

# Moduli Space of Higgs Bundles Instructor: Marco Gualtieri

Lecture Notes for MAT1305

Taught Spring of 2017

Typeset by Travis Ens Last edited January 30, 2017

## Contents

## Lecture Guide

| i - |   |    |   | -  |    | - | - | - |   |   |   |   |   | - | - | - | - |   |   |   |   | - | - | - | - |   |   |   |   | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |   |   | - | - | - |   | - | - | - | - | - | - |   |   |   |    |    | - | - | -  |    |   |   | - | -,  |
|-----|---|----|---|----|----|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|----|----|---|---|----|----|---|---|---|-----|
| i.  | Ι | Je | c | tu | ir | е | 1 |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   | [ | 1: | L. | 0 | 1 | .2 | 20 | 1 | 7 |   | - i |
| L,  |   | -  |   |    | -  | - |   |   | - | - | - | - | - | - |   |   |   | - | - | - | - |   |   |   |   | - | - | - | - | - | - |   |   |   |   |   |   |   |   |   |   |   | - |   |   |   |   |   |   | - | - | - | - |   |   | - | - |   |   |   | - | - | - | - | - |    |    |   |   |    | -  | - |   |   | - 4 |

## 1 History

Hyperkähler geometry and instantons

Hitchen (87-88)

Kapustin, Witten ('05)

## 2 Course Outline

- I. Hyperkähler Geometry
- II. Hitchin papers
- III. Recent advances

## 3 Kähler Geometry

The basic structure of tangent bundles in Kähler geometry is



where I is a complex structure (so  $I^2 = -1$ ), g = g(-, -) is a Riemannian metric (so  $g^* = g$  and g is positive definite), and  $\omega$  is a symplectic form (so  $\omega^* = -\omega$  and  $\omega(X, Y) = -\omega(Y, X)$ .)

Compatability of any two of these structures  $\iff$  composite is as required.

Example 1.  $I, \omega$  are compatible  $\iff I^*\omega = (-\omega I)^* = -\omega I$ . Equivalently

$$I^*\omega + \omega I = 1$$
  
$$\iff \omega(X, IY) + \omega(IX, Y) = 0$$
  
$$\iff I^*\omega I = \omega$$
  
$$\iff \omega(IX, IY) = \omega(X, Y)$$

Because of the complex structure  $I, T \otimes \mathbb{C} = T_{1,0} \oplus T_{0,1}$  where  $T_{1,0}$  is the +i eigenspace and  $T_{0,1}$  is the -i eigenspace. So,

$$\bigwedge^2 T^*_{\mathbb{C}} = \bigwedge^2 T^*_{1,0} \oplus (T^*_{1,0} \otimes T^*_{0,1}) \otimes \bigwedge^2 T^*_{0,1}$$

and

$$\Omega^2_{\mathbb{C}} = \Omega^{2,0} \oplus \Omega^{1,1} \oplus \Omega^{0,2}.$$

The compatibility condition then becomes  $\omega \in \Omega^{1,1}$ .

### 3.1 Integrability of Kähler Structures

- I:  $[T_{1,0}, T_{1,0}] \subset T_{1,0}$ . Define the Nijenhuis Tensor  $N \in \bigwedge^2 T^*_{1,0} \otimes T_{0,1}$  by  $N(X, Y) = \pi_{0,1}[X, Y]$ where X and Y are of type 1, 0. I is integrable of this tensor vanishes. A result of Newlander-Nirenberg says that I is locally isomorphic to  $\mathbb{C}^n$  when I is integrable.
- $\omega$ :  $\omega$  is integrable if  $d\omega = 0$ . By a theorem of Darboux, if  $\omega$  is integrable then  $\omega$  is locally isomorphic to the standard symplectic structure  $(\mathbb{R}^{2n}, \omega_{std})$ .

If both integrability conditions are satisfied then this is a Kähler structure.

Remark 1. It is immediate from  $\omega \in \Omega^{1,1}$  and  $d\omega = 0$  that  $\omega$  is locally  $i\partial \bar{\partial}k$  for  $k \in C^{\infty}(U,\mathbb{R})$  by the  $\partial \bar{\partial}$  lemma. k is called the Kähler potential.

The de Rham differential splits as



and I is integrable  $\iff d = \partial + \bar{\partial}$ .

