

# Moduli Space of Higgs Bundles Instructor: Marco Gualtieri 

## Contents

## Lecture Guide

## 1 History

Hyperkähler geometry and instantons
Hitchen (87-88)
Kapustin, Witten ('05)

## 2 Course Outline

I. Hyperkähler Geometry
II. Hitchin papers
III. Recent advances

## 3 Kähler Geometry

The basic structure of tangent bundles in Kähler geometry is

where $I$ is a complex structure (so $I^{2}=-1$ ), $g=g\left(-,-\right.$ ) is a Riemannian metric (so $g^{*}=g$ and $g$ is positive definite), and $\omega$ is a symplectic form (so $\omega^{*}=-\omega$ and $\omega(X, Y)=-\omega(Y, X)$.)

Compatability of any two of these structures $\Longleftrightarrow$ composite is as required.
Example 1. $I, \omega$ are compatible $\Longleftrightarrow I^{*} \omega=(-\omega I)^{*}=-\omega I$. Equivalently

$$
\begin{aligned}
& I^{*} \omega+\omega I=1 \\
\Longleftrightarrow & \omega(X, I Y)+\omega(I X, Y)=0 \\
\Longleftrightarrow & I^{*} \omega I=\omega \\
\Longleftrightarrow & \omega(I X, I Y)=\omega(X, Y)
\end{aligned}
$$

Because of the complex structure $I, T \otimes \mathbb{C}=T_{1,0} \oplus T_{0,1}$ where $T_{1,0}$ is the $+i$ eigenspace and $T_{0,1}$ is the $-i$ eigenspace. So,

$$
\bigwedge^{2} T_{\mathbb{C}}^{*}=\bigwedge^{2} T_{1,0}^{*} \oplus\left(T_{1,0}^{*} \otimes T_{0,1}^{*}\right) \otimes \bigwedge^{2} T_{0,1}^{*}
$$

and

$$
\Omega_{\mathbb{C}}^{2}=\Omega^{2,0} \oplus \Omega^{1,1} \oplus \Omega^{0,2}
$$

The compatibility condition then becomes $\omega \in \Omega^{1,1}$.

### 3.1 Integrability of Kähler Structures

I: $\left[T_{1,0}, T_{1,0}\right] \subset T_{1,0}$. Define the Nijenhuis Tensor $N \in \bigwedge^{2} T_{1,0}^{*} \otimes T_{0,1}$ by $N(X, Y)=\pi_{0,1}[X, Y]$ where $X$ and $Y$ are of type 1,0 . $I$ is integrable of this tensor vanishes. A result of NewlanderNirenberg says that $I$ is locally isomorphic to $\mathbb{C}^{n}$ when $I$ is integrable.
$\omega: \omega$ is integrable if $d \omega=0$. By a theorem of Darboux, if $\omega$ is integrable then $\omega$ is locally isomorphic to the standard symplectic structure $\left(\mathbb{R}^{2 n}, \omega_{s t d}\right)$.

If both integrability conditions are satisfied then this is a Kähler structure.
Remark 1. It is immediate from $\omega \in \Omega^{1,1}$ and $d \omega=0$ that $\omega$ is locally $i \partial \bar{\partial} k$ for $k \in C^{\infty}(U, \mathbb{R})$ by the $\partial \bar{\partial}$ lemma. $k$ is called the Kähler potential.

The de Rham differential splits as

and $I$ is integrable $\Longleftrightarrow d=\partial+\bar{\partial}$.
Lemma 1. $I, \omega$ are each integrable if and only if $\nabla I=0 \Longleftrightarrow \nabla \omega=0$. Here $\nabla$ is the LeviCivita connection, ie. the unique connection on $T$ which preserves $g\left(X g(Y, Z)=g\left(\nabla_{X} Y, Z+\right.\right.$ $\left.g\left(Y, \nabla_{X} Z\right) \Longleftrightarrow \nabla g=0\right)$ and is torsion free ( $\left.\nabla_{X} Y-\nabla_{Y} X=[X, Y]\right)$.

Proof. If $I$ is integrable, $I X=i X, I Y=-i Y$ and we want to show $I[X, Y]=i[X, Y]$. But

$$
I\left(\nabla_{X} Y-\nabla_{Y} X\right)=\left(\nabla_{X}(I Y)-\nabla_{Y}(I X)\right)=i[X, Y]
$$

The rest is an exercise.

Remark 2. Given an $n$-dim. complex manifold with hol. tangent and ccotangent bundles $T_{1,0}$ (with coordinates $\frac{\partial}{\partial z_{i}}$ ) and $T_{1,0}^{*}$ (with coordinates $d z_{i}$ ).

