
Derived Categories
Instructor: Alexander Braverman

Lecture Notes for MAT1103 Taught Winter of 2016

Typeset by Travis Ens
Last edited September 12, 2016



Contents

1 Category Theory 3
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Basic Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Adjoint Functors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Abelian Categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.5 Additive functors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.6 Cohomology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Derived Categories 11
2.1 Main idea of derived categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Structures on Derived Categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3 Explicit Description of Derived Categories . . . . . . . . . . . . . . . . . . . . . . . . 14
2.4 The Ext Functors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.5 Yoneda Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.6 Derived Functors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.7 Derived Functors of Composition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.8 Spectral Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3 Sheaves 34
3.1 Sheaf Cohomology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.2 The Functors f! and Rf! . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.3 Constructible Sheaves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.4 t-Structures and Triangulated Categories . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.5 Perverse Sheaves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

1



Lecture Guide

1 Category Theory 3
Lecture 1 [02.02.2016] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Basic Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Adjoint Functors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Abelian Categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Lecture 2 [09.02.2016] (Notes taken and typed by Anne Dranovski) . . . . . . . . . . . . . . . . 7
1.5 Additive functors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.6 Cohomology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Derived Categories 11
2.1 Main idea of derived categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

Lecture 3 [23.02.2016] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2 Structures on Derived Categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3 Explicit Description of Derived Categories . . . . . . . . . . . . . . . . . . . . . . . . 14
2.4 The Ext Functors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Lecture 4 [01.03.2016] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.5 Yoneda Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

Lecture 5 [15.03.2016] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.6 Derived Functors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

Lecture 6 [22.03.2016] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.7 Derived Functors of Composition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.8 Spectral Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3 Sheaves 34
3.1 Sheaf Cohomology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

Lecture 7 [29.03.2016] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Lecture 8 [05.04.2016] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.2 The Functors f! and Rf! . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Lecture 9 [12.04.2016] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.3 Constructible Sheaves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.4 t-Structures and Triangulated Categories . . . . . . . . . . . . . . . . . . . . . . . . . 47

Lecture 10 [19.04.2016] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.5 Perverse Sheaves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

2



Chapter 1

Category Theory

Lecture 1 [02.02.2016]

1.1 Introduction

The first half of the course will be an introduction to homological algebra via derived categories. The
second half will cover applications (eg. perverse sheaves or D-modules.)

1.2 Basic Definitions

Definition 1.1. A category C is a class of objects and a class of morphisms such that

1. For all X, Y ∈ Ob C have a set Hom(X, Y ) of morphisms from X to Y .

2. For all X, Y, Z ∈ Ob C there is a composition morphism

◦ : Hom(Y, Z)× Hom(X, Y )→ Hom(X,Z)

which satisfy the properties

1. For all X ∈ Ob C there exists idX ∈ Hom(X,X) such that for any Y ∈ Ob(C), and for all
f : X → Y, g : Y → X, f ◦ idX = f and idX ◦g = g.

2. Composition is associative.

Exercie 1.1. Prove idX is unique and write down the associativity axiom.

Example 1.1. Sets, groups, abelian groups, topological spaces, sheaves of sets (or abelian groups) on
a given topological space, and modules over a given ring all form categories.

For all X, Y ∈ Ob(C), f : X → Y and g : Y → X are said to bo inverse if f ◦ g = idY and
g ◦ f = idX . If f−1 exists we say that f is an isomorphism.

Definition 1.2. Let C, D be two categories. A (covariant) functor F : C → D consists of

1. For all X ∈ Ob C an object F (X) ∈ ObD

3



CHAPTER 1. CATEGORY THEORY Alexander Braverman

2. For all X, Y ∈ Ob C a morphism FX,Y : Hom(X, Y )→ Hom(F (X), F (Y )) which is compatible
with compositions.

Given C we can define a new category Cop where Ob Cop = Ob C and HomCop(X, Y ) = HomC(Y,X).
Then a contraviariant functor F : C → D is just a usual functor F : Cop → D.
Example 1.2.

(i) Let C = Groups and D = Sets. Then we have the forgetful functor F : C → D.

(ii) Let k be a field and take C = V ectk = D, the category of vector spaces over k. There is a
contravariant functor F : V ectk → V ectk defined by F (V ) = V ∗

(iii) Representable functors Let C be a category,X ∈ Ob C. There are two functors `X : C → Sets
and rX : Cop → Sets defined by `X(Y ) = Hom(X, Y ) and rX(Y ) = Hom(Y,X). It turns out
that X is completely determined by either `X or rX .

Example 1.3. Let R be a commutative ring and let C be the category of R-modules. For any R-
modules M and N , want M ⊗R N ∈ Ob C. The condition

Hom(M ⊗R N,K) = {R-bilinear maps f : M ×N → K}

uniquely determines the object M ⊗R N .