**Lemma 1.**  $I, \omega$  are each integrable if and only if  $\nabla I = 0 \iff \nabla \omega = 0$ . Here  $\nabla$  is the Levi-Civita connection, i.e. the unique connection on T which preserves g  $(Xg(Y,Z) = g(\nabla_X Y, Z + g(Y, \nabla_X Z) \iff \nabla g = 0)$  and is torsion free  $(\nabla_X Y - \nabla_Y X = [X, Y])$ .

*Proof.* If I is integrable, IX = iX, IY = -iY and we want to show I[X, Y] = i[X, Y]. But

$$I(\nabla_X Y - \nabla_Y X) = (\nabla_X (IY) - \nabla_Y (IX)) = i[X, Y].$$

The rest is an exercise.

Remark 2. Given an *n*-dim. complex manifold with hol. tangent and coordinates  $T_{1,0}$  (with coordinates  $\frac{\partial}{\partial z_i}$ ) and  $T_{1,0}^*$  (with coordinates  $dz_i$ ).

Let  $K = \bigwedge^n T_{1,0}^*$  be the canonical holomorphic line bundle.

Kähler metric  $\implies$  Hermitian Metric on  $K \implies$  (unique) Chern connection.

Curvature(Chern) =  $F \in \Omega^2_{\mathbb{R}}$ . By Poincaré-Lelong,  $F = i\partial\bar{\partial}\log \|s\|_g$  where  $\|s\|_g = \det g_{ij}$  (s is the hol. section  $dz_1 \cdots dz_n$ .) In the Kähler case,  $F = \operatorname{Ric}_g(I-,-)$ . Thus the Einstein equation  $\operatorname{Ric} = 0 \iff K$  is flat in the Kähler case.

### 3.2 Holonomy Groups



We have a tangent bundle with structures  $I, \omega, g$  which satisfy  $\nabla I = 0$ ,  $\nabla \omega = 0$  and  $\nabla g = 0$ . Hence parallel transport preserves the entire Kähler structure. In particular for a loop  $\gamma$  at  $x_0$ , we get an automorphism  $O(n) \ni P_{\gamma} : T_{x_0} \to T_{x_0}$ . Varying over all paths get  $\{P_{\gamma}\} \subset_{\text{Lie Subgroup}} O(n)$ , the holonomy group of (M, g).

In the Kähler case, get Special Holonomy:  $\operatorname{Hol}(M, g) \subseteq U(n) \subset SO(2n, \mathbb{R})$ .

$$GL(2n, \mathbb{R})$$

$$\subset \qquad \supset$$

$$\left(\text{aut of } (\mathbb{R}^{2n}, I)\right) \ GL(n, \mathbb{C}) \qquad \qquad Sp(2n, \mathbb{R}) \ \left(\text{aut of } (\mathbb{R}^{2n}, \omega_{std})\right)$$

$$\supset \qquad \qquad \subset$$

$$\stackrel{n_{a_{X}}}{\overset{p_{I}}{\operatorname{cpt}}} U(n) \qquad \qquad C$$

Imℍ

k

## Berger's List (1955) Of Possible Holonomy Groups

- 1. Locally symmetric spaces (loc. G/K with Hol = K.) Lie theoretic classification by Cartan.
- 2.  $M^n_{\mathbb{R}}$

| $\operatorname{Group} \subset O(n)$      | Structure                                          |
|------------------------------------------|----------------------------------------------------|
| SO(n)                                    | orientable                                         |
| $U\left(\frac{n}{2}\right)$              | Kähler                                             |
| $SU\left(\frac{\dot{n}}{2}\right)$       | Calabi-Yau (noncompact Calabi,compact Yau)         |
| $Sp\left(\frac{\overline{n}}{4}\right)$  | Hyperkähler                                        |
| $Sp\left(\frac{n}{4}\right) \cdot Sp(1)$ | Quaternionic Kähler                                |
| $G_2 \subset O(7)$                       | $G_2$ structure                                    |
| $\operatorname{Spin}(7) \subset O(8)$    | Spin7 structure (noncompact Bryant, compact Joyce) |

## Hyperkähler

- Define
- Construct: KH reduction, examples
- Twistor space
- many moduli spaces (Higgs, monopoles, solns to Nahms eqns) coadjoint orbits for complex reductive groups,  $\cdots$ , have hyperkähler structures.

-----[13.01.2017]Lecture 2 

#### Hyperkähler Structures 4

**Definition 1.** A hyperkähler manifold is a Riemann manifold with holonomy  $SP(m) \subset O(n = 4m)$ .

Here Sp(m) is the quaternionic unitary group which we now define. Let

$$\mathbb{H} = \{ q = x_0 + ix_1 + kx_2 + kx_3 : x_i \in \mathbb{R} \}$$

where  $i^2 = j^2 = k^2 = ijk = -1$ .

