Gromov-Witten Invariants
Instructor: Alexander Braverman

Contents

1 The Moduli Spaces $\mathcal{M}_{g, n}$
1.1 Crash Course on Stacks . 3
1.1.1 Motivation . 3
1.1.2 Descent Property . 4
1.1.3 Stacks . 5
1.2 Moduli Spaces . 6
1.2.1 Coarse Moduli Space . 6

Lecture Guide

[^0]Lecture 1 [19.01.2017] . 3
Lecture 2 [26.01.2017] . 3
1.1 Crash Course on Stacks . 3
1.1.1 Motivation . 3
1.1.2 Descent Property . 4
1.1.3 Stacks . 5
1.2 Moduli Spaces . 6
1.2.1 Coarse Moduli Space . 6

Chapter 1

The Moduli Spaces $\mathcal{M}_{g, n}$

```
Lecture }
[19.01.2017]
```

Missed

Lecture 2
[26.01.2017]

We will discuss $\overline{\mathcal{M}}_{g, n}(X)$ more systematically, regarding $\overline{\mathcal{M}}_{g, n}(X)$ as a Deligne-Mumford Stack.

1.1 Crash Course on Stacks

1.1.1 Motivation

Let X be an algebraic variety over \mathbb{C} and G an algebraic group (finite for example.) How can we define the quotient X / G in the general case of a non-free action? We want a nice definition of a quotient. In particular we want a map $X \rightarrow X / G$ with good properties; eg. X / G should be smooth if X is smooth etc. however this usually fails.
Example 1.1. $X=\mathbb{C}^{2}, G=\mathbb{Z} / 2 \mathbb{Z}$ with the action $(x, y) \rightarrow(-x,-y)$. The naive quotient is $\mathbb{C}^{2} /(\mathbb{Z} / 2 \mathbb{Z})=\operatorname{Spec} \mathbb{C}[x, y]$ with the relations $u v=w^{2}$ where $u=x^{2}, v=y^{2}, w=x y$ so get a singular surface.

We will extend our notion of a space by constructing an inclusion $\mathrm{Sch}_{\mathbb{C}} \subset$ Bigger World. Let X be a scheme over \mathbb{C}. Define a functor $F_{X}: \operatorname{Sch}_{\mathbb{C}}^{o p} \rightarrow \operatorname{Sets}$ by $F_{X}(S)=\operatorname{Hom}(S, X)$. Then X can be uniquely recoverd from F_{X}. Furthermore, given $X, Y \in \operatorname{Sch}_{\mathbb{C}}, \operatorname{Hom}(X, Y)=\operatorname{Hom}\left(F_{X}, F_{Y}\right)$. The most general notion of space is just a functor

$$
F: \operatorname{Sch}_{\mathbb{C}}^{o p} \rightarrow \text { Sets. }
$$

Ind-Schemes

Recall that an Ind-Scheme is a functor which is representable by an inductive limit of schemes.
Example 1.2.

1. What is \mathbb{A}^{∞} ?

$$
\operatorname{Spec} \mathbb{C}\left[x_{1}, x_{2}, x_{3}, \cdots\right]=\lim _{n} \mathbb{A}^{n}
$$

since

$$
\mathbb{C}\left[x_{1}, x_{2}, \cdots\right]=\bigcup_{n \geq 1} \mathbb{C}\left[x_{1}, x_{2}, \cdots, x_{n}\right]
$$

2. We have a sequence of embeddings $0 \subset \mathbb{A}^{1} \subset \mathbb{A}^{2} \subset \cdots$ given by the inclusions $\left(x_{1}, \cdots, x_{n}\right) \mapsto$ $\left(x_{1}, \cdots, x_{n}, 0\right)$. The inductive limit does not exist in the category of schemes but it does exist in the catgory of functors.

1.1.2 Descent Property

Given $X^{\prime} \rightarrow S^{\prime}$ and φ in the following diagram

we want conditions such that we can find X making this a Cartesian square, ie. want X such that $X^{\prime}=X \times{ }_{S} S^{\prime}$.