Given F,G : C → D a morphism of functors (ie. a natural transformation) is given by the
data of for every X ∈ C a map F (X)

αX−−→ G(X) such that for any f ∈ Hom(X, Y ),

F (X) G(X)

F (Y ) G(Y )

αX

F (f) G(f)

αY

Lemma 1.1. (Yoneda Lemma) For all X1, X2 ∈ Ob C the map Hom(X2, X1)→ Hom(`X1 , `X2) is
an isomorphism and the map Hom(X1, X2)→ Hom(rX1 , rX2) is an isomorphism.

Proof. Exercise.

1.3 Adjoint Functors

Given two functors F : C → D and G : D → C we say F is left adjoint to G (and G is right
adjoint to F ) if we are given a functorial isomorphism

Hom(F (X), Y )
∼−→ Hom(X,G(Y )).

Example 1.4. Let A,B be associative rings and let φ : A → B be a ring homomorphism. Let C be
the category of left B-modules and let D be the category of left A-modules. Let G : C → D be the
obvious functor. Then G has a natural left adjoint given by F (M) = B ⊗AM for any A-module M .

The fact that these functors are adjoint just becomes the fact that

HomA(M,N) = HomB(B ⊗AM,N)

for any A-module M and any B-module N .
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CHAPTER 1. CATEGORY THEORY Alexander Braverman

Given any functor F there exists at most one (up to canonical isomorphism) adjoint G. For any
category C we have the identity functor IdC : C → C. Functors F and G are inverse if G ◦ F is
isomorphic to IdC and F ◦G is isommorphic to IdD.
Exercie 1.2. Show that if F and G are inverse then G is both left and right adjoint to F .

If F has an inverse then we say that F is an equivalence of categories.
Example 1.5. For A a commutative R-algebra, a norm on A is a map ‖ · ‖ : A→ R≥0 such that

1. ‖ab‖ ≤ ‖a‖‖b‖

2. ‖a+ b‖ ≤ ‖a‖+ ‖b‖

3. ‖ca‖ = |c|‖a‖ for c ∈ R.

4. ‖a‖ = 0 ⇐⇒ a = 0.

Note that ‖ · ‖ defines a topology on A in which A is complete.
ForX a compact Hausdorff topological space, letA be the algebra of R valued continuous functions

and define a norm by ‖f‖ = maxx∈X |f(x)|.
Let C be the category of compact Hausdorff topological spaces and let D be the category of

complete normed algebras (with morphism ϕ : A→ B continuous.) Then the algebra of continuous
functions on X gives us a functor F : Cop → D and a theorem due to Gelfand shows that this is an
equivalence of categories.

1.4 Abelian Categories

Let C be a category and suppose we are given a pair of morphisms

X

Z

Y

f

g

.

Then the diagram
X ×Z Y X

Y Z

where Hom(W,X ×Z Y ) = {α : W → X, β : W → Y : f ◦ α = g ◦ β} uniquely (up to canonical iso-
morphism) defines the object X ×Z Y , called the fibered product of X and Y over Z. We can also
talk about X × Y with no Z where X × Y = X ×Z Y with Z the final object of C ie. for all X,
Hom(X,Z) consists of one element.

Dually, given morphisms
X

Z

Y

f

g

5



CHAPTER 1. CATEGORY THEORY Alexander Braverman

the diagram
X tZ Y X

Y Z

uniquely determines the object X tZ Y , called the fibered sum or pushout.

Definition 1.3. An additive category over a commutative ring k is given by

1. A category C

2. All Hom(X, Y ) are k-modules and compositions are compatible with this

3. There exists an object 0 such that for all X,

Hom(X, 0) = Hom(0, X) = {0}.

This means that 0 is both final and initial.

4. Binary products exist and they satisfy the conditions that for all X, Y ∈ Ob C, X×Y = Y ×X
coincide. Similarly for X t Y .

Example 1.6. For R a ring the categories of left R-modules, free R-modules and projective R-modules
are all abelian.

Let C be a category. A subcategory D of C is given by a subclass ObD ⊂ C and for all
X, Y ∈ ObD a map HomD(X, Y ) ↪→ HomC(X, Y ) which takes the identity to the identity. If
HomD(X, Y ) = HomC(X, Y ) for all X, Y then D is called a full subcategory.

Let C be an additive category and f : X → Y . Then the kernel of f , Ker f ∈ Ob C, is the object
determined by the condition HomC(Z,Ker f) = {φ : Z → X : f ◦ ϕ = 0}

Dually the cokernel is defined by HomC(Coker f, Z) = {φ : Y → Z : ϕ ◦ f = 0}.

Definition 1.4. The additive category C is called abelian if

• All kernels and cokernels exist.

• The sequence Ker f
α−→ X −→ Y

β−→ Coker f yields a map Cokerα → Ker β which we require to
always be an isomorphism.

Example 1.7. The category of R-modules for R an associative ring and the category of sheaves of
abelian groups on a topological space X are abelian categories.

