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Chapter 1

The Moduli Spaces Mg,n

Lecture 1 [19.01.2017]

Missed

Lecture 2 [26.01.2017]

We will discussMg,n(X) more systematically, regardingMg,n(X) as a Deligne-Mumford Stack.

1.1 Crash Course on Stacks

1.1.1 Motivation

Let X be an algebraic variety over C and G an algebraic group (finite for example.) How can we
define the quotient X/G in the general case of a non-free action? We want a nice definition of a
quotient. In particular we want a map X → X/G with good properties; eg. X/G should be smooth
if X is smooth etc. however this usually fails.

Example 1.1. X = C2, G = Z/2Z with the action (x, y) → (−x,−y). The naive quotient is
C2/(Z/2Z) = SpecC[x, y] with the relations uv = w2 where u = x2, v = y2, w = xy so get a
singular surface.

We will extend our notion of a space by constructing an inclusion SchC ⊂ Bigger World. Let
X be a scheme over C. Define a functor FX : Schop

C → Sets by FX(S) = Hom(S,X). Then X can
be uniquely recoverd from FX . Furthermore, given X,Y ∈ SchC, Hom(X,Y ) = Hom(FX , FY ). The
most general notion of space is just a functor

F : Schop
C → Sets.
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Ind-Schemes

Recall that an Ind-Scheme is a functor which is representable by an inductive limit of schemes.

Example 1.2.

1. What is A∞?
SpecC[x1, x2, x3, · · · ] = lim←−

n

An

since
C[x1, x2, · · · ] =

∪
n≥1

C[x1, x2, · · · , xn]

2. We have a sequence of embeddings 0 ⊂ A1 ⊂ A2 ⊂ · · · given by the inclusions (x1, · · · , xn) 7→
(x1, · · · , xn, 0). The inductive limit does not exist in the category of schemes but it does exist
in the catgory of functors.

1.1.2 Descent Property

Given X ′ → S ′ and φ in the following diagram

X ′ X

S ′ S
φ

we want conditions such that we can find X making this a Cartesian square, ie. want X such that
X ′ = X ×S S

′.
If we have such an X then we get an isomorphism pr∗1X

′ α−→ pr∗2X
′ between the pullbacks of X ′

to S ′ ×S S
′ in the following diagram.

pr∗1X
′ pr∗2X

′

X ′ S ′ ×S S
′ X ′

S ′ S ′

S

α

pr1 pr2

Exercie 1.1. Produce some condition that α satisfies which “lives” on S ′′′ = S ′ ×S S
′ ×S S

′

Theorem 1.1. If φ is faithfully flat (surjective and flat) then every α satisfying the cocycle condition
uniquely determines X.

In the language of Grothendieck topologies, this is equivalent to saying FX is a sheaf in the
Grothendieck topology where coverings are faithfully flat maps.
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1.1.3 Stacks

Stacks are also functors, but in a more sophisticated sense.

Definition 1.1. A category C is called a groupoid if every morphism is an isomorphism.

Roughly speaking, stacks are “functors” F : Schop
C → Groupoids satisfying nice properties. By

a functor in this context, we mean to every S ∈ SchC is associated a groupoid F (S) and to every
morphism S1

φ−→ S2 is associated a functor F (φ) : F (S2) → F (S1) such that given composable
morphisms S1

φ−→ S2
ϕ−→ S3, there is a natural isomorphism F (φ) ◦ F (ϕ) ≃ F (ψ ◦ φ).

If X,Y are two stacks, Hom(X,Y ) is a groupoid with

1−morphisms = objects of this groupoid
2−morphisms = morphisms between 1-morphisms

Example 1.3. X/G. What is a map S → X/G? If the quotient exists and has all properties we want,
than can form the pullback

X ×X/G S X

S X/G

.

Given a scheme S, a principle G-bundle is a scheme W with an action of G such that locally in the
étale topology, W is isomorphic to X × G, ie. there exists a surjective étale map f : X ′ → X such
that X ′ ×X W ≃ X ′ ×G. If all schemes are of finite type, then you can replace étale by flat.

So can define the functor FX/G : Schop
C → Groupoids by

FX/G(S) =
{

a principle G−bundle W over
S and a G equiv. map W→X

}
and this makes sense for any group action.

A map f : X → Y between two stacks is called representable if for all φ : S → Y where S is a
scheme in

S ×Y X S

X Y

φ

f

,

S ×Y X is also a scheme.
For example if X → Y are both schemes, G acts on both X and Y and the map is G-equivariant

then X/G→ Y/G is representable.

Definition 1.2. A stack X is an algebraic stack if there exists a surjective map X ′ f−→ X where
X ′ is a scheme and f is a smooth representable map.

Definition 1.3. A stack X is a Deligne-Mumford stack if there exists a surjective map X ′ f−→ X
where X ′ is a scheme and f is a finite étale representable map.

Definition 1.4. An algebraic space is a Deligne-Mumford stack with trivial automorphism groups
at every point.