Every quaternion q has a conjugate  $\bar{q} = x_0 - ix_1 - jx_2 - kx_3$  and  $q\bar{q}$  $x_0^2 + x_1^2 + x_2^2 + x_3^2.$ 

May view  $\mathbb{H}$  as  $\mathbb{C}^2$  via  $q = (x_0 + ix_1) + (x_2 + ix_3)j \in \mathbb{C} \oplus \mathbb{C}j$  so the extra structure on  $\mathbb{C}^2$  is multiplication by j. More precisely, we have  $J: L_j: \mathbb{C}^2 \to \mathbb{C}^2$ such that for  $\lambda \in \mathbb{C}$ ,  $J(\lambda v) = \overline{\lambda}(Jv)$  ie. J is a complex linear automrophism. So we have  $J : \mathbb{C}^2 \to \overline{\mathbb{C}^2}$ such that

$$\mathbb{C}^2 \xrightarrow[]{K} \overline{\mathbb{C}^2} \xrightarrow[]{J} \mathbb{C}^2$$

Any such J is called a quternionic structure on a complex vector space.

Κ

Focus on a certain structure enjoyed by  $\mathbb{R}^4 = \mathbb{H}$ . There are three complex structures  $L_i = I, L_j = J, L_k = K$  with the euclidean metric  $g_{\text{euc}}, g(q, q) = q\bar{q}$ .

These define 3 Kähler structures



$$\omega_1 = dx_0 \wedge dx_1 + dx_2 \wedge dx_3$$
$$\omega_2 = dx_0 \wedge dx_2 - dx_1 \wedge dx_3$$
$$\omega_3 = dx_0 \wedge dx_3 + dx_1 \wedge dx_2$$

In fact, for all  $(\alpha, \beta\gamma) \in S^2$ ,

$$\alpha I + \beta J + \gamma K = I_{(\alpha,\beta,\gamma)}$$

is also a complex structure. The corresponding Kähler form is

$$\omega_{(\alpha,\beta,\gamma)} = gI_{\alpha,\beta,\gamma} = \alpha\omega_1 + \beta\omega_2 + \gamma\omega_3$$

 $\mathbb{R}^{4m} = \mathbb{H}^m \cong (\mathbb{C}^{2m}, J = L_J)$  w.r.t complex structure defined by  $L_i = I$  is a left quaternionic module. Have

$$q_{\ell} = x_0^{\ell} + ix_1^{\ell} + jx_2^{\ell} + kx_3^{\ell}, \quad \ell = 1, \cdots, m$$

**Definition 2.** Sp(m) is the stabilizer in  $O(4m, \mathbb{R})$  of the structure (g, I, J, K) (and hence  $\omega_1, \omega_2, \omega_3$ ).

Sp(m) is a compact (simply) connected Lie group with  $\dim_{\mathbb{R}} = 2m^2 + m$ .

m=1: coincides with  $SU(2) = S^3$ 

**Twistor Line** 

m=2: coincides with Spin(5)

This is sometimes defined as a subgroup of  $GL(m, \mathbb{H})$  preserving (,). Here

$$GL(m,\mathbb{H}) = \left\{ [a_{ij}]_{i,j=1}^m : A_{ij} \in \mathbb{H} \right\}$$

with quaternionic action  $A \cdot (q^1, \dots, q^m) = (q^1, \dots, q^m) \overline{A}^T$ . c.f.  $U(n) \subset GL(n, \mathbb{C})$  preserving (, ).

Similarly, by privileging I, we view  $((\mathbb{H}^m, I), J) = (\mathbb{C}^{2m}, J)$  as a complex vector space with quaternionic structure. Have complex coordinates

$$z_{2p-1} = x_0^p + ix_1^p, \quad z_{2p} = x_2^p + ix_3^p$$

and then

$$g = \sum_{\ell} |dz_{\ell}|^{2}$$
$$\omega_{I} = \frac{i}{2} \sum_{\ell} dz_{\ell} \wedge d\bar{z}_{\ell}$$
$$\omega_{J} + i\omega_{K} = dz_{1} \wedge dz_{2} + dz_{3} \wedge dz_{4} + \cdots$$

Note that  $\omega_j + i\omega_K$  is a holomorphic (complex) symplectic form on  $\mathbb{C}^{2m}$ . Hence  $Sp(m) = U(2m) \cap$  $Sp(2m, \mathbb{C})$  ( $Sp(2m, \mathbb{C})$  is the complex symplectic group.)