A filtration on a ring R is a collection of R0 ⊂ R1 ⊂ R2 ⊂ · · · such that
⊔
iRi = R, Ri ·Rj ⊂ Ri+j

and 1 ∈ R0. For M an R-module, a filtration on M is a collection M0 ⊂ M1 ⊂ · · · such that⊔
iMi = M and Ri ·Mj ⊂Mi+j.
A grading on R is a direct sum decomposition R =

⊕
Ri such that Ri ·Rj ⊂ Ri+j and similarly

for modules.
Exercie 1.3. Let C be the category of filtered modules. Show that C is additive but not abelian. Show
that graded modules do form an abelian category.

Let A be an abelian category. A short exact sequence in A is a diagram 0 −→ X
α−→ Y

β−→ Z −→ 0
in which (X,α) = Ker β, (Z, β) = Cokerα and Imα = Ker β.
Example 1.8. Y = X⊕Z defines a short exact sequence. A is semisimple if any short exact sequence
is split, ie. of the form Y = X ⊕ Z.
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CHAPTER 1. CATEGORY THEORY Alexander Braverman

Lecture 2 [09.02.2016] (Notes taken and typed by Anne Dranovski)

Last time

• categories and functors

• additive (morphisms form an abelian group, ∃ 0 object, ∃ direct sums) and abelian (∃ kernels,
cokernels, Ker f X Y Coker f)

More examples

Example 1.9. Let R be an associative ring. Take A = left R-modules.

Example 1.10. Let X be a topological space. Take A = category of sheaves of abelian groups on X.

1.5 Additive functors

Let A,B be additive categories.

Definition 1.5. F : A → B is called additive if

1. F (OA) = OB

2. ∀X, Y ∈ ObA, FX,Y : Hom(X, Y )→ Hom(F (X), F (Y )) is a hom of abelian groups

3. ∀X, Y ∈ ObA, F (X ⊕ Y ) F (X)⊕ F (Y )∼ is an isomorphism.

Exercie 1.4. Show that a priori there exists a map in one direction (i.e. a quasi-isomorphism? that
we require to be an isomorphism) in (3).

Example 1.11. For all X ∈ ObA, the associated (left-exact) functor

lX : A Ab : Y 7→ Hom(X, Y )

is additive.

Example 1.12. Let A be the category of left R-modules. Let M be a right R-module. Then

F : A Ab : X 7→M ⊗R X

is additive. Variant: if R is commutative, regard F as A → A.
Example 1.13. Let X be a topological space. Let A be the category of sheaves of abelian groups on
X. Then

F : A Ab : F 7→ Γ(X,F)

is additive.

Exercie 1.5. Show that example (1.11) is a special case of example (3).

Remark 1.1. In the category of modules over a commutative ring R the functor F (M) = M ⊗RM is
not additive.
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Let A,D be abelian categories. Let F : A → B be additive. (Question: do we need additive? is
F (0) = 0 enough?)

Definition 1.6 (“The most important definition of homological algebra"). F is called exact if for

every 0 X Y Z 0α β short exact sequence in A,

• (X,α) = Ker β

• (Z, β) = Cokerα

• Imα = Ker β

Example 1.14. Let A be an abelian category. Let Ab be the category of abelian groups. Let W ∈
ObA. Is lW : A → A : X 7→ Hom(W,X) an exact functor? No. But, it’s left-exact.

Definition 1.7. An additive (though, again, may make sense for others?) functor F is called left
exact if for every short exact sequence

0 X Y Z 0

the sequence
0 F (X) F (Y ) F (Z)

is exact.

Exercie 1.6. Show that rW is also left exact. (Recall rW : Aop → Ab.)

Definition 1.8. A is called semisimple if any short exact sequence splits. That is, whenever

0 X Y Z 0α β

is short exact, Y ∼= X ⊕ Z. In this case, every additive F : A → B is exact.

Example 1.15. Let A be the category of k-vector spaces. Every additive F : A → B will be exact.
Remark 1.2. Interesting cohomology theory comes from functors that are only left or only right exact.

Definition 1.9. Right exact.

Exercie 1.7. Let M be a right R-module. Show that FM : A → Ab : X 7→ M ⊗R X is always right
exact.
Remark 1.3. The main goal of homological algebra: make all functors exact.

Given a functor that is only left exact or right exact we would like to define some notion of its
derived functor. Whatever that means..

“As an aside" there exist additive functors that are neither left nor right exact. Take the local-
ization functor for example. These functors come from composing left and right exact functors.
Example 1.16. Let CA be the category of R-modules. Take W = Rn a free module. Then
Hom(Rn, X) = X ⊕ · · · ⊕X (n times) and lW is exact.

Definition 1.10. An objectW of an abelian category is called projective if lW is exact. Equivalently,
for every surjective map Y → Z, Hom(W,Y ) → Hom(W,Z) surjects. That is, for every hom φ of
W → Z, there is a (uniqe lift) φ̃ such that the following diagram commutes.

W

Y Z

∃! φ̃
φ

f

8
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Free modules are projective

Lemma 1.2. An R-module W is projective if and only if W is a direct summand of a free module.

