapustin, Witten (’05)

2 Course Outline

I. Hyperkähler Geometry

II. Hitchin papers

III. Recent advances

3 Kähler Geometry

The basic structure of tangent bundles in Kähler geometry is

T T ∗

T

g

ωI

where I is a complex structure (so I2 = −1), g = g(−,−) is a Riemannian metric (so g∗ = g and g
is positive definite), and ω is a symplectic form (so ω∗ = −ω and ω(X,Y ) = −ω(Y,X).)

Compatability of any two of these structures ⇐⇒ composite is as required.

Example 1. I, ω are compatible ⇐⇒ I∗ω = (−ωI)∗ = −ωI. Equivalently

I∗ω + ωI = 1

⇐⇒ ω(X, IY ) + ω(IX, Y ) = 0

⇐⇒ I∗ωI = ω

⇐⇒ ω(IX, IY ) = ω(X,Y )
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Because of the complex structure I, T ⊗ C = T1,0 ⊕ T0,1 where T1,0 is the +i eigenspace and T0,1 is
the −i eigenspace. So,

2∧
T ∗
C =

2∧
T ∗
1,0 ⊕ (T ∗

1,0 ⊗ T ∗
0,1)⊗

2∧
T ∗
0,1

and
Ω2

C = Ω2,0 ⊕ Ω1,1 ⊕ Ω0,2.

The compatibility condition then becomes ω ∈ Ω1,1.

3.1 Integrability of Kähler Structures

I: [T1,0, T1,0] ⊂ T1,0. Define the Nijenhuis Tensor N ∈
∧2 T ∗

1,0 ⊗ T0,1 by N(X,Y ) = π0,1[X,Y ]
where X and Y are of type 1, 0. I is integrable of this tensor vanishes. A result of Newlander-
Nirenberg says that I is locally isomorphic to Cn when I is integrable.

ω: ω is integrable if dω = 0. By a theorem of Darboux, if ω is integrable then ω is locally
isomorphic to the standard symplectic structure (R2n, ωstd).

If both integrability conditions are satisfied then this is a Kähler structure.

Remark 1. It is immediate from ω ∈ Ω1,1 and dω = 0 that ω is locally i∂∂̄k for k ∈ C∞(U,R) by the
∂∂̄ lemma. k is called the Kähler potential.

The de Rham differential splits as

Ωp+1,q−1

Ωp+1,q

d|Ωp,q : Ωp,q

Ωp,q+1

Ωp−1,q+2

N

∂

∂̄

N̄

and I is integrable ⇐⇒ d = ∂ + ∂̄.

Lemma 1. I, ω are each integrable if and only if ∇I = 0 ⇐⇒ ∇ω = 0. Here ∇ is the Levi-
Civita connection, ie. the unique connection on T which preserves g (Xg(Y, Z) = g(∇XY, Z +
g(Y,∇XZ) ⇐⇒ ∇g = 0) and is torsion free (∇XY −∇YX = [X,Y ]).

Proof. If I is integrable, IX = iX, IY = −iY and we want to show I[X,Y ] = i[X,Y ]. But

I(∇XY −∇YX) = (∇X(IY )−∇Y (IX)) = i[X,Y ].

The rest is an exercise.
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Remark 2. Given an n-dim. complex manifold with hol. tangent and ccotangent bundles T1,0 (with
coordinates ∂

∂zi
) and T ∗

1,0 (with coordinates dzi).
Let K =

∧n T ∗
1,0 be the canonical holomorphic line bundle.

Kähler metric =⇒ Hermitian Metric on K =⇒ (unique) Chern connection.

Curvature(Chern) = F ∈ Ω2
R. By Poincaré-Lelong, F = i∂∂̄ log ∥s∥g where ∥s∥g = det gij (s is

the hol. section dz1 · · · dzn.) In the Kähler case, F = Ricg(I−,−). Thus the Einstein equation
Ric = 0 ⇐⇒ K is flat in the Kähler case.