In fact, the hyperkähler structure is completely determined by  $(\omega_I, \omega_J, \omega_K)$ :

### Lemma 2.

Proof.





Warning 1. Not so for I, J, K.

Example 2. Consider dimension 4 on  $\mathbb{R}^4 = V$ . Lemma 3.  $(\omega_1, \omega_2, \omega_3)$  has stabilizer  $Sp(1) \iff$ 

$$\begin{cases} \omega_1 \wedge \omega_1 = \omega_2 \wedge \omega_2 = \omega_3 \wedge \omega_3 \neq 0\\ \omega_1 \wedge \omega_2 = \omega_1 \wedge \omega_3 = \omega_2 \wedge \omega_3 = 0 \end{cases}$$

*Proof.* Consider  $\Omega_1 = \omega_2 + i\omega_3$  (*I* holomorphic symplectic form  $dz_1 \wedge dz_2$ .) Then  $\Omega_1 \wedge \Omega_1 = 0$  so  $\Omega_1$  decomposes as  $\Omega_1 = \theta_1 \wedge \theta_2$ 



 $\Omega_1 \wedge \overline{\Omega_2} = 2\omega_1^2 \neq 0 \iff \theta_1 \wedge \theta_2 \wedge \overline{\theta}_1 \wedge \overline{\theta}_2 \neq 0$  so we have a basis  $(\theta_1, \theta_2, \overline{\theta}_1, \overline{\theta}_2)$  for  $V^* \otimes \mathbb{C}$ . But this is equivalent to a decomposition  $V^* \otimes \mathbb{C} = \langle \theta_1, \theta_2 \rangle \oplus \langle \overline{\theta}_1, \overline{\theta}_2 \rangle$ . This yields a complex structure by regarding  $\langle \theta_1, \theta_2 \rangle$  as the 1,0 eigenspace and  $\langle \overline{\theta}_1, \overline{\theta}_2 \rangle$  as the 0,1 eigenspace.

So far, we have a complex structure I on Stab  $\subset GL(2, \mathbb{C})$  but  $\Omega_1$  is also preserved which imples Stab  $\subset SL(2, \mathbb{C})$  and since  $\omega_1$  is also preserved,  $\omega_1 \in \Omega_I^{1,1}$ .

Expand  $\omega_1 = \sum_{\alpha,\beta=1,2} h_{\alpha\bar{\beta}}\theta_{\alpha} \wedge \bar{\theta}_{\beta}$  where  $h_{\alpha,\bar{\beta}}$  is a 2 × 2 Hermitian matrix and so  $h_{\alpha,\bar{\beta}}$  is conjugate to

$$\begin{pmatrix} \lambda & 0 \\ 0 & \mu \end{pmatrix}$$

We have

$$\lambda \mu \theta_1 \theta_2 \bar{\theta}_1 \bar{\theta}_2 = (\det h_{\alpha,\bar{\beta}}) \theta_1 \theta_2 \bar{\theta}_1 \bar{\theta}_2 = \omega_1^2 = \frac{1}{2} \Omega \wedge \bar{\Omega} = \frac{1}{2} \theta_1 \wedge \theta_2 \wedge \bar{\theta}_1 \wedge \bar{\theta}_2$$

which implies both  $\lambda, \mu$  have the same sign.

Note 1.  $M^4$  a compact oriented manifold,  $H^2 \times H^2 \to H^4 = \mathbb{R}$  a symmetric, nondegenerate inner product on  $H^2$ .  $b_+(M^4) = \#$  of positive directions signature  $(b_+, b_2 - b_+)$ . In order to have a Kähler structure need what?

k3 has signature (3, 19), dim  $H^2 = 22$  supports a hyperkähler structure.

### The Manifold Case

If  $(M^{4m}, g)$  has  $hol(\nabla^{LC}) \subset Sp(m)$  then all the Sp(m)-invariant structure on  $\mathbb{H}^m$  passes to corresponding structure on TM, which is flat. So we get a Riemannian manifold (M, g, I, J, K) with three complex structures, 3 Kähler structures and is flat:  $\nabla I = \nabla J = \nabla K \implies 3$  Kähler structures.