Exercie 1.8. Show that a direct summand of a projective object is projective.
Towards a converse: any R-module W is a quotient of a free module. That is, there exists a free

Y and a surjection such that the following diagram commutes.

W

Y W

∃ ĩd
id

s

We can cook up Y = Im(ĩd)⊕Ker(s) and if W is projective then it’s a direct summand, W = Im(ĩd).
Fact: If R = Z (more generally, if it’s commutative?) then all finitely generated projective

modules are free.
Example 1.17. Let R = k[X1, . . . , Xn] for k a field. Serre’s conjecture: all finitely generated projective
R-modules are free. (Also, Quillen & Suslin.)
Remark 1.4. The finitely generated assumption is not necessary in the R = Z case/example. It may
or may not be necessary in the R = k[X1, . . . , Xn] case, and it’s not easier to assess if we fix k = C.
Definition 1.11. W ∈ ObA is called injective if rW is exact.

Example 1.18. In the category of abelian groups, W is injective if and only if it is a divisible group.
That is, for every w ∈ W , for every n ∈ Z− 0, there exists w′ ∈ W , such that nw′ = w.
Exercie 1.9. Prove it.

Definition 1.12. A has enough projectives if any X ∈ ObA can be covered by a projective object
P , i.e. there exists β such that

P X 0 with Coker β = 0
β

Likewise, A has enough injectives if any module X can be embedded in an injective module I, i.e.
there exists α such that

X Iα

Exercie 1.10 (Exercise-Theorem). The category of R-modules has enough injectives.

Definition 1.13. A right moduleM over a ring R is called flat if the functor X 7→M ⊗RX is exact.

Note that flatness is not a categorical notion. Yet, knowing that we have enough flats will be
important to us later when we talk about derived ⊗ structure, where neither is ⊗ a categorical notion.
Exercie 1.11. Free and projective = flat.

Let F : A → B be a left-exact functor. The naive definition of the (right) derived functor RiF of
F is as follows. Given a short exact sequence

0 X Y Z 0

there exists a long exact (at every term) sequence

0 F (X) F (Y ) F (Z) R1F (X) R1F (Y ) R1F (Z) · · ·

The non-naive construction will be to package (all?) the RiF into a single functor between the
derived categories of A and B.
Example 1.19. Take F = lW from before. RiF (X) = Exti(W,X).

9
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1.6 Cohomology

Fix A = Ab.

Definition 1.14. A (co-chain) complex consists of objects Ki and maps di : Ki → Ki+1 such that
di+1 ◦ di = 0 for all i. Set C(A) to be the category of all complexes over A. Then morphisms of C aref

i : Ki → Li
∣∣∣∣ Ki Ki+1

Li Li+1

f i f i+1


Exercie 1.12. Show that C is an abelian category. (“Useless, easy.")

Definition 1.15. Say K• is bounded below if Ki = 0 for all i sufficiently small. Denote by C± the
categories of all complexes bounded below, above. By Cb = C+∩C− the cat of all bounded complexes.

Definition 1.16. For K• ∈ C the cohomology of K• is the object H i(K•) ∈ ObA,

H i(K•) =
Ker di
Im di−1

Each H i is an additive functor C → A that’s neither left nor right exact.

Definition 1.17. A map of complexes f • : K• → L• is a quasi-isomorphism if H i(f •) is an isomor-
phism for all i.

Exercie 1.13. Give examples of quasi-isomorphisms that aren’t isomorphisms.

Example 1.20. Let A be the category of k vector spaces for k a field. The same applies to any
semisimple abelian category. Consider the complex (K•, 0) with 0 = d• differential. Then H•(K•)
and K• are quasi-isomorphic in the strongest possible sense. In either direction. (What does it mean?
Quasi-isomorphism in either direction is isomorphism, isn’t it?)

10



Chapter 2

Derived Categories

2.1 Main idea of derived categories

Want to study complexes up to quasi-isomorphism, i.e. to define a new category D(A) which we will
call the derived category of A whose objects are complexes (still) but whose morphisms will come
from morphisms of A, with quasi-isomorphisms becoming isomorphisms (i.e., invertible).

For example, in the derived category, our example

0 Z Z 0

0 0 Z/2Z 0

·2

should have an inverse.

Theorem 2.1. There exists a unique (up to unique equivalence) category D(A) together with a
functor Q : C(A)→ D(A) such that

1. If f is a quasi-isomorphism in A, then Q(f) is an isomorphism in D(A).

2. (Universality.) For every F : C → D′ such that whenever f is a quasi-isomorphism, F (f) is an
isomorphism, there exists a unique G : D → D′ such that F = G ◦Q.

In general, given a cat C and a class of morphisms S stable under composition, we can produce
a new (universal) category D where all elements of S become isomorphisms. How to define such a
thing? ObD = Ob C. The roof

Z

X Y

f g

should give a morphism in D.
Exercie 2.1. When do such diagrams define the same morphism in D?