3.2 Holonomy Groups

We have a tangent bundle with structures I, ω, g which satisfy ∇I = 0, ∇ω = 0 and ∇g = 0.
Hence parallel transport preserves the entire Kähler structure. In particular for a loop γ at x0, we
get an automorphism O(n) ∋ Pγ : Tx0 → Tx0 . Varying over all paths get {Pγ} ⊂Lie Subgroup O(n), the
holonomy group of (M, g).

In the Kähler case, get Special Holonomy: Hol(M, g) ⊆ U(n) ⊂ SO(2n,R).

GL(2n,R)

(
aut of (R2n, I)

)
GL(n,C) Sp(2n,R)

(
aut of (R2n, ωstd)

)

U(n)

⊂ ⊃

⊂⊃
max cpt subgp
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Berger’s List (1955) Of Possible Holonomy Groups

1. Locally symmetric spaces (loc. G/K with Hol = K.) Lie theoretic classification by Cartan.

2. Mn
R

Group ⊂ O(n) Structure
SO(n) orientable
U
(
n
2

)
Kähler

SU
(
n
2

)
Calabi-Yau (noncompact Calabi,compact Yau)

Sp
(
n
4

)
Hyperkähler

Sp
(
n
4

)
· Sp(1) Quaternionic Kähler

G2 ⊂ O(7) G2 structure
Spin(7) ⊂ O(8) Spin7 structure (noncompact Bryant, compact Joyce)

Hyperkähler

- Define

- Construct: KH reduction, examples

- Twistor space

- many moduli spaces (Higgs, monopoles,solns to Nahms eqns) coadjoint orbits for complex
reductive groups, · · · , have hyperkähler structures.

Lecture 2 [13.01.2017]

4 Hyperkähler Structures

Definition 1. A hyperkähler manifold is a Riemann manifold with holonomy SP (m) ⊂ O(n = 4m).

j

k

i

ImH
Here Sp(m) is the quaternionic unitary group which we now define. Let

H = {q = x0 + ix1 + kx2 + kx3 : xi ∈ R}

where i2 = j2 = k2 = ijk = −1.
Every quaternion q has a conjugate q̄ = x0 − ix1 − jx2 − kx3 and qq̄ =

x2
0 + x2

1 + x2
2 + x2

3.
May view H as C2 via q = (x0 + ix1) + (x2 + ix3)j ∈ C ⊕ Cj so the extra

structure on C2 is multiplication by j. More precisely, we have J : Lj : C2 → C2

such that for λ ∈ C, J(λv) = λ̄(Jv) ie. J is a complex linear automrophism. So we have J : C2 → C2

such that
C2 C2 C2K

−1

J̄

Any such J is called a quternionic structure on a complex vector space.
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Focus on a certain structure enjoyed by R4 = H. There are three complex structures Li = I, Lj =
J, Lk = K with the euclidean metric geuc, g(q, q) = qq̄.

These define 3 Kähler structures

V V ∗

V

g

I,J ,K ω1=ωI ,ω2=ωJ ,ω3=ωK

ω1 = dx0 ∧ dx1 + dx2 ∧ dx3

ω2 = dx0 ∧ dx2 − dx1 ∧ dx3

ω3 = dx0 ∧ dx3 + dx1 ∧ dx2

In fact, for all (α, βγ) ∈ S2,

αI + βJ + γK = I(α,β,γ)

is also a complex structure. The corresponding Kähler form is

ω(α,β,γ) = gIα,β,γ = αω1 + βω2 + γω3

R4m = Hm ∼= (C2m, J = LJ) w.r.t complex structure defined by
Li = I is a left quaternionic module. Have

qℓ = xℓ
0 + ixℓ

1 + jxℓ
2 + kxℓ

3, ℓ = 1, · · · ,m

Definition 2. Sp(m) is the stabilizer in O(4m,R) of the structure (g, I, J,K) (and hence ω1, ω2, ω3).