Let $K=\bigwedge^{n} T_{1,0}^{*}$ be the canonical holomorphic line bundle.
Kähler metric $\Longrightarrow$ Hermitian Metric on $K \Longrightarrow$ (unique) Chern connection.
Curvature(Chern) $=F \in \Omega_{\mathbb{R}}^{2}$. By Poincaré-Lelong, $F=i \partial \bar{\partial} \log \|s\|_{g}$ where $\|s\|_{g}=\operatorname{det} g_{i j}(s$ is the hol. section $d z_{1} \cdots d z_{n}$.) In the Kähler case, $F=\operatorname{Ric}_{g}(I-,-)$. Thus the Einstein equation Ric $=0 \Longleftrightarrow K$ is flat in the Kähler case.

### 3.2 Holonomy Groups



We have a tangent bundle with structures $I, \omega, g$ which satisfy $\nabla I=0, \nabla \omega=0$ and $\nabla g=0$. Hence parallel transport preserves the entire Kähler structure. In particular for a loop $\gamma$ at $x_{0}$, we get an automorphism $O(n) \ni P_{\gamma}: T_{x_{0}} \rightarrow T_{x_{0}}$. Varying over all paths get $\left\{P_{\gamma}\right\} \subset_{\text {Lie Subgroup }} O(n)$, the holonomy group of $(M, g)$.

In the Kähler case, get Special Holonomy: $\operatorname{Hol}(M, g) \subseteq U(n) \subset S O(2 n, \mathbb{R})$.

$$
\begin{aligned}
& G L(2 n, \mathbb{R}) \\
& \left(\text { aut of }\left(\mathbb{R}^{2 n}, I\right)\right) G L(n, \mathbb{C}) \quad S p(2 n, \mathbb{R}) \quad\left(\text { aut of }\left(\mathbb{R}^{2 n}, \omega_{\text {std }}\right)\right) \\
& \supset \quad \subset \\
& m_{\text {ax }} c_{p t} \text { sub }_{g_{p}} U(n)
\end{aligned}
$$

## Berger's List (1955) Of Possible Holonomy Groups

1. Locally symmetric spaces (loc. $G / K$ with $\mathrm{Hol}=K$.) Lie theoretic classification by Cartan.
2. $M_{\mathbb{R}}^{n}$

| Group $\subset O(n)$ | Structure |
| :---: | :---: |
| $S O(n)$ | orientable |
| $U\left(\frac{n}{2}\right)$ | Kähler |
| $S U\left(\frac{n}{2}\right)$ | Calabi-Yau (noncompact Calabi,compact Yau) |
| $S p\left(\frac{n}{4}\right)$ | Hyperkähler |
| $S p\left(\frac{n}{4}\right) \cdot S p(1)$ | Quaternionic Kähler |
| $G_{2} \subset O(7)$ | $G_{2}$ structure |
| $\operatorname{Spin}(7) \subset O(8)$ | Spin7 structure (noncompact Bryant, compact Joyce) |

## Hyperkähler

- Define
- Construct: KH reduction, examples
- Twistor space
- many moduli spaces (Higgs, monopoles,solns to Nahms eqns) coadjoint orbits for complex reductive groups, $\cdots$, have hyperkähler structures.


## 4 Hyperkähler Structures

Definition 1. A hyperkähler manifold is a Riemann manifold with holonomy $S P(m) \subset O(n=4 m)$.
Here $S p(m)$ is the quaternionic unitary group which we now define. Let

$$
\mathbb{H}=\left\{q=x_{0}+i x_{1}+k x_{2}+k x_{3}: x_{i} \in \mathbb{R}\right\}
$$

where $i^{2}=j^{2}=k^{2}=i j k=-1$.
Every quaternion $q$ has a conjugate $\bar{q}=x_{0}-i x_{1}-j x_{2}-k x_{3}$ and $q \bar{q}=$ $x_{0}^{2}+x_{1}^{2}+x_{2}^{2}+x_{3}^{2}$.

May view $\mathbb{H}$ as $\mathbb{C}^{2}$ via $q=\left(x_{0}+i x_{1}\right)+\left(x_{2}+i x_{3}\right) j \in \mathbb{C} \oplus \mathbb{C} j$ so the extra
 structure on $\mathbb{C}^{2}$ is multiplication by $j$. More precisely, we have $J: L_{j}: \mathbb{C}^{2} \rightarrow \mathbb{C}^{2}$ such that for $\lambda \in \mathbb{C}, J(\lambda v)=\bar{\lambda}(J v)$ ie. $J$ is a complex linear automrophism. So we have $J: \mathbb{C}^{2} \rightarrow \overline{\mathbb{C}^{2}}$ such that

$$
\mathbb{C}^{2} \xrightarrow[-1]{\stackrel{K}{\longrightarrow} \overline{\mathbb{C}^{2}} \xrightarrow{\bar{J}} \mathbb{C}^{2}, ~}
$$

Any such $J$ is called a quternionic structure on a complex vector space.