11
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Lecture 3 [23.02.2016]

Last Time

Let A be an abelian category and C(A) be the category of complexes on A. f : K• → L• is a
quasi–isomorphism if ∀i ∈ Z, H i(f) : H i(K•)→ H i(L•) is an isomorphism. Then D(A), the derived
cateogry of A is the universal category with a functor Q : C(A)→ D(A) such that Q(f) is invertible
if f is a quasi–isomorphism.

Analogy

Let R be an associative ring and S ⊂ R be a multiplicative subset not containing 0. Then ∃S−1R
and a map R→ S−1R. S−1R always exists but it is almost impossible to describe it.

Ore Condition

The right Ore condition is sR ∩ aS 6= ∅ for all s ∈ S and a ∈ R. Equivalently, s−1a can be written
as bt−1 for some t ∈ S. If this condition (or the equivalent left version) is satisfied, then it becomes
possible to describe the localisation.

We would like to find an analog of the Ore condition for a class of morphisms in a category and
then discuss to what extent the class of quasi–isomorphisms satisfies this condition.

2.2 Structures on Derived Categories

1. Derived categories are additive categories.

2. There exists a shift functor K• → K•[n] for any n ∈ Z where K•[q]i = Ki+1 and in general
K•[n] = Ki+n.

3. For any i, there exist cohomology functors H i : D(A)→ A.

4. Distinguished triangles (to be defined below) exist.

Let K•, L• ∈ C(A) and let f : K• → L•. Define a new complex Cone(f) such that if Ker f = 0
then Cone(f) is quasi–isomorphic to L•/K• and such that

→ K• → L• → Cone(f)→ K•[1]→ L•[1]→ Cone(f)[1]→ · · ·
→ H i(K•)→ H i(L•)→ H i(Cone(f))→ H i+1(K•)→ H i+1(L•)→ · · ·

is a long exact sequence.

Corollary 2.1. Assume K• is a subcomplex of L•. Then there exists a long exact sequence

H i(K•)→ H i(L•)→ H i(L•/K•)→ H i+1(K•)→ H i+1(L•)→ H i+1(L•/K•)

Definition 2.1. Cone(f) is K•[1]⊕ L• if we forget about the differential so Cone(f)i = Ki+1 ⊕ Li.
The differential is given by dCone(f) = (−dK , f + dL); ie.

d(ki+1, `i) = (−dKki+1, f(ki+1) + dL`
i) ∈ Ki+2 ⊕ Li+2

12
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Note that

d2(ki+1, `i) = d(−dKki+1, f(ki+1) + dL`
i)

= (0,−f(dKk
i+1) + dLf(ki+1))

= (0, 0)

so this is a differential.
In the sequence,

K• → L• → Cone(f)→ K•[1]→ L•[1]→ Cone(f)[1]→ · · ·

it is easy to check that the composition of any two arrows is zero in H• and hence in the sequence

· · · → H i(K•)→ H i(L•)→ H i(Cone(f))→ H i+1(K•)→ · · ·

the composition of any two maps is zero.
Assume that Ker(f) = 0. We always have the obvious map Cone(f) → L•/f(K•) which is a

quasi–isomorphism in the case that Ker(f) = 0. For example, to show it is surjective on cohomology,
we need to show that H i(Cone(f))→ H i(L•/f(K•)) is surjective. Cocycles in L•/f(K•) come from
`i ∈ Li such that dL(`i) = f(ki) so

fdK(ki+1) = dL(f(ki+1)) = d2
L(`i) = 0

and so dKki+1 = 0. But then d(−ki+1, `i) = 0 and so the projection to L•/f(K•) is equal to the
projection of `i.

Exercie 2.2. Show injectivity.

We now have K• → L• → Cone(f) and Cone(f) ∼ L•/f(K•) if Ker(f) = 0.

Definition 2.2. The cylinder of f is Cyl(f)i = Ki ⊕Ki+1 ⊕ Li with the differential

d : (ki, ki+1, `i) 7→ (dKk
i − ki+1,−dKki+1, f(ki+1) + dL`

i).

Lemma 2.1.

(i) L→ Cyl(f) is a quasi–isomorphism.

(ii) K• → Cyl(f) : ki 7→ (ki, 0, 0) is injective.

(iii) K → Cyl(f)→ Cone(f) is a short exact sequence of complexes.

Proposition 2.1. K• → L• → Cone(f) gives rise to a long exact sequence in cohomology.

Remark 2.1. It is enough to prove exactness in the previous proposition when Ker(f) = 0.

Definition 2.3. A distinguished triangle X → Y → Z → X[1] for X, Y, Z ∈ ObD(A) is an
image in D(A) of K• f−→ L• → Cone(f)→ K•[1] in C(A).

Warning: Any X f−→ Y can be completed to a distinguished triangle X f−→ Y → Z → X[1] but not
canonically.

13
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2.3 Explicit Description of Derived Categories

Let C be a category and let S be a class of morphisms which is multiplicative (ie. closed under
composition.)