Sp(m) is a compact (simply) connected Lie group with dimR = 2m2 +m.

m=1: coincides with SU(2) = S3

m=2: coincides with Spin(5)

This is sometimes defined as a subgroup of GL(m,H) preserving (, ). Here

GL(m,H) =
{
[aij]

m
i,j=1 : Aij ∈ H

}
with quaternionic action A · (q1, · · · , qm) = (q1, · · · , qm)ĀT . c.f. U(n) ⊂ GL(n,C) preserving (, ).

Similarly, by privileging I, we view ((Hm, I), J) = (C2m, J) as a complex vector space with
quaternionic structure. Have complex coordinates

z2p−1 = xp
0 + ixp

1, z2p = xp
2 + ixp

3

and then

g =
∑
ℓ

|dzℓ|2

ωI =
i

2

∑
ℓ

dzℓ ∧ dz̄ℓ

ωJ + iωK = dz1 ∧ dz2 + dz3 ∧ dz4 + · · ·

Note that ωj + iωK is a holomorphic (complex) symplectic form on C2m. Hence Sp(m) = U(2m) ∩
Sp(2m,C) (Sp(2m,C) is the complex symplectic group.)

In fact, the hyperkähler structure is completely determined by (ωI , ωJ , ωK):
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Lemma 2.
Stab(ωI , ωJ , ωK) = Sp(m)

Proof.
V V ∗

ω

g

I ω

ω1 = gI

ω2 = gJ

ω−1ω2 = I−1g−1gJ = −K
ωK ◦ (−K) = g

Warning 1. Not so for I,J ,K.

Example 2. Consider dimension 4 on R4 = V .

Lemma 3. (ω1, ω2, ω3) has stabilizer Sp(1) ⇐⇒{
ω1 ∧ ω1 = ω2 ∧ ω2 = ω3 ∧ ω3 ̸= 0

ω1 ∧ ω2 = ω1 ∧ ω3 = ω2 ∧ ω3 = 0

Proof. Consider Ω1 = ω2 + iω3 (I holomorphic symplectic form dz1 ∧ dz2.) Then Ω1 ∧ Ω1 = 0 so Ω1

decomposes as Ω1 = θ1 ∧ θ2

ω2

ω3

ω1

Ω2

Ω1 ∧ Ω2 = 2ω2
1 ̸= 0 ⇐⇒ θ1 ∧ θ2 ∧ θ1 ∧ θ2 ̸= 0 so we have a basis (θ1, θ2, θ̄1, θ̄2) for V ∗ ⊗ C. But

this is equivalent to a decomposition V ∗ ⊗C = ⟨θ1, θ2⟩ ⊕ ⟨θ̄1, θ̄2⟩. This yields a complex structure by
regarding ⟨θ1, θ2⟩ as the 1, 0 eigenspace and ⟨θ̄1, θ̄2⟩ as the 0, 1 eigenspace.

So far, we have a complex structure I on Stab ⊂ GL(2,C) but Ω1 is also preserved which imples
Stab ⊂ SL(2,C) and since ω1 is also preserved, ω1 ∈ Ω1,1

I .
Expand ω1 =

∑
α,β=1,2 hαβ̄θα ∧ θ̄β where hα,β̄ is a 2× 2 Hermitian matrix and so hα,β̄ is conjugate

to (
λ 0
0 µ

)
We have

λµθ1θ2θ̄1θ̄2 = (dethα,β̄)θ1θ2θ̄1θ̄2 = ω2
1 =

1

2
Ω ∧ Ω̄ =

1

2
θ1 ∧ θ2 ∧ θ̄1 ∧ θ̄2

which implies both λ, µ have the same sign.

Note 1. M4 a compact oriented manifold, H2 × H2 → H4 = R a symmetric, nondegenerate inner
product on H2. b+(M4) = # of positive directions signature (b+, b2− b+). In order to have a Kähler
structure need what?

k3 has signature (3, 19), dimH2 = 22 supports a hyperkähler structure.
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The Manifold Case

If (M4m, g) has hol(∇LC) ⊂ Sp(m) then all the Sp(m)-invariant structure on Hm passes to corre-
sponding structure on TM , which is flat. So we get a Riemannian manifold (M, g, I, J,K) with three
complex structures, 3 Kähler structures and is flat: ∇I = ∇J = ∇K =⇒ 3 Kähler structures.