If we have such an X then we get an isomorphism $p r_{1}^{*} X^{\prime} \xrightarrow{\alpha} p r_{2}^{*} X^{\prime}$ between the pullbacks of X^{\prime} to $S^{\prime} \times{ }_{S} S^{\prime}$ in the following diagram.

Exercie 1.1. Produce some condition that α satisfies which "lives" on $S^{\prime \prime \prime}=S^{\prime} \times{ }_{S} S^{\prime} \times{ }_{S} S^{\prime}$
Theorem 1.1. If φ is faithfully flat (surjective and flat) then every α satisfying the cocycle condition uniquely determines X.

In the language of Grothendieck topologies, this is equivalent to saying F_{X} is a sheaf in the Grothendieck topology where coverings are faithfully flat maps.

1.1.3 Stacks

Stacks are also functors, but in a more sophisticated sense.
Definition 1.1. A category \mathcal{C} is called a groupoid if every morphism is an isomorphism.
Roughly speaking, stacks are "functors" $F: \mathrm{Sch}_{\mathbb{C}}^{o p} \rightarrow$ Groupoids satisfying nice properties. By a functor in this context, we mean to every $S \in \operatorname{Sch}_{\mathbb{C}}$ is associated a groupoid $F(S)$ and to every morphism $S_{1} \xrightarrow{\varphi} S_{2}$ is associated a functor $F(\varphi): F\left(S_{2}\right) \rightarrow F\left(S_{1}\right)$ such that given composable morphisms $S_{1} \xrightarrow{\varphi} S_{2} \xrightarrow{\phi} S_{3}$, there is a natural isomorphism $F(\varphi) \circ F(\phi) \simeq F(\psi \circ \varphi)$.

If X, Y are two stacks, $\operatorname{Hom}(X, Y)$ is a groupoid with

$$
\begin{aligned}
& 1-\text { morphisms }=\text { objects of this groupoid } \\
& 2-\text { morphisms }=\text { morphisms between } 1-\text { morphisms }
\end{aligned}
$$

Example 1.3. X / G. What is a $\operatorname{map} S \rightarrow X / G$? If the quotient exists and has all properties we want, than can form the pullback

Given a scheme S, a principle G-bundle is a scheme W with an action of G such that locally in the étale topology, W is isomorphic to $X \times G$, ie. there exists a surjective étale map $f: X^{\prime} \rightarrow X$ such that $X^{\prime} \times_{X} W \simeq X^{\prime} \times G$. If all schemes are of finite type, then you can replace étale by flat.

So can define the functor $F_{X / G}: \operatorname{Sch}_{\mathbb{C}}^{o p} \rightarrow$ Groupoids by

$$
F_{X / G}(S)=\left\{\begin{array}{l}
\text { a principle } G \text {-bundle } W \text { over } \\
S \text { and a } G \text { equiv. map } W \rightarrow X
\end{array}\right\}
$$

and this makes sense for any group action.
A map $f: X \rightarrow Y$ between two stacks is called representable if for all $\varphi: S \rightarrow Y$ where S is a scheme in

$S \times_{Y} X$ is also a scheme.
For example if $X \rightarrow Y$ are both schemes, G acts on both X and Y and the map is G-equivariant then $X / G \rightarrow Y / G$ is representable.
Definition 1.2. A stack X is an algebraic stack if there exists a surjective map $X^{\prime} \xrightarrow{f} X$ where X^{\prime} is a scheme and f is a smooth representable map.

Definition 1.3. A stack X is a Deligne-Mumford stack if there exists a surjective map $X^{\prime} \xrightarrow{f} X$ where X^{\prime} is a scheme and f is a finite étale representable map.
Definition 1.4. An algebraic space is a Deligne-Mumford stack with trivial automorphism groups at every point.

Every point of a Deligne-Mumford stack has a finite group of automorphisms.
Example 1.4. $X \rightarrow X / G$ is always an algebraic stack, and it is a Deligne-Mumford stack if and only if the stabilizer of every point is finite.