Definition 2.4. S is a localizable class if

1. For all s : B → C and t : A→ B, s ◦ t ∈ S (multiplicativity)

2. The following two diagrams commute:
W Z

X Y

g

t∈S s∈S
f

W Z

X Y

g

t∈S

f

s∈S

3. Let f, g : X → Y . There exists s ∈ S such that sf = sg iff there exists t ∈ S with ft = gt.

If S is localizable then C[S−1] has a simple description. Namely, Ob C[S−1] = Ob C and mor-

phisms are roofs
X ′

X Y

s∈S f modulo the equivalence relation where
X ′

X Y

s∈S f is equivalent

to
X ′′

X Y

t∈S g if there exists X ′′′ and a commuting diagram

X ′′′

X ′ X ′′

X Y

r∈S h

s∈S
f t∈S

g

Composable morphisms are those fitting into a commutative diagram of the form

W

X ′ Y ′

X Y Z

r∈S h

s∈S f

t

g

and the composition of these two morphisms is
W

X Z

s◦r∈S g◦h

Proposition 2.2. If S is a localizable class, then

1. This is C[S−1].

2. If C is an additive category then so is C[S−1]

14
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Let A be an abelian category.
Question: Do quasi–isomorphisms form a localizable class?
No: Let K• be 0→ Z 2−→ Z→ 0→ · · · (nonzero in degree −1 and 0) and let L• be · · · 0→ Z/Z→
0→ · · · . These are quasi–isomorphic. Let f : K• → K• be multiplication by 2 and let g : K• → K•

be 0. Then sf = 0 = sg but there does not exist a quasi–ismorphism such that ft = 0 since for
t : L→ K, t(L0) 6= 0 so 2t(L•) 6= 0.

Let f : K• → L• be a morphism of complexes.

Definition 2.5. f is homotopic to 0 if for any i there exists hi : Ki → Li−1 such that f = dh+hd.

· · · Ki−1 Ki Ki+1 · · ·

· · · Li−1 Li Li+1 · · ·

f i−1 f i
hi

f i+1

hi+1

For f, g : K• → L•, f and g are homotopic if f − g is homotopic to 0.

Lemma 2.2. If f is homotopic to 0, then f becomes 0 in D(A).

Proof. We have K• idK−−→ K• and Cone(idK) is quasi–isomorphic to 0, and so becomes 0 in D(A).
The result follows from this.

Definition 2.6. The homotopy category K(A) has ObK(A) = Ob C(A) and morphisms

HomK(A)(K
•, L•) = HomC(A)(K

•, L•)/(maps homotopic to 0)

K(A) is obviously additive, and for f = hd + dh and d(k) = 0, f(k) = (hd + dh)(k) = d(h(k)).
Furthermore, H i are well–defined in K(A) for all i and quasi–isomorphisms make sense.

Theorem 2.2. In K(A) quasi–isomorphisms form a localizable class.

Recall the example K• = 0 → Z 2−→ Z → 0 → · · · and f : K• → K• multiplication by 2. Let
h0 = id : Z → Z (this is the only necessary map to define a homotopy in this example.) hd + dh is
multiplication by 2 so f is homotopic to zero and our previous counterexample no longer works.

This yields the desired explicit description of the homotopy category:

D(A) = K(A)[S−1].

In particular this implies that D(A) is additive.

2.4 The Ext Functors

Let X, Y ∈ A ↪→ C(A)
Q−→ D(A).

Definition 2.7. The i–th Ext functor is given by

Exti(X, Y ) = HomD(A)(X, Y [i])

Remark 2.2. D+(A),D−(A),Db(A) ⊂ D(A) are all full subcategories.

Assume that A has enough projectives (ie. for all X ∈ A, there exists P a projective object in A
and a surjective map P → X.

15
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Definition 2.8. A projective resolution of X is a complex

· · · → P−2 → P−1 → P 0 → 0

with each P−i projective and

H i(P •) =

{
0 i 6= 0

X i = 0

Lemma 2.3. Every X has a projective resolution.

Proof. Have
P 0 α0−→ X → 0.

Then there exists
P−1 α1−→ Kerα0 → 0.

Repeating, there exists
P−2 α2−→ Kerα1 → 0.

and so on. This yields the projective resolution.

Theorem 2.3. Let P • be a projective resolution of X and define the complex

Hom(P •, Y )i = HomA(P−i, Y ).

This is a complex since for all i, P−i−1 → P−i induces a map Hom(P−i, Y )→ Hom(P−i−1, y). Then

Exti(X, Y ) = H i(Hom(P •, Y )).

There is a dual version of this. If A has enough injectives, then any Y has an injective resolution

0→ I0 → I1 → I2 → · · ·

with each Ij injective and

H i(I•) =

{
0 i 6= 0

Y i = 0

The resolution is constructed as before. Have

0→ Y
β0−→ I0.

0→ Coker β0
β1−→ I1

0→ Coker β1
β2−→ I2

etc.