Focus on a certain structure enjoyed by $\mathbb{R}^{4}=\mathbb{H}$. There are three complex structures $L_{i}=I, L_{j}=$ $J, L_{k}=K$ with the euclidean metric $g_{\text {euc }}, g(q, q)=q \bar{q}$.

These define 3 Kähler structures


In fact, for all $(\alpha, \beta \gamma) \in S^{2}$,


$$
\alpha I+\beta J+\gamma K=I_{(\alpha, \beta, \gamma)}
$$

is also a complex structure. The corresponding Kähler form is

$$
\omega_{(\alpha, \beta, \gamma)}=g I_{\alpha, \beta, \gamma}=\alpha \omega_{1}+\beta \omega_{2}+\gamma \omega_{3}
$$

$\mathbb{R}^{4 m}=\mathbb{H}^{m} \cong\left(\mathbb{C}^{2 m}, J=L_{J}\right)$ w.r.t complex structure defined by $L_{i}=I$ is a left quaternionic module. Have

$$
q_{\ell}=x_{0}^{\ell}+i x_{1}^{\ell}+j x_{2}^{\ell}+k x_{3}^{\ell}, \quad \ell=1, \cdots, m
$$

Definition 2. $S p(m)$ is the stabilizer in $O(4 m, \mathbb{R})$ of the structure $(g, I, J, K)$ (and hence $\left.\omega_{1}, \omega_{2}, \omega_{3}\right)$. $S p(m)$ is a compact (simply) connected Lie group with $\operatorname{dim}_{\mathbb{R}}=2 m^{2}+m$.
$\mathbf{m}=\mathbf{1}$ : coincides with $S U(2)=S^{3}$
$\mathbf{m}=\mathbf{2}$ : coincides with $\operatorname{Spin}(5)$
This is sometimes defined as a subgroup of $G L(m, \mathbb{H})$ preserving (, ). Here

$$
G L(m, \mathbb{H})=\left\{\left[a_{i j}\right]_{i, j=1}^{m}: A_{i j} \in \mathbb{H}\right\}
$$

with quaternionic action $A \cdot\left(q^{1}, \cdots, q^{m}\right)=\left(q^{1}, \cdots, q^{m}\right) \bar{A}^{T}$. c.f. $U(n) \subset G L(n, \mathbb{C})$ preserving (, $)$.
Similarly, by privileging $I$, we view $\left(\left(\mathbb{H}^{m}, I\right), J\right)=\left(\mathbb{C}^{2 m}, J\right)$ as a complex vector space with quaternionic structure. Have complex coordinates

$$
z_{2 p-1}=x_{0}^{p}+i x_{1}^{p}, \quad z_{2 p}=x_{2}^{p}+i x_{3}^{p}
$$

and then

$$
\begin{aligned}
& g=\sum_{\ell}\left|d z_{\ell}\right|^{2} \\
& \omega_{I}=\frac{i}{2} \sum_{\ell} d z_{\ell} \wedge d \bar{z}_{\ell} \\
& \omega_{J}+i \omega_{K}=d z_{1} \wedge d z_{2}+d z_{3} \wedge d z_{4}+\cdots
\end{aligned}
$$

Note that $\omega_{j}+i \omega_{K}$ is a holomorphic (complex) symplectic form on $\mathbb{C}^{2 m}$. Hence $S p(m)=U(2 m) \cap$ $S p(2 m, \mathbb{C})(S p(2 m, \mathbb{C})$ is the complex symplectic group.)

In fact, the hyperkähler structure is completely determined by $\left(\omega_{I}, \omega_{J}, \omega_{K}\right)$ :

## Lemma 2.

$$
\operatorname{Stab}\left(\omega_{I}, \omega_{J}, \omega_{K}\right)=S p(m)
$$

Proof.


$$
\begin{aligned}
& \omega_{1}=g I \\
& \omega_{2}=g J \\
& \omega^{-1} \omega_{2}=I^{-1} g-1 g J=-K \\
& \omega_{K} \circ(-K)=g
\end{aligned}
$$

Warning 1. Not so for $I, J, K$.