If we privilege I we get

$$\implies \text{complex manifold } (M, I) \text{ of complex dimension } 2m$$
  
$$\implies \Omega_1 = \omega_2 + i\omega_3 \text{ holomorphic symplectic } (2, 0) \text{ form}$$
  
$$\implies \Omega_1^m \in \bigwedge^{2m} T_{1,0}^* = K \text{ the canonical bundle}$$
  
$$\implies K \cong \mathcal{O} \text{ trivial CY manifold. Recall } \nabla^{LC}, K \text{ flat so curv(Chen)} = \text{Ric}I = 0$$

Lecture 3 [18.01.2017]

### 4.1 Examples of Hyperkähler Structures in dimension 4

Recall that we showed a hyperkähler structure in dimension 4 is a triple  $(\omega_1, \omega_2, \omega_3)$  such that  $\omega_i^2 = 0$ ,  $\omega_1\omega_2 = \omega_1\omega_3 = \omega_2\omega_3 = 0$  and  $d\omega_i = 0$  (integrable.)

Example 3 (Local).

Take an open in  $\mathbb{R}^4 = (\mathbb{C}^2, (z_1, z_2))$  with I = i,

$$\Omega_1 = dz_1 \wedge dz_2 = \omega_2 + i\omega_3$$
  

$$\omega_1 = i\partial\bar{\partial}\varphi \qquad \varphi \in C^{\infty}(U,\mathbb{R})$$
  

$$= i\frac{\partial^2\varphi}{\partial z_i\partial\bar{z}_j}dz_i \wedge d\bar{z}_j$$

For example can take  $\varphi = z_1 \bar{z}_1 + z_2 \bar{z}_2$  so  $i\partial \bar{\partial} \varphi = i(dz_1 \wedge d\bar{z}_1 + dz_2 d\bar{z}_2)$ . This simply gives  $\mathbb{H}^4$ . The only remaining condition is

$$\omega_1^2 = \operatorname{vol}_{Euc} \iff \det\left(\frac{\partial^2 \varphi}{\partial z_i \partial \bar{z}_j}\right) = 1$$

The equation det  $\left(\frac{\partial^2 \varphi}{\partial z_i \partial \bar{z}_j}\right) = 1$  is the (complex) Monge-Ampère equation. Calabi: Suppose  $z_i = x_i + y_i$  and  $\varphi(z_1, z_2, \bar{z}_1, \bar{z}_2) = \varphi(x_1, x_2)$ . Then we get the real Monge-Ampère equation:

$$\det\left(\frac{\partial^2\varphi}{\partial x_i\partial x_j}\right) = 1.$$

This is a nonlinear PDE so assume  $\varphi$  is SO(2) invariant (i.e. radial) to get an ODE "cohomgeneity one". Then can solve the equation to get

$$\varphi(x) = \int_0^{\|x\|} (c + r^{2c})^{\frac{1}{2}} dr.$$

For example, for c = 1 get  $\frac{1}{2}(c+r)^{\frac{1}{2}} + \frac{1}{2}\sinh^{-1}(r) + K$ . Diagrams missing

### **Gibbons Hawking Examples**

1.



 $U \subset \mathbb{R}^3$ ,  $M = S^1 \times U$  with coordinates  $(\theta, x_1, x_2, x_3)$ ,  $V(x_1, x_2, x_3) > 0$ .

$$g_m = V^{-1}(d\theta + A)^2 + V(dx_1^2 + dx_2^2 + dx_3^2)$$

where

$$A = A_1(x)dx_1 + A_2(x)dx_2 + A_3(x)dx_3 \quad \text{with } A_i \in C^{\infty}(U, \mathbb{R})$$

We have a trivial  $S^1$  bundle with principal connection  $d\theta A$  on the principal  $S^1$  bundle  $M \xrightarrow{\pi} U$ . A is called the connection one form.

 $g_M$  diagonal  $\implies$  on basis for  $T^*$ 

$$e_{0} = V^{-\frac{1}{2}}(d\theta + A)$$

$$e_{1} = V^{-\frac{1}{2}}dx_{1}$$

$$e_{1} = V^{-\frac{1}{2}}dx_{2}$$

$$e_{1} = V^{-\frac{1}{2}}dx_{3},$$

 $g_M = e_0^2 + e_1^2 + e_2^2 + e_3^2.$ 

$$\omega_1 = (d\theta + A) \wedge dx_1 + V(dx_2 \wedge dx_3)$$
  

$$\omega_2 = (d\theta + A) \wedge dx_2 - V(dx_1 \wedge dx_3)$$
  

$$\omega_3 = (d\theta + A) \wedge dx_3 + V(dx_1 \wedge dx_2)$$

which has stabiliser Sp(1). To get a hyperkähler structure we need  $d\omega_i = 0$ :

$$d\omega_1 = dA \wedge dx_1 + dV \wedge dx_2 \wedge dx_3 = 0$$
$$\left(\frac{\partial A_2}{\partial x_3} - \frac{\partial A_3}{\partial x_2} + \frac{\partial V}{\partial x_1}\right) dx_1 \wedge dx_2 \wedge dx_3 = 0$$