Theorem 2.4. If I• is an injective resolution of Y then

Exti(X, Y ) = H i(Hom(X, I•)).

16
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Lecture 4 [01.03.2016]

Warning: Missed lecture and only had partial notes to ge by so some sections may be incom-
plete/incorrect for this lecture.

Exercie 2.3. Let A be an abelian category. Then Q : C(A)→ D(A) is an equivalence if and ony if A
is semisimple (ie. every short exact sequence splits.)

Let A be an abelian category. Given any exact sequence

0→ X → Y → Z → 0

in A, if two of the tarms are in B theno is the third and furthermore it is closed under subquotients.
In part, B is itself therefore an abelian category and we have a functor

D(B)→ DB(A)

where DB(A) is the full subcategory of D(A) consisting of objects whose cohomology is in B. There
is no reason for this functor to be an equivalence.
Example 2.1.

g a complex simple Lie algebra
A = modules over g
B = finite dimensional modules over g(semisimple)

Exercie 2.4. Show that D(B)→ DB(A) is NOT an equivalence.
Let X, Y ∈ Ob(A). Then ExtiA(X, Y ) = HomD(A)(X, Y [i]) but

ExtiB(X, Y )→ ExtiA(X, Y )

is often not an isomorphism.
Let A be an abelian category, K•, L• ∈ Ob(C(A)), Q : C(A)→ D(A). If f, g : K• → L• are two

homotopic maps, then Q(f) = Q(g) and we have a diagram

0 L• Cone(f) K•[1]

0 K• Cyl(f) Cone[f ]

K• L•

α

β

f

where βα = id and αβ is homotopic to id. Recall

Cyl(f)i = Ki ⊕Ki+1 ⊕ Li

with differential
d : (ki, ki+1, `i) 7→ (dKk

i − ki+1,−dKki+1, f(ki+1) + dL`
i)

αβ is homotopic to the identity via h
means there exists an h : Cyli(f)→ Cyli−1(f) (?)

such that αβ = hd+ dh+ id.

17
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Lemma 2.4 (5-Lemma). Suppose

A → B C → D E

A′ B′ C ′ D′ E ′

α β γ δ ε

is exact and assume α, β, δ, ε are isomorphisms. Then γ is also an isomorphism.

Proof. Exercise

Corollary 2.2. Given distinguished triangles

X Y Z X[1]

X ′ Y ′ Z ′ X ′[1]

a b c

if a, b are isomorphisms (in D(A)) then so is c.

If f, g : K• → L• are h–homotopic, ie. f − g = dh+ hd then there is a diagram

L

K• Cyl(f)

K• Cyl(g)

L

αf
f

f̄

Cyl(h)�

g
βg

�

where f̄(ki) = (ki, 0, 0).

Note 2.1. αff 6= f̄ (the top triangle does not commute.) However, we will show that it commutes in
D(A).

Cyl(h)(ki, ki+1, `i) = (ki, ki+1, `i + h(ki+1))

and Q : C(A)→ D(A). By (?) Q(αf ) is inverse to Q(βf ) and f = βf ◦ f̄ so Qf = Q(βf ) ◦Q(f̄). So
the diagram

C(A) K(A)

D(A)

factorizes (on the level of objects this was clear. We just proved this factors also on the level of
morphisms.)

18
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Reference:

Chapter 4 of Gelfand, Manin: Methods of Homological Algebra

Theorem 2.5. In K(A) quasi–ismorphisms form a localizing class.

Proof. Omitted.

Corollary 2.3. D(A) is additive.

Corollary 2.4. Define D0(A) ⊂ D(A) to have objects X such that H i(X) = 0 for all i 6= 0. Define
C(A) similarly. Then the composition

A C0(A) D0(A)

is an equivalence of categories.

Proof. A → K(A) is fully faithfu since if two complexes sit in degree 0 then there are no non–trivial
homotopies. Let X, Y ∈ A. Have

HomK(A)(X, Y ) HomD(A)(Q(X), Q(Y ))

HomA(X, Y )

a

b

given by H0

Want: a to be an isomorphism
Know: b ◦ a = id is clear
Not Obvious: a ◦ b = id

Start with an elementary Hom(Q(X), Q(Y )) given by f in K(A). Define g : X → Y by g :=
H0(f) ◦H0(S)−1. Then (a ◦ b)(ϕ) comes from g:

X

X Y
id

g

Need: These roofs to be equivalent, ie.

V

Z X

X Y

r h

s

id

g

Define V • by

V i =


Zi i < 0

Ker d0
Z i = 0

0 i > 0

and dV is induced by dZ . Then H i(V ) = H i(Z) for i ≤ 0 and H i(V ) = 0 for i > 0. r : V → Z is
thus a quasi–isomorphism since H i(Z) only lives in i = 0.