Example 2. Consider dimension 4 on $\mathbb{R}^{4}=V$.
Lemma 3. $\left(\omega_{1}, \omega_{2}, \omega_{3}\right)$ has stabilizer $\operatorname{Sp}(1) \Longleftrightarrow$

$$
\left\{\begin{array}{l}
\omega_{1} \wedge \omega_{1}=\omega_{2} \wedge \omega_{2}=\omega_{3} \wedge \omega_{3} \neq 0 \\
\omega_{1} \wedge \omega_{2}=\omega_{1} \wedge \omega_{3}=\omega_{2} \wedge \omega_{3}=0
\end{array}\right.
$$

Proof. Consider $\Omega_{1}=\omega_{2}+i \omega_{3}$ ( $I$ holomorphic symplectic form $d z_{1} \wedge d z_{2}$.) Then $\Omega_{1} \wedge \Omega_{1}=0$ so $\Omega_{1}$ decomposes as $\Omega_{1}=\theta_{1} \wedge \theta_{2}$

$\Omega_{1} \wedge \overline{\Omega_{2}}=2 \omega_{1}^{2} \neq 0 \Longleftrightarrow \theta_{1} \wedge \theta_{2} \wedge \bar{\theta}_{1} \wedge \bar{\theta}_{2} \neq 0$ so we have a basis $\left(\theta_{1}, \theta_{2}, \bar{\theta}_{1}, \bar{\theta}_{2}\right)$ for $V^{*} \otimes \mathbb{C}$. But this is equivalent to a decomposition $V^{*} \otimes \mathbb{C}=\left\langle\theta_{1}, \theta_{2}\right\rangle \oplus\left\langle\bar{\theta}_{1}, \bar{\theta}_{2}\right\rangle$. This yields a complex structure by regarding $\left\langle\theta_{1}, \theta_{2}\right\rangle$ as the 1,0 eigenspace and $\left\langle\bar{\theta}_{1}, \bar{\theta}_{2}\right\rangle$ as the 0,1 eigenspace.

So far, we have a complex structure $I$ on $\operatorname{Stab} \subset G L(2, \mathbb{C})$ but $\Omega_{1}$ is also preserved which imples Stab $\subset S L(2, \mathbb{C})$ and since $\omega_{1}$ is also preserved, $\omega_{1} \in \Omega_{I}^{1,1}$.

Expand $\omega_{1}=\sum_{\alpha, \beta=1,2} h_{\alpha \bar{\beta}} \theta_{\alpha} \wedge \bar{\theta}_{\beta}$ where $h_{\alpha, \bar{\beta}}$ is a $2 \times 2$ Hermitian matrix and so $h_{\alpha, \bar{\beta}}$ is conjugate to

$$
\left(\begin{array}{ll}
\lambda & 0 \\
0 & \mu
\end{array}\right)
$$

We have

$$
\lambda \mu \theta_{1} \theta_{2} \bar{\theta}_{1} \bar{\theta}_{2}=\left(\operatorname{det} h_{\alpha, \bar{\beta}}\right) \theta_{1} \theta_{2} \bar{\theta}_{1} \bar{\theta}_{2}=\omega_{1}^{2}=\frac{1}{2} \Omega \wedge \bar{\Omega}=\frac{1}{2} \theta_{1} \wedge \theta_{2} \wedge \bar{\theta}_{1} \wedge \bar{\theta}_{2}
$$

which implies both $\lambda, \mu$ have the same sign.
Note 1. $M^{4}$ a compact oriented manifold, $H^{2} \times H^{2} \rightarrow H^{4}=\mathbb{R}$ a symmetric, nondegenerate inner product on $H^{2} . b_{+}\left(M^{4}\right)=\#$ of positive directions signature $\left(b_{+}, b_{2}-b_{+}\right)$. In order to have a Kähler structure need what?
$k 3$ has signature $(3,19), \operatorname{dim} H^{2}=22$ supports a hyperkähler structure.

## The Manifold Case

If $\left(M^{4 m}, g\right)$ has $\operatorname{hol}\left(\nabla^{L C}\right) \subset S p(m)$ then all the $S p(m)$-invariant structure on $\mathbb{H}^{m}$ passes to corresponding structure on $T M$, which is flat. So we get a Riemannian manifold ( $M, g, I, J, K$ ) with three complex structures, 3 Kähler structures and is flat: $\nabla I=\nabla J=\nabla K \Longrightarrow 3$ Kähler structures.

If we privilege $I$ we get
$\Longrightarrow$ complex manifold $(M, I)$ of complex dimension $2 m$
$\Longrightarrow \Omega_{1}=\omega_{2}+i \omega_{3}$ holomorphic symplectic $(2,0)$ form
$\Longrightarrow \Omega_{1}^{m} \in \bigwedge^{2 m} T_{1,0}^{*}=K$ the canonical bundle

$$
\Longrightarrow K \cong \mathcal{O} \text { trivial CY manifold. Recall } \nabla^{L C}, K \text { flat so curv }(\text { Chen })=\operatorname{Ric} I=0
$$