This is a scalar equation in  $\mathbb{R}^3$ . Including the other equations  $d\omega_i = 0$ , get  $dA = -\star_{\mathbb{R}^3} dV$ , or equivalently,  $\nabla V = 0$ , so V is harmonic on  $\mathbb{R}^3 \implies dV$  closed  $\implies$  exact if U is simply connected  $\implies \exists A$  with  $dA = -\star V$ . On all of  $\mathbb{R}^3$ , V = 1 and so just get  $\mathbb{R}^3_{Euc} \times S^1$  (A is unique up to gauge.)

<u>Observe</u> that if we use  $V = \frac{1}{r}$  in  $\mathbb{R}^3 \setminus \{0\}$  (warning:  $H^2 \neq 0$ ),

$$\star dV = \star (-r^{-}2dr) = -r^{-2}(r^{2}d\Omega) = -d\Omega$$
$$\int_{S^{2}} \star dV \neq 0 \implies \star dV \neq dA$$

<u>Generalization</u>:  $M^4 \xrightarrow{\pi} \mathbb{R}^3 \setminus \{p_1, \dots, p_k\} = B$  a principal  $S^1$  bundle which is Hopf about each point  $p_i$ , i.e.  $c_1(M) = 1$  on each  $S^2_{p_i}$  or  $M|_{S^2_{p_i}}$  is the Hopf fibre  $S^3 \to S^2$ . Diagrams Missing Now, choose a principal connection  $\eta \in \Omega^1(M)$  which is S-invariant  $(L_{\partial_{\theta}}\eta = 0)$  and  $\iota_{\partial_{\theta}} = 1$ where  $\partial_{\theta}$  is the vector field generated by the  $S^1$  action.

- ker  $\eta$  is the horizontal distribution.
- $d\eta = \pi^* F$ , F is the curvature of  $\eta \in \Omega^2(B)$  (since  $\iota_{\partial_\theta} d\eta = L_{\partial_\theta} \eta = 0$ )

Given  $M \to B \subset \mathbb{R}^3$ ,  $\eta \in \Omega^1(M)$  and  $V \in C^\infty(B, \mathbb{R})$  can build the metric

$$g = V^{-1}\eta^2 + V\pi^*(dx_1^2 + dx_2^2 + dx_3^2)$$

As before, define  $e_0 = V^{-\frac{1}{2}}\eta$ ,  $e_i = V^{\frac{1}{2}}dx_i$ ,  $w_0 = \cdots$ . Then we get a hyperkähler structure  $\iff F = -\star dV$  (so V is harmonic) and by assumption  $\int_{S_{p_i}^2} F = 1 \implies \int_{S_{p_i}^2} \star dV = 1$  so  $V \sim \frac{1}{r}$  at each  $p_i$ .

$$V = c + \sum_{i=0}^{k} \frac{1}{|x - p_i|_{\mathbb{R}^3}}$$

For  $c \neq 0$  these are called (multi) Taub-NUT Hyperkähler metrics (ALF (asymptotically locally flat):  $\mathbb{R}^3 \times S^1$ )

For c = 0  $A_k$  ALE (asymptotically locally euclidean:  $\mathbb{R}^4$ ) hyperkähler structures. These are also called graviational instantons in the physics literature.

These two cases are very different in terms of asymptotic geometry but both have two **amazing** properties:

- 1. Extend smoothly to  $M \sqcup \{p_1, \cdots, p_k\}$  to give a smooth 4-dimensional manifold similar to the way  $\mathbb{R}^4 \xrightarrow{\text{Hopf}} \mathbb{R}^3$ .
- 2. Resulting (M, g) is complete.