If we privilege I we get

=⇒ complex manifold (M, I) of complex dimension 2m

=⇒ Ω1 = ω2 + iω3 holomorphic symplectic (2, 0) form

=⇒ Ωm
1 ∈

2m∧
T ∗
1,0 = K the canonical bundle

=⇒ K ∼= O trivial CY manifold. Recall ∇LC , K flat so curv(Chen) = RicI = 0

Lecture 3 [18.01.2017]

4.1 Examples of Hyperkähler Structures in dimension 4

Recall that we showed a hyperkähler structure in dimension 4 is a triple (ω1, ω2, ω3) such that ω2
i = 0,

ω1ω2 = ω1ω3 = ω2ω3 = 0 and dωi = 0 (integrable.)
Example 3 (Local).

Take an open in R4 = (C2, (z1, z2)) with I = i,

Ω1 = dz1 ∧ dz2 = ω2 + iω3

ω1 = i∂∂̄φ φ ∈ C∞(U,R)

= i
∂2φ

∂zi∂z̄j
dzi ∧ dz̄j

For example can take φ = z1z̄1 + z2z̄2 so i∂∂̄φ = i(dz1 ∧ dz̄1 + dz2dz̄2). This simply gives H4.
The only remaining condition is

ω2
1 = volEuc ⇐⇒ det

(
∂2φ

∂zi∂z̄j

)
= 1

The equation det
(

∂2φ
∂zi∂z̄j

)
= 1 is the (complex) Monge-Ampère equation. Calabi: Suppose zi = xi+yi

and φ(z1, z2, z̄1, z̄2) = φ(x1, x2). Then we get the real Monge-Ampère equation:

det

(
∂2φ

∂xi∂xj

)
= 1.

This is a nonlinear PDE so assume φ is SO(2) invariant (ie. radial) to get an ODE "cohomgeneity
one". Then can solve the equation to get

φ(x) =

∫ ∥x∥

0

(c+ r2c)
1
2dr.

For example, for c = 1 get 1
2
(c+ r)

1
2 + 1

2
sinh−1(r) +K. Diagrams missing
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Gibbons Hawking Examples

1.

U R3

U ⊂ R3, M = S1 × U with coordinates (θ, x1, x2, x3), V (x1, x2, x3) > 0.

gm = V −1(dθ+A)2 + V (dx2
1 + dx2

2 + dx2
3)

where
A = A1(x)dx1 + A2(x)dx2 + A3(x)dx3 with Ai ∈ C∞(U,R)

We have a trivial S1 bundle with principal connection dθA on the principal S1 bundle M
π−→ U .

A is called the connection one form.

gM diagonal =⇒ on basis for T ∗

e0 = V − 1
2 (dθ + A)

e1 = V − 1
2dx1

e1 = V − 1
2dx2

e1 = V − 1
2dx3,

gM = e20 + e21 + e22 + e23.

ω1 = (dθ + A) ∧ dx1 + V (dx2 ∧ dx3)

ω2 = (dθ + A) ∧ dx2 − V (dx1 ∧ dx3)

ω3 = (dθ + A) ∧ dx3 + V (dx1 ∧ dx2)

which has stabiliser Sp(1). To get a hyperkähler structure we need dωi = 0:

dω1 = dA ∧ dx1 + dV ∧ dx2 ∧ dx3 = 0(
∂A2

∂x3

− ∂A3

∂x2

+
∂V

∂x1

)
dx1 ∧ dx2 ∧ dx3 = 0

This is a scalar equation in R3. Including the other equations dωi = 0, get dA = − ⋆R3 dV ,
or equivalently, ∇V = 0, so V is harmonic on R3 =⇒ dV closed =⇒ exact if U is simply
connected =⇒ ∃A with dA = − ⋆ V . On all of R3, V = 1 and so just get R3

Euc × S1 (A is
unique up to gauge.)