### 4.1 Examples of Hyperkähler Structures in dimension 4

Recall that we showed a hyperkähler structure in dimension 4 is a triple $\left(\omega_{1}, \omega_{2}, \omega_{3}\right)$ such that $\omega_{i}^{2}=0$, $\omega_{1} \omega_{2}=\omega_{1} \omega_{3}=\omega_{2} \omega_{3}=0$ and $d \omega_{i}=0$ (integrable.)
Example 3 (Local).
Take an open in $\mathbb{R}^{4}=\left(\mathbb{C}^{2},\left(z_{1}, z_{2}\right)\right)$ with $I=i$,

$$
\begin{aligned}
\Omega_{1} & =d z_{1} \wedge d z_{2}=\omega_{2}+i \omega_{3} \\
\omega_{1} & =i \partial \bar{\partial} \varphi \quad \varphi \in C^{\infty}(U, \mathbb{R}) \\
& =i \frac{\partial^{2} \varphi}{\partial z_{i} \partial \bar{z}_{j}} d z_{i} \wedge d \bar{z}_{j}
\end{aligned}
$$

For example can take $\varphi=z_{1} \bar{z}_{1}+z_{2} \bar{z}_{2}$ so $i \partial \bar{\partial} \varphi=i\left(d z_{1} \wedge d \bar{z}_{1}+d z_{2} d \bar{z}_{2}\right)$. This simply gives $\mathbb{H}^{4}$.
The only remaining condition is

$$
\omega_{1}^{2}=\operatorname{vol}_{E u c} \Longleftrightarrow \operatorname{det}\left(\frac{\partial^{2} \varphi}{\partial z_{i} \partial \bar{z}_{j}}\right)=1
$$

The equation $\operatorname{det}\left(\frac{\partial^{2} \varphi}{\partial z_{i} \partial \bar{z}_{j}}\right)=1$ is the (complex) Monge-Ampère equation. Calabi: Suppose $z_{i}=x_{i}+y_{i}$ and $\varphi\left(z_{1}, z_{2}, \bar{z}_{1}, \bar{z}_{2}\right)=\varphi\left(x_{1}, x_{2}\right)$. Then we get the real Monge-Ampère equation:

$$
\operatorname{det}\left(\frac{\partial^{2} \varphi}{\partial x_{i} \partial x_{j}}\right)=1
$$

This is a nonlinear PDE so assume $\varphi$ is $S O(2)$ invariant (ie. radial) to get an ODE "cohomgeneity one". Then can solve the equation to get

$$
\varphi(x)=\int_{0}^{\|x\|}\left(c+r^{2 c}\right)^{\frac{1}{2}} d r
$$

For example, for $c=1$ get $\frac{1}{2}(c+r)^{\frac{1}{2}}+\frac{1}{2} \sinh ^{-1}(r)+K$. Diagrams missing

## Gibbons Hawking Examples

1. 


$U \subset \mathbb{R}^{3}, M=S^{1} \times U$ with coordinates $\left(\theta, x_{1}, x_{2}, x_{3}\right), V\left(x_{1}, x_{2}, x_{3}\right)>0$.

$$
g_{m}=V^{-1}(d \theta+A)^{2}+V\left(d x_{1}^{2}+d x_{2}^{2}+d x_{3}^{2}\right)
$$

where

$$
A=A_{1}(x) d x_{1}+A_{2}(x) d x_{2}+A_{3}(x) d x_{3} \quad \text { with } A_{i} \in C^{\infty}(U, \mathbb{R})
$$

We have a trivial $S^{1}$ bundle with principal connection $d \theta A$ on the principal $S^{1}$ bundle $M \xrightarrow{\pi} U$. $A$ is called the connection one form.
$g_{M}$ diagonal $\Longrightarrow$ on basis for $T^{*}$

$$
\begin{aligned}
& e_{0}=V^{-\frac{1}{2}}(d \theta+A) \\
& e_{1}=V^{-\frac{1}{2}} d x_{1} \\
& e_{1}=V^{-\frac{1}{2}} d x_{2} \\
& e_{1}=V^{-\frac{1}{2}} d x_{3},
\end{aligned}
$$

$g_{M}=e_{0}^{2}+e_{1}^{2}+e_{2}^{2}+e_{3}^{2}$.

$$
\begin{aligned}
& \omega_{1}=(d \theta+A) \wedge d x_{1}+V\left(d x_{2} \wedge d x_{3}\right) \\
& \omega_{2}=(d \theta+A) \wedge d x_{2}-V\left(d x_{1} \wedge d x_{3}\right) \\
& \omega_{3}=(d \theta+A) \wedge d x_{3}+V\left(d x_{1} \wedge d x_{2}\right)
\end{aligned}
$$

which has stabiliser $S p(1)$. To get a hyperkähler structure we need $d \omega_{i}=0$ :

$$
\begin{aligned}
& d \omega_{1}=d A \wedge d x_{1}+d V \wedge d x_{2} \wedge d x_{3}=0 \\
& \quad\left(\frac{\partial A_{2}}{\partial x_{3}}-\frac{\partial A_{3}}{\partial x_{2}}+\frac{\partial V}{\partial x_{1}}\right) d x_{1} \wedge d x_{2} \wedge d x_{3}=0
\end{aligned}
$$