*Example 4.* c = 0, k = 0 (one point),  $V = \frac{1}{r}$  gives  $(\mathbb{R}^4, g_{Euc})$ . Have  $\mathbb{R}^4 = \mathbb{C}^2$  with  $S^1$  action

$$e^{i\theta} \cdot (z_1, z_2) = (e^{i\theta} z_1, e^{-i\theta} z_2)$$
  

$$\partial_{\theta} = i(z_1 - z_2)$$
  

$$g(\partial_{\theta}, \partial_{\theta}) = V^{-1}(\eta(\partial_{\theta}))^2 = V^{-1}$$
  

$$\|\partial_{\theta}\| = V^{-1} = |z_1|^2 + |x_2|^2$$

Map

$$\pi : \mathbb{R}^4 \to \mathbb{R}^3$$
$$(z_1, z_2) \mapsto \begin{cases} x_1 = |z_1|^2 - |z_2|^2\\ x_2 + ix_3 = 2z_1z_2 \end{cases}$$

(map is quadratic and restricted to  $S^3$  is just the Hopf map.) Get a principal  $S^1$  bundle on  $\mathbb{R}^3 \setminus 0$  with critical value 0.

$$r^{2} = x_{1}^{2} + x_{2}^{2} + x_{3}^{2} = (|z_{1}|^{2} - |z_{2}|^{2})^{2} + 4|z_{1}|^{2}|z_{2}|^{2} = \left(|z_{1}| + |z_{2}|^{2}\right)^{2}$$
$$V^{-1} = \sqrt{r^{2}} = r \qquad V = \frac{1}{r}$$

| ,         |              |
|-----------|--------------|
| Lecture 4 | [20.01.2017] |
| L         |              |

Recall that we constructed the  $A_k$  ALE hyperkähler manifolds: Given

 $\mathbb{R}^{3} \setminus \{p_{1}, \cdots, p_{k}\} \leftarrow \tilde{M} \text{princple } S^{1} \text{bundle with } c_{1} = 1 \text{ about each } p_{i}$  $\eta \in \Omega^{1}(\tilde{M}) \ S^{1} \text{-invariant connection}$  $d\eta = -\pi^{*} \star dV$  $V \text{ a harmonic function on } \mathbb{R}^{3} \text{ with } \frac{1}{r} \text{ singularities at } p_{i}$ 

get a metric

$$g = V\pi^* g_{\mathbb{R}^3 3} + V^{-1} \eta^2.$$

Taking  $V = c + \sum_{i=0}^{k} \frac{1}{|x-p_i|}$  with c = 0 gave  $A_k$  ALE and  $c \neq 0$  gives the multi Taub-NUT metrics. In either case,  $M = \tilde{M} \cup \{p_1, \cdots, p_k\}$  is a smooth 4-manifold with complete hyperkähler metric.

## Description of Hyperkähler Structure



### Finish Diagram

### Example 5.

- 1.  $V = \frac{1}{r} \iff (\mathbb{R}^4, g_{\mathbb{R}^4})$  flat hyperkähler
- 2.  $A_1$  diagram missing

associated to straightline  $-p \to p$  get minimal surface  $S^2 \subset M \implies H^2 = \langle S_\ell^2 \rangle$ .

If  $x_2|_{\ell} = x_3|_{\ell} = 0$ , then

$$\omega_1 = (d\theta + A) \wedge dx_1 + V dx_2 \wedge dx_3$$
$$\omega_2 = (d\theta + A) \wedge dx_2 - V dx_1 \wedge dx_3$$
$$\omega_3 = (d\theta + A) \wedge dx_3 + V dx_1 \wedge dx_2$$

 $\omega_1$  is I (Kähler) and  $\Omega_1 = \omega_2 + i\omega_3$ . So  $\Omega_1|_{S_{\ell^2}} = 0$  implies  $S_{\ell^2}$  is Lagrangian for  $\omega_2, \omega_3$  and a complex curve with respect to I. In the physics terminology, this is a (B, A, A) brane (the B refers to complex geometry, the A to symplectic.)

**Fact:** For a generic  $x \in S_{cx^2}$ , no line  $\overline{p_i p_j}$  is parallel to x. Hence  $(M, I_x)$  has no rational curves and in fact is an affine algebraic variety but for x parallel to  $\overline{p_i p_j}$  get rational curves in corresponding complex structure.

## 5 Penrose Twistor Space

Start with a hyperkähler manifold  $(M^{4n}, g, I, J, K)$  and let  $S^2$  be the sphere of complex structures with coordinates  $(x_1, x_2, x_3) \leftrightarrow x_1 I + x_2 J + x_3 K = I_x$ . Then the **twistor space** is  $Z = M \times S^2$ . Given  $(m, x) \in Z$ ,  $T_{(m,x)} = T_m M \oplus T_x S^2$ . Since  $I_x \circlearrowright T_m M$  and  $I_{std} \circlearrowright T_x S^2$ ,  $\mathbb{I} = I_x \oplus I_{std} \circlearrowright T_{(m,x)} Z$ .