1.2 Moduli Spaces

1.2.1 Coarse Moduli Space

If X is a Deligne-Mumford stack of finite type over \mathbb{C}, can construct an algebraic space \bar{X}, called the coarse moduli space of X and a map $X \rightarrow \bar{X}$ such that $\bar{X}(\mathbb{C})$ are the isomorphism classes of $X(\mathbb{C})$.

Theorem 1.2.

1. Let X be a smooth projective variety. Then there exists a Deligne-Mumford stack of finite type $\mathcal{M}_{g, n}^{\beta}(X)$ (stable maps), where $\beta \in H_{2}(X, \mathbb{Z})$, with quasi-projective coarse moduli space.
2. Similary, have $\bar{M}_{g, n}^{\beta}$ with a projective coarse moduli space.)
3. If $X=p t$ then all these stacks are smooth and irreducible.

Note 1.1. X / G with G finite is a Deligne-Mumford stack and furthermore, every Deligne-Mumford stack with quasi-projective coarse moduli space can be obtained by gluing these together. For X affine, say $X=\operatorname{Spec} A$, the coarse moduli space is $\operatorname{Spec} A^{G}$.

1.2.2 The Stack $\mathcal{M}_{g, n}$

What is $\mathcal{M}_{g, n}^{\beta}(X)$ as a stack?
Example 1.5. Let $X=p t$ and $n=0$. Define the functor

$$
S \mapsto\left\{\mathcal{C} \xrightarrow{\varphi} S: \begin{array}{c}
\text { C a flat projective morphism } \\
\\
\text { The fiber of } \varphi \text { over every geometric point of } S \\
\text { is a smooth projective irreducible curve of genus } g
\end{array}\right\}
$$

Claim 1.1.

1. This is a smooth algebraic stack
2. If $g \geq 2$ then it is a Deligne-Mumford stack

Proof. (Sketch) 2 essentially follow from 1. Suppose C is a smooth projective irreducible curve of genus g. For any $d \in \mathbb{Z}$, can define $\operatorname{Pic}^{d}(C)$ which classifies line bundles \mathcal{L} of degree d over C as a stack via

$$
S \mapsto\left\{\text { for all geometric points } s \in S,\left.\mathcal{L}\right|_{\{s\}} \times C \text { has degree } d\right\}
$$

$\operatorname{Pic}_{s t}^{d}(C)=\operatorname{Pic}^{d}(C) / \mathbb{C}^{*}$ with trivial action. Choose $c \in C$. A map $S \rightarrow \operatorname{Pic}^{d}(C)$ is equivalent to a line bundle \mathcal{L} of degree d over $S \times C$ and a trivialization on $S \times\{c\}$. Choose $\mathcal{L}_{S \times\{c\}} \simeq \mathcal{O}_{S \times\{c\}}$.
Theorem 1.3. This is representable by a smooth projective variety.
Exercie 1.2. $\operatorname{Pic}_{s t}^{d}(C)=\operatorname{Pic}^{d}(C) / \mathbb{C}^{*}$ (with the trivial action.)
Choose $d \gg 0$ (need to satisfy the condition that any line bundle \mathcal{L} over C of degree d is very ample. It is enough to require that $d>2 g$.)

For $\mathcal{L} \in \operatorname{Pic}^{2}(C), H^{1}(C, \mathcal{L})=0$ and by Riemann-Roch $\operatorname{dim} H^{0}(C, \mathcal{L})=d+1-g$ so assume we have chosen an isomorphism $H^{0}(C, \mathcal{L}) \simeq \mathbb{C}^{d+1-g}$. Prome this to a functor $\operatorname{Sch}_{\mathbb{C}}^{o p} \rightarrow$ Sets. Explicitly,

$$
S \mapsto\left\{\begin{array}{c}
\mathcal{L}-\text { line bundle of degree } d \text { over } S \times C \\
\text { given } p_{*} \mathcal{L} \simeq \mathcal{O}_{S}^{d+1-g}
\end{array}\right\}
$$