This is a scalar equation in $\mathbb{R}^{3}$. Including the other equations $d \omega_{i}=0$, get $d A=-\star_{\mathbb{R}^{3}} d V$, or equivalently, $\nabla V=0$, so $V$ is harmonic on $\mathbb{R}^{3} \Longrightarrow d V$ closed $\Longrightarrow$ exact if $U$ is simply connected $\Longrightarrow \exists A$ with $d A=-\star V$. On all of $\mathbb{R}^{3}, V=1$ and so just get $\mathbb{R}_{E u c}^{3} \times S^{1}(A$ is unique up to gauge.)
Observe that if we use $V=\frac{1}{r}$ in $\mathbb{R}^{3} \backslash\{0\}$ (warning: $H^{2} \neq 0$ ),

$$
\begin{gathered}
\star d V=\star\left(-r^{-} 2 d r\right)=-r^{-2}\left(r^{2} d \Omega\right)=-d \Omega \\
\int_{S^{2}} \star d V \neq 0 \Longrightarrow \star d V \neq d A
\end{gathered}
$$

Generalization: $M^{4} \xrightarrow{\pi} \mathbb{R}^{3} \backslash\left\{p_{1}, \cdots, p_{k}\right\}=B$ a principal $S^{1}$ bundle which is Hopf about each point $p_{i}$, ie. $c_{1}(M)=1$ on each $S_{p_{i}}^{2}$ or $\left.M\right|_{S_{p_{i}}^{2}}$ is the Hopf fibre $S^{3} \rightarrow S^{2}$. Diagrams Missing
Now, choose a principal connection $\eta \in \Omega^{1}(M)$ which is $S$-invariant $\left(L_{\partial_{\theta}} \eta=0\right)$ and $\iota_{\partial_{\theta}}=1$ where $\partial_{\theta}$ is the vector field generated by the $S^{1}$ action.

- $\operatorname{ker} \eta$ is the horizontal distribution.
- $d \eta=\pi^{*} F, F$ is the curvature of $\eta \in \Omega^{2}(B)\left(\right.$ since $\left.\iota_{\partial_{\theta}} d \eta=L_{\partial_{\theta}} \eta=0\right)$

Given $M \rightarrow B \subset \mathbb{R}^{3}, \eta \in \Omega^{1}(M)$ and $V \in C^{\infty}(B, \mathbb{R})$ can build the metric

$$
g=V^{-1} \eta^{2}+V \pi^{*}\left(d x_{1}^{2}+d x_{2}^{2}+d x_{3}^{2}\right)
$$

As before, define $e_{0}=V^{-\frac{1}{2}} \eta, e_{i}=V^{\frac{1}{2}} d x_{i}, w_{0}=\cdots$. Then we get a hyperkähler structure $\Longleftrightarrow$ $F=-\star d V$ (so $V$ is harmonic) and by assumption $\int_{S_{p_{i}}} F=1 \Longrightarrow \int_{S_{p_{i}}} \star d V=1$ so $V \sim \frac{1}{r}$ at each $p_{i}$.

$$
V=c+\sum_{i=0}^{k} \frac{1}{\left|x-p_{i}\right|_{\mathbb{R}^{3}}}
$$

For $c \neq 0$ these are called (multi) Taub-NUT Hyperkähler metrics (ALF (asymptotically locally flat): $\mathbb{R}^{3} \times S^{1}$ )
For $c=0 A_{k}$ ALE (asymptotically locally euclidean: $\mathbb{R}^{4}$ ) hyperkähler structures. These are also called graviational instantons in the physics literature.
These two cases are very different in terms of asymptotic geometry but both have two amazing properties:

1. Extend smoothly to $M \sqcup\left\{p_{1}, \cdots, p_{k}\right\}$ to give a smooth 4-dimensional manifold similar to the way $\mathbb{R}^{4} \xrightarrow{\text { Hopf }} \mathbb{R}^{3}$.
2. Resulting $(M, g)$ is complete.

Example 4. $c=0, k=0$ (one point), $V=\frac{1}{r}$ givese $\left(\mathbb{R}^{4}, g_{E u c}\right)$.
Have $\mathbb{R}^{4}=\mathbb{C}^{2}$ with $S^{1}$ action

$$
\begin{aligned}
& e^{i \theta} \cdot\left(z_{1}, z_{2}\right)=\left(e^{i \theta} z_{1}, e^{-i \theta} z_{2}\right) \\
& \partial_{\theta}=i\left(z_{1}-z_{2}\right) \\
& g\left(\partial_{\theta}, \partial_{\theta}\right)=V^{-1}\left(\eta\left(\partial_{\theta}\right)\right)^{2}=V^{-1} \\
& \left\|\partial_{\theta}\right\|=V^{-1}=\left|z_{1}\right|^{2}+\left|x_{2}\right|^{2}
\end{aligned}
$$