**Theorem 1.**  $(Z, \mathbb{I})$  is a complex  $(2n+1)_{\mathbb{C}}$  dimensional manifold.

*Proof.* Strategy: Identify generators for  $\Omega_Z^{(2n+1,0)}$  and show these are closed.

The holomorphic symplectic structure for  $I_x$  is what?

$$I_x = x_1 I + x_2 J + x_3 K \quad (x_1, x_2, x_3) \in S^2$$
  
$$\Omega_x = a\omega_1 + b\omega_2 + c\omega_3 \quad [a:b:c] \in \mathbb{C}P^2 \quad \frac{a^2 + b^2 + c^2 = 0}{\text{smooth conic in}\mathbb{P}^2}$$



$$\frac{\eta \times \eta}{\|\eta \times \bar{\eta}\|} = \frac{1}{1 + \zeta \bar{\zeta}} (1 - \zeta \bar{\zeta}, i(\bar{\zeta} - \zeta), -(\zeta + \bar{\zeta}))$$

So the holomorphic symplectic form for the complex structure  $I_{\zeta}$  is

$$\Omega_{\zeta} = 2i\zeta\omega_1 + (1+\zeta^2)\omega_2 + i(1-\zeta^2)\omega_3 = \Omega_1 + 2i\zeta\omega_1 + \zeta\omega_1 + \zeta^2\bar{\Omega}_1.$$

Finally for the holomorphic volume form for  $Z^{2n+1}$ .

$$\Theta = \Omega_{\zeta} \underbrace{\wedge \cdots \wedge}_{\eta} \Omega_{\zeta} \wedge d\zeta$$

defines a complex structure and

$$d\Theta = (d_M + d_{S^2})\Theta = 0$$

*Example* 6. If  $\mathbb{H} = \mathbb{C}^2$  then  $Z^3$  is a complex 3-fold with complex structure determined by

$$\begin{split} \omega_1 &= \frac{i}{2} (dz_1 \wedge d\bar{z}_1 + dz_2 \wedge d\bar{z}_2) \\ \omega_2 &+ i\omega_3 = dz_1 \wedge dz_2 \\ \Omega_{\zeta} &= \Omega_1 + 2i\zeta\omega_1 + \zeta^2 \bar{\Omega}_1 \\ &= dz_1 \wedge dz_2 + 2i\zeta \frac{i}{2} (dz_1 \bar{d}z_1 + dz_2 d\bar{z}_2) + \zeta^2 (d\bar{z}_1 \wedge d\bar{z}_2) - \zeta (dz_1 d\bar{z}_1 + dz_2 d\bar{z}_2) \\ &= (dz_1 + \zeta d\bar{z}_2) \wedge (dz_2 - \zeta d\bar{z}_1). \end{split}$$

Hence there are complex coordinates

$$\begin{cases} (\zeta, z_1 + \zeta \bar{z}_2, z_2 - \zeta \bar{z}_1) & \zeta \neq \infty \\ (\zeta^{-1}, \zeta^{-1} z_1 + \bar{z}_2, \zeta^{-1} z_2 - \bar{z}_1) & \zeta \neq 0 \end{cases}$$

on  $\mathbb{C}\times\mathbb{C}^2.$  If we glue these , get

$$Z = \operatorname{tot} \left( \mathcal{O}(1) \oplus \mathcal{O}(1) \to \mathbb{P}^1 \right)$$

since the transition functions are  $(\zeta, \zeta)$  for the 2 factors.

Diagram missing

Warning: Each  $p \in M$  defines  $p \times S^2 \subset Z$  and this is obviously a complex curve, hence defines  $S_p \in H^0(\underbrace{\mathbb{P}^1}_{=H^0(\mathcal{O}(1))\oplus H^0(\mathcal{O}(1))}, \mathcal{O}(1)\oplus \mathcal{O}(1)).$  There exists a "real structure" on  $Z, \sigma: Z \xrightarrow{C^{\infty}} Z$  preserving all the atmeture.

all the structure:

- antiholomorphic involution
- compatible with  $\Omega_{\zeta}$
- sends sections to sections

The sections fices by  $\sigma$  are  $\mathbb{R}^4 \subset \mathbb{C}^4$ ,  $\mathbb{R}^4$  being the "real" twistor lines and  $\mathbb{C}^4$  being all twistor lines.