Every point of a Deligne-Mumford stack has a finite group of automorphisms.
Example 1.4. X → X/G is always an algebraic stack, and it is a Deligne-Mumford stack if and only
if the stabilizer of every point is finite.
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1.2 Moduli Spaces

1.2.1 Coarse Moduli Space

If X is a Deligne-Mumford stack of finite type over C, can construct an algebraic space X, called
the coarse moduli space of X and a map X → X such that X(C) are the isomorphism classes of
X(C).

Theorem 1.2.

1. Let X be a smooth projective variety. Then there exists a Deligne-Mumford stack of finite type
Mβ

g,n(X) (stable maps), where β ∈ H2(X,Z), with quasi-projective coarse moduli space.

2. Similary, have Mβ

g,n with a projective coarse moduli space.)

3. If X = pt then all these stacks are smooth and irreducible.

Note 1.1. X/G with G finite is a Deligne-Mumford stack and furthermore, every Deligne-Mumford
stack with quasi-projective coarse moduli space can be obtained by gluing these together. For X
affine, say X = SpecA, the coarse moduli space is SpecAG.

1.2.2 The Stack Mg,n

What isMβ
g,n(X) as a stack?

Example 1.5. Let X = pt and n = 0. Define the functor

S 7→
{
C φ−→ S :

C a scheme
φ a flat projective morphism

The fiber of φ over every geometric point of S
is a smooth projective irreducible curve of genus g

}
Claim 1.1.

1. This is a smooth algebraic stack

2. If g ≥ 2 then it is a Deligne-Mumford stack

Proof. (Sketch) 2 essentially follow from 1. Suppose C is a smooth projective irreducible curve of
genus g. For any d ∈ Z, can define Picd(C) which classifies line bundles L of degree d over C as a
stack via

S 7→
{

line bundles L over S×C such that
for all geometric points s∈S, L|{s}×C has degree d

}
Picdst(C) = Picd(C)/C∗ with trivial action. Choose c ∈ C. A map S → Picd(C) is equivalent to a
line bundle L of degree d over S × C and a trivialization on S × {c}. Choose LS×{c} ≃ OS×{c}.

Theorem 1.3. This is representable by a smooth projective variety.

Exercie 1.2. Picdst(C) = Picd(C)/C∗ (with the trivial action.)
Choose d ≫ 0 (need to satisfy the condition that any line bundle L over C of degree d is very

ample. It is enough to require that d > 2g.)
For L ∈ Pic2(C), H1(C,L) = 0 and by Riemann-Roch dimH0(C,L) = d + 1 − g so assume we

have chosen an isomorphism H0(C,L) ≃ Cd+1−g. Prome this to a functor Schop
C → Sets. Explicitly,

S 7→
{L−line bundle of degree d over S×C

given p∗L≃Od+1−g
S

}
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Given {C,L, α} get a closed embedding C ↪→ Pd−g (deg C(= i∗[c]) = d) and furthermore this
embedding determines the triple.
Hilbert Schemes: Y ⊂ Pn a closed subscheme. C[Y ]←− C[x1, · · · , xn] homogeneous graded coordinate
ring. Can define the Hilbert polynomial hY ∈ Q[t] such that hY (k) = dimC[y]k for Z ∋ k ≫ 0. If
dimY = m then hY = d tm

m!
+ · · · and d = deg Y .

Theorem 1.4. Given h ∈ Q[t], h(k) ∈ Z>0 for k ≫ 0 there exists a projective scheme which classifies
subschemes Y ⊂ Pn with hY = h.

Exercie 1.3. The condition that Y is non-singular is open and the condition that Y is connected is
closed.
Exercie 1.4. hC depends only on g and d.

C[C]k = H0(C,L⊗K) = kd+1− g and h(t) = dt+1− g. So, smooth and irreducible C plus L of
degree d plus α gives a locally closed embedding ↪→ Hilb(Pd−g). Xd,g-scheme.

We have a surjective map Xd,g
κ−→Mg.

Exercie 1.5. This is a smooth representable map.
Every fiber of κ is isomorphic to

Picd(C)×GL(d+ 1− g)
/

C∗

How to prove thatMg is smooth (for g ≥ 2?) A point x in a Deligne Mumford stack X is smooth
if dimTxX = dimXx (Xx is any irreducible component of X containing x.) So to guarantee that X
is smooth, we need to guarantee that dimTxX is constant.

TxX classifies maps SpecC[ε]
/
ε2

φ−→ X together with an isomorphism φ|SpecC
∼−→ x : SpecC→ X.

Lemma 1.1. Given C ∈Mg, TCMg = H1(C, TC) where TC is the tangent bundle.

Proof. TCMg classifies schemes C with C→ SpecC[ε]
/
ε2 flat plus an isomorphism C|pt ≃ C.

Lemma 1.2. If C is any smooth variety such infinitesimal deformations are in one to one correspon-
dence with H1(C, TC).

If the genus of C is g, then deg Tc = 2− 2g and deg Ωc = 2g − 2. Hence by Riemann-Roch,

dimH0(Tc)− dimH1(TC) = 2− 2g + 1− g = 3g − 3

If g ≥ 2 then H0(TC) = 0 (follows since deg TC < 0). Hence dimH1(C, Tc) = 3g − 3 which implies
Mg is smooth of dimension 3g − 3.
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