Map

$$
\begin{aligned}
\pi: \mathbb{R}^{4} & \rightarrow \mathbb{R}^{3} \\
\left(z_{1}, z_{2}\right) & \mapsto\left\{\begin{array}{l}
x_{1}=\left|z_{1}\right|^{2}-\left|z_{2}\right|^{2} \\
x_{2}+i x_{3}=2 z_{1} z_{2}
\end{array}\right.
\end{aligned}
$$

(map is quadratic and restricted to $S^{3}$ is just the Hopf map.) Get a principal $S^{1}$ bundle on $\mathbb{R}^{3} \backslash 0$ with critical value 0.

$$
\begin{gathered}
r^{2}=x_{1}^{2}+x_{2}^{2}+x_{3}^{2}=\left(\left|z_{1}\right|^{2}-\left|z_{2}\right|^{2}\right)^{2}+4\left|z_{1}\right|^{2}\left|z_{2}\right|^{2}=\left(\left|z_{1}\right|+\left|z_{2}\right|^{2}\right)^{2} \\
V^{-1}=\sqrt{r^{2}}=r \quad V=\frac{1}{r}
\end{gathered}
$$

Recall that we constructed the $A_{k}$ ALE hyperkähler manifolds: Given

$$
\begin{aligned}
& \mathbb{R}^{3} \backslash\left\{p_{1}, \cdots, p_{k}\right\} \leftarrow \tilde{M} \text { princple } S^{1} \text { bundle with } c_{1}=1 \text { about each } p_{i} \\
& \eta \in \Omega^{1}(\tilde{M}) S^{1} \text {-invariant connection } \\
& d \eta=-\pi^{*} \star d V
\end{aligned}
$$

$$
V \text { a harmonic function on } \mathbb{R}^{3} \text { with } \frac{1}{r} \text { singularities at } p_{i}
$$

get a metric

$$
g=V \pi^{*} g_{\mathbb{R}^{3} 3}+V^{-1} \eta^{2}
$$

Taking $V=c+\sum_{i=0}^{k} \frac{1}{\sim x-p_{i} \mid}$ with $c=0$ gave $A_{k}$ ALE and $c \neq 0$ gives the multi Taub-NUT metrics. In either case, $M=\tilde{M} \cup\left\{p_{1}, \cdots, p_{k}\right\}$ is a smooth 4-manifold with complete hyperkähler metric.

## Description of Hyperkähler Structure



## Finish Diagram

Example 5.

1. $V=\frac{1}{r} \Longleftrightarrow\left(\mathbb{R}^{4}, g_{\mathbb{R}^{4}}\right)$ flat hyperkähler
2. $A_{1}$ diagram missing associated to straightline $-p \rightarrow p$ get minimal surface $S^{2} \subset M \Longrightarrow H^{2}=\left\langle S_{\ell}^{2}\right\rangle$.
If $\left.x_{2}\right|_{\ell}=\left.x_{3}\right|_{\ell}=0$, then

$$
\begin{aligned}
& \omega_{1}=(d \theta+A) \wedge d x_{1}+V d x_{2} \wedge d x_{3} \\
& \omega_{2}=(d \theta+A) \wedge d x_{2}-V d x_{1} \wedge d x_{3} \\
& \omega_{3}=(d \theta+A) \wedge d x_{3}+V d x_{1} \wedge d x_{2}
\end{aligned}
$$

$\omega_{1}$ is $I$ (Kähler) and $\Omega_{1}=\omega_{2}+i \omega_{3}$. So $\left.\Omega_{1}\right|_{\ell_{\ell^{2}}}=0$ implies $S_{\ell^{2}}$ is Lagrangian for $\omega_{2}, \omega_{3}$ and a complex curve with respect to $I$. In the physics terminology, this is a ( $B, A, A$ ) brane (the $B$ refers to complex geometry, the $A$ to symplectic.)
Fact: For a generic $x \in S_{c x^{2}}$, no line $\overline{p_{i} p_{j}}$ is parallel to $x$. Hence $\left(M, I_{x}\right)$ has no rational curves and in fact is an affine algebraic variety but for $x$ parallel to $\overline{p_{i} p_{j}}$ get rational curves in corresponding complex structure.

## 5 Penrose Twistor Space

Start with a hyperkähler manifold $\left(M^{4 n}, g, I, J, K\right)$ and let $S^{2}$ be the sphere of complex structures with coordinates $\left(x_{1}, x_{2}, x_{3}\right) \leftrightarrow x_{1} I+x_{2} J+x_{3} K=I_{x}$. Then the twistor space is $Z=M \times S^{2}$.