Observe that if we use V = 1
r

in R3\{0} (warning: H2 ̸= 0),

⋆dV = ⋆(−r−2dr) = −r−2(r2dΩ) = −dΩ∫
S2

⋆dV ̸= 0 =⇒ ⋆dV ̸= dA

8
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Generalization: M4 π−→ R3\{p1, · · · , pk} = B a principal S1 bundle which is Hopf about each
point pi, ie. c1(M) = 1 on each S2

pi
or M |S2

pi
is the Hopf fibre S3 → S2. Diagrams Missing

Now, choose a principal connection η ∈ Ω1(M) which is S-invariant (L∂θη = 0) and ι∂θ = 1
where ∂θ is the vector field generated by the S1 action.

- ker η is the horizontal distribution.
- dη = π∗F , F is the curvature of η ∈ Ω2(B) (since ι∂θdη = L∂θη = 0)

Given M → B ⊂ R3, η ∈ Ω1(M) and V ∈ C∞(B,R) can build the metric

g = V −1η2 + V π∗(dx2
1 + dx2

2 + dx2
3)

As before, define e0 = V − 1
2η, ei = V

1
2dxi, w0 = · · · . Then we get a hyperkähler structure ⇐⇒

F = − ⋆ dV (so V is harmonic) and by assumption
∫
S2
pi

F = 1 =⇒
∫
S2
pi

⋆dV = 1 so V ∼ 1
r

at
each pi.

V = c+
k∑

i=0

1

|x− pi|R3

For c ̸= 0 these are called (multi) Taub-NUT Hyperkähler metrics (ALF (asymptotically locally
flat): R3 × S1)
For c = 0 Ak ALE (asymptotically locally euclidean: R4) hyperkähler structures. These are
also called graviational instantons in the physics literature.
These two cases are very different in terms of asymptotic geometry but both have two amazing
properties:

1. Extend smoothly to M ⊔ {p1, · · · , pk} to give a smooth 4-dimensional manifold similar to
the way R4 Hopf−−→ R3.

2. Resulting (M, g) is complete.
Example 4. c = 0, k = 0 (one point), V = 1

r
givese (R4, gEuc).

Have R4 = C2 with S1 action

eiθ · (z1, z2) =
(
eiθz1, e

−iθz2
)

∂θ = i(z1 − z2)

g(∂θ, ∂θ) = V −1(η(∂θ))
2 = V −1

∥∂θ∥ = V −1 = |z1|2 + |x2|2

Map

π :R4 → R3

(z1, z2) 7→

{
x1 = |z1|2 − |z2|2

x2 + ix3 = 2z1z2

(map is quadratic and restricted to S3 is just the Hopf map.) Get a principal S1 bundle on
R3\0 with critical value 0.

r2 = x2
1 + x2

2 + x2
3 = (|z1|2 − |z2|2)2 + 4|z1|2|z2|2 =

(
|z1|+ |z2|2

)2

V −1 =
√
r2 = r V =

1

r

9
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Lecture 4 [20.01.2017]

Recall that we constructed the Ak ALE hyperkähler manifolds: Given

R3\{p1, · · · , pk} ←− M̃princple S1bundle with c1 = 1 about each pi

η ∈ Ω1(M̃) S1-invariant connection
dη = −π∗ ⋆ dV

V a harmonic function on R3 with
1

r
singularities at pi

get a metric
g = V π∗gR33 + V −1η2.

Taking V = c +
∑k

i=0
1

|x−pi| with c = 0 gave Ak ALE and c ̸= 0 gives the multi Taub-NUT metrics.
In either case, M = M̃ ∪ {p1, · · · , pk} is a smooth 4-manifold with complete hyperkähler metric.

Description of Hyperkähler Structure

Finish Diagram
Example 5.