Given $\{C, \mathcal{L}, \alpha\}$ get a closed embedding $C \hookrightarrow \mathbb{P}^{d-g}\left(\operatorname{deg} C\left(=i_{*}[c]\right)=d\right)$ and furthermore this embedding determines the triple.
Hilbert Schemes: $Y \subset \mathbb{P}^{n}$ a closed subscheme. $\mathbb{C}[Y] \leftarrow \mathbb{C}\left[x_{1}, \cdots, x_{n}\right]$ homogeneous graded coordinate ring. Can define the Hilbert polynomial $h_{Y} \in \mathbb{Q}[t]$ such that $h_{Y}(k)=\operatorname{dim} \mathbb{C}[y]_{k}$ for $\mathbb{Z} \ni k \gg 0$. If $\operatorname{dim} Y=m$ then $h_{Y}=d \frac{t^{m}}{m!}+\cdots$ and $d=\operatorname{deg} Y$.

Theorem 1.4. Given $h \in \mathbb{Q}[t], h(k) \in \mathbb{Z}_{>0}$ for $k \gg 0$ there exists a projective scheme which classifies subschemes $Y \subset \mathbb{P}^{n}$ with $h_{Y}=h$.

Exercie 1.3. The condition that Y is non-singular is open and the condition that Y is connected is closed.
Exercie 1.4. h_{C} depends only on g and d.
$\mathbb{C}[C]_{k}=H^{0}\left(C, \mathcal{L}^{\otimes K}\right)=k d+1-g$ and $h(t)=d t+1-g$. So, smooth and irreducible C plus \mathcal{L} of degree d plus α gives a locally closed embedding $\hookrightarrow \operatorname{Hilb}\left(\mathbb{P}^{d-g}\right)$. $X_{d, g}$-scheme.

We have a surjective map $X_{d, g} \xrightarrow{\kappa} \mathcal{M}_{g}$.
Exercie 1.5. This is a smooth representable map.
Every fiber of κ is isomorphic to

$$
\operatorname{Pic}^{d}(C) \times \mathrm{GL}(d+1-g) / \mathbb{C}^{*}
$$

How to prove that \mathcal{M}_{g} is smooth (for $g \geq 2$?) A point x in a Deligne Mumford stack X is smooth if $\operatorname{dim} T_{x} X=\operatorname{dim} X^{x}$ (X^{x} is any irreducible component of X containing x.) So to guarantee that X is smooth, we need to guarantee that $\operatorname{dim} T_{x} X$ is constant.
$T_{x} X$ classifies maps $\operatorname{Spec} \mathbb{C}[\varepsilon] / \varepsilon^{2} \xrightarrow{\varphi} X$ together with an isomorphism $\left.\varphi\right|_{\text {Spec } \mathbb{C}} \xrightarrow{\sim} x: \operatorname{Spec} \mathbb{C} \rightarrow X$. Lemma 1.1. Given $C \in \mathcal{M}_{g}, T_{C} \mathcal{M}_{g}=H^{1}\left(C, T_{C}\right)$ where T_{C} is the tangent bundle.

Proof. $T_{C} \mathcal{M}_{g}$ classifies schemes \mathbb{C} with $\mathbb{C} \rightarrow \operatorname{Spec} \mathbb{C}[\varepsilon] / \varepsilon^{2}$ flat plus an isomorphism $\left.\mathbb{C}\right|_{p t} \simeq C$.
Lemma 1.2. If C is any smooth variety such infinitesimal deformations are in one to one correspondence with $H^{1}\left(C, T_{C}\right)$.

If the genus of C is g, then $\operatorname{deg} T_{c}=2-2 g$ and $\operatorname{deg} \Omega_{c}=2 g-2$. Hence by Riemann-Roch,

$$
\operatorname{dim} H^{0}\left(T_{c}\right)-\operatorname{dim} H^{1}\left(T_{C}\right)=2-2 g+1-g=3 g-3
$$

If $g \geq 2$ then $H^{0}\left(T_{C}\right)=0$ (follows since $\operatorname{deg} T_{C}<0$). Hence $\operatorname{dim} H^{1}\left(C, T_{c}\right)=3 g-3$ which implies \mathcal{M}_{g} is smooth of dimension $3 g-3$.

[^0]: 1 The Moduli Spaces $\mathcal{M}_{g, n}$