Given $(m, x) \in Z, T_{(m, x)}=T_{m} M \oplus T_{x} S^{2}$. Since $I_{x} \circlearrowright T_{m} M$ and $I_{s t d} \circlearrowright T_{x} S^{2}, \mathbb{I}=I_{x} \oplus I_{s t d} \circlearrowright T_{(m, x)} Z$.
Theorem 1. $(Z, \mathbb{I})$ is a complex $(2 n+1)_{\mathbb{C}}$ dimensional manifold.
Proof. Strategy: Identify generators for $\Omega_{Z}^{(2 n+1,0)}$ and show these are closed.
The holomorphic symplectic structure for $I_{x}$ is what?

$$
\begin{array}{ll}
I_{x}=x_{1} I+x_{2} J+x_{3} K & \left(x_{1}, x_{2}, x_{3}\right) \in S^{2} \\
\Omega_{x}=a \omega_{1}+b \omega_{2}+c \omega_{3} & {[a: b: c] \in \mathbb{C} P^{2}}
\end{array} \frac{a^{2}+b^{2}+c^{2}=0}{\text { smooth conic inP }}
$$



So the holomorphic symplectic form for the complex structure $I_{\zeta}$ is

$$
\Omega_{\zeta}=2 i \zeta \omega_{1}+\left(1+\zeta^{2}\right) \omega_{2}+i\left(1-\zeta^{2}\right) \omega_{3}=\Omega_{1}+2 i \zeta \omega_{1}+\zeta \omega_{1}+\zeta^{2} \bar{\Omega}_{1}
$$

Finally for the holomorphic volume form for $Z^{2 n+1}$.

$$
\Theta=\Omega_{\zeta} \underbrace{\wedge \cdots \wedge}_{\eta} \Omega_{\zeta} \wedge d \zeta
$$

defines a complex structure and

$$
d \Theta=\left(d_{M}+d_{S^{2}}\right) \Theta=0
$$

Example 6. If $\mathbb{H}=\mathbb{C}^{2}$ then $Z^{3}$ is a complex 3-fold with complex structure determined by

$$
\begin{aligned}
\omega_{1} & =\frac{i}{2}\left(d z_{1} \wedge d \bar{z}_{1}+d z_{2} \wedge d \bar{z}_{2}\right) \\
\omega_{2} & +i \omega_{3}=d z_{1} \wedge d z_{2} \\
\Omega_{\zeta} & =\Omega_{1}+2 i \zeta \omega_{1}+\zeta^{2} \bar{\Omega}_{1} \\
& =d z_{1} \wedge d z_{2}+2 i \zeta \frac{i}{2}\left(d z_{1} \bar{d} z_{1}+d z_{2} d \bar{z}_{2}\right)+\zeta^{2}\left(d \bar{z}_{1} \wedge d \bar{z}_{2}\right)-\zeta\left(d z_{1} d \bar{z}_{1}+d z_{2} d \bar{z}_{2}\right) \\
& =\left(d z_{1}+\zeta d \bar{z}_{2}\right) \wedge\left(d z_{2}-\zeta d \bar{z}_{1}\right)
\end{aligned}
$$

Hence there are complex coordinates

$$
\begin{cases}\left(\zeta, z_{1}+\zeta \bar{z}_{2}, z_{2}-\zeta \bar{z}_{1}\right) & \zeta \neq \infty \\ \left(\zeta^{-1}, \zeta^{-1} z_{1}+\bar{z}_{2}, \zeta^{-1} z_{2}-\bar{z}_{1}\right) & \zeta \neq 0\end{cases}
$$

on $\mathbb{C} \times \mathbb{C}^{2}$. If we glue these, get

$$
Z=\operatorname{tot}\left(\mathcal{O}(1) \oplus \mathcal{O}(1) \rightarrow \mathbb{P}^{1}\right)
$$

since the transition functions are $(\zeta, \zeta)$ for the 2 factors.
Diagram missing
$\underline{\text { Warning:Each } p \in M \text { defines } p \times S^{2} \subset Z \text { and this is obviously a complex curve, hence defines }}$ $S_{p} \in H^{0}(\underbrace{\mathbb{P}^{1}}_{=H^{0}(\mathcal{O}(1)) \oplus H^{0}(\mathcal{O}(1))}, \mathcal{O}(1) \oplus \mathcal{O}(1))$. There exists a "real structure" on $Z, \sigma: Z \xrightarrow{C^{\infty}} Z$ preserving all the structure:

- antiholomorphic involution
- compatible with $\Omega_{\zeta}$
- sends sections to sections

The sections fices by $\sigma$ are $\mathbb{R}^{4} \subset \mathbb{C}^{4}, \mathbb{R}^{4}$ being the "real" twistor lines and $\mathbb{C}^{4}$ being all twistor lines.