1. V = 1
r
⇐⇒ (R4, gR4) flat hyperkähler

2. A1 diagram missing
associated to straightline −p→ p get minimal surface S2 ⊂M =⇒ H2 = ⟨S2

ℓ ⟩.
If x2|ℓ = x3|ℓ = 0, then

ω1 = (dθ + A) ∧ dx1 + V dx2 ∧ dx3

ω2 = (dθ + A) ∧ dx2 − V dx1 ∧ dx3

ω3 = (dθ + A) ∧ dx3 + V dx1 ∧ dx2

ω1 is I (Kähler) and Ω1 = ω2 + iω3. So Ω1|Sℓ2
= 0 implies Sℓ2 is Lagrangian for ω2, ω3 and a

complex curve with respect to I. In the physics terminology, this is a (B,A,A) brane (the B
refers to complex geometry, the A to symplectic.)

Fact: For a generic x ∈ Scx2 , no line pipj is parallel to x. Hence (M, Ix) has no rational
curves and in fact is an affine algebraic variety but for x parallel to pipj get rational curves in
corresponding complex structure.
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5 Penrose Twistor Space

Start with a hyperkähler manifold (M4n, g, I, J,K) and let S2 be the sphere of complex structures
with coordinates (x1, x2, x3)↔ x1I + x2J + x3K = Ix. Then the twistor space is Z = M × S2.

Given (m,x) ∈ Z, T(m,x) = TmM⊕TxS
2. Since Ix ⟳ TmM and Istd ⟳ TxS

2, I = Ix⊕Istd ⟳ T(m,x)Z.

Theorem 1. (Z, I) is a complex (2n+ 1)C dimensional manifold.

Proof. Strategy: Identify generators for Ω
(2n+1,0)
Z and show these are closed.

The holomorphic symplectic structure for Ix is what?

Ix = x1I + x2J + x3K (x1, x2, x3) ∈ S2

Ωx = aω1 + bω2 + cω3 [a : b : c] ∈ CP 2 a2 + b2 + c2 = 0

smooth conic inP2

P1

S2 conicP1 ⊂ P2

ζ ∈ P1

S2 conic P1 ⊂ P2

η⃗ × η⃗

∥η × η̄
=

1

1 + ζζ̄
(1− ζζ̄, i

(
ζ̄ − ζ),−(ζ + ζ̄)

)
So the holomorphic symplectic form for the complex structure Iζ is

Ωζ = 2iζω1 + (1 + ζ2)ω2 + i(1− ζ2)ω3 = Ω1 + 2iζω1 + ζω1 + ζ2Ω̄1.

Finally for the holomorphic volume form for Z2n+1.

Θ = Ωζ ∧ · · · ∧︸ ︷︷ ︸
η

Ωζ ∧ dζ

defines a complex structure and
dΘ = (dM + dS2)Θ = 0

Example 6. If H = C2 then Z3 is a complex 3-fold with complex structure determined by

ω1 =
i

2
(dz1 ∧ dz̄1 + dz2 ∧ dz̄2)

ω2 + iω3 = dz1 ∧ dz2

Ωζ = Ω1 + 2iζω1 + ζ2Ω̄1

= dz1 ∧ dz2 + 2iζ
i

2
(dz1d̄z1 + dz2dz̄2) + ζ2(dz̄1 ∧ dz̄2)− ζ(dz1dz̄1 + dz2dz̄2)

= (dz1 + ζdz̄2) ∧ (dz2 − ζdz̄1).

11
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Hence there are complex coordinates{
(ζ, z1 + ζz̄2, z2 − ζz̄1) ζ ̸=∞
(ζ−1, ζ−1z1 + z̄2, ζ

−1z2 − z̄1) ζ ̸= 0

on C× C2. If we glue these , get

Z = tot

(
O(1)⊕O(1) −→ P1

)
since the transition functions are (ζ, ζ) for the 2 factors.

Diagram missing
Warning:Each p ∈ M defines p × S2 ⊂ Z and this is obviously a complex curve, hence defines

Sp ∈ H0( P1︸︷︷︸
=H0(O(1))⊕H0(O(1))

,O(1)⊕O(1)). There exists a “real structure“ on Z, σ : Z
C∞
−−→ Z preserving

all the structure:

• antiholomorphic involution

• compatible with Ωζ

• sends sections to sections

The sections fices by σ are R4 ⊂ C4, R4 being the “real” twistor lines and C4 being all twistor lines.
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