Define h : V → X as follows: we know H0(V ) = H0(Z) = H0(X) = X (the second last equality
is via S.) Therefore V 0/ Im d−1

Z = X. Thus we have a map V 0 → X which defines h.
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Let X, Y ∈ A. Have Exti(X, Y ) = HomD(A)(X, Y [i]). Know that for any7 X, Y, Z ∈ Ob(A), the
map

Exti(X, Y )× Extj(Y, Z)→ Exti+j(X,Z)

is associative, eg. ⊕i Exti(X,X) is a graded associative algebra.

Theorem 2.6. Let X, Y ∈ Ob(A). Then Exti(X, Y ) = 0 for all i < 0.

Proof. Take i > 0, ϕ : X → Y [−i]. A roof:

K•

X Y [−i]

s f

If we find L• fitting into the diagram

K•

X Y [−i]

L•

s f

t

r

0

where r, s, t are quasi–isomorphisms, then ϕ = 0. Define

L• =


Kj j < i− 1

Ker di−1
k j = i− 1

0 j ≥ i

.

Then L• → K• induces an isomorphism on Hj with j ≤ i − 1 and is 0 on Hj for j ≥ 1. Hence,
L• → K• is a quasi–isomorphism which we take to be r.

Since L• ↪→ K•, can let t be the quasi–isomorphism t = s|•L. Since Y [−i]j = 0 for all j < i, we
have no non–zero maps from L• → Y [−i] and therefore the diagram above must commute.

2.5 Yoneda Extensions

i = 1 : 0→ Y →?→ X → 0

Want to define K• y(K•) ∈ Exti(X, Y ) :
?

X Y [1]

. For i = 1,

0→ Y → Z → X → 0 :

? = Y Z

Y [1] X

−1 0

quasi− iso

X → Y [1] in D(A).
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Exercie 2.5. Gives an isomorphism between Exti(X, Y ) and isomorphism classes of extensions.
Warning 2.1. If K•, L• ∈ D(A) and ϕ : K• → L• it might happen that H i(ϕ) = 0 for all i but ϕ 6= 0.
For general i,

0 Y = K−i K−i−1 · · · K0 0

Y [i]

and Hj(X) = 0 for j 6= 0 while H0(K•) = X,K• → X.
Given such a K•, you can define y(K•)

Assume that A has enough projectives s othat for all X ∈ Ob(A) there is a projective resolution
, ie. a sequence

· · · → P−2 → P−1 → P 0 → 0

of projective objects with H0 = X and H i(P •) = 0 for i 6= 0.

Lemma 2.5. Let P • and Q• be projective resolutions of X and Y . Given f : X → Y , there exists a
unique f̃ fitting in the diagram

P • X

Q• Y

∃!f̃ f

Proof.
P 0 X 0

Q−1 Q0 Y 0

f̃0

εX

f

d−1
Q

εY

.

P 0 projective implies there exists f̃0 : P 0 → Q0 in the above diagram continue building f̃ inductively.
Given another lift f̃ ′0 lift at the zeroth level,

εY ◦ (f̃ 0 − f̃ ′0) = 0

=⇒ f̃ 0 − f̃ ′0 : P 0 → Im(d−1
Q )

=⇒ ∃h0 : P 0 → Q−1, f̃ 0 − f̃ ′0 = d−1
Q ◦ h

0

The homotopy h extends to the full complex inductively.

Theorem 2.7.

1. Given X, Y ∈ Ob(A) and a projective resolution P • → X,

Exti(X, Y ) = H i Hom(P •, Y ))

where H•Hom(P •, Y )) is the homology of the sequence

Hom(P 0, Y )→ Hom(P−1, Y )→ · · · .

2. If P • → X and Q• → Y are projective resolutions, then

Exti(X, Y ) = HomK(A)(P
•, Q•[i])
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3.
D−1(A) Projective complexes(bounded above)/homotopy'

(Similar statements also hold for injective objects)

Example 2.2. Let k be a field, A be k[x]–modules. Extik(k, k) =?

1. There is a projective resolution
0→ k[x]

.x−→ k[x]→ 0

of k. Apply Homk[x](·, k) to get k 0−→ k (in degree 0 and 1). Hence

Ext0(k, k) = k

Ext1(k, k) = k

(use the sequence 0→ k → k[x]/(x2)→ k → 0 for Ext1.)

2. Have a projective resolution

P • : · · · → k[x]/(x2)
·x−→ k[x]/(x2)

·x−→ k[x]/(x2)→ k.

Apply Homk[x]/(x2)(P
•, k) to get 0

·0−→ k
·0−→ (in degrees 0, 1, 2, · · · ) Hence,

Extik[x]/(x2)(k, k) = k

for all i ≥ 0.

In fact, as an algebra ⊕
i≥0

Exti(k, k) ∼= k[t]

("Koszul duality.") This is an example where DB(A) D(B) is not equal. The map kills
Exti for i large.

Definition 2.9. Let X ∈ Ob(A).

i) The projective dimension of X is

pdimX = max{i : ∃Y with Exti(X, Y ) 6= 0}

(may be ∞.)

ii) The injective dimension of X is

idimX = max{i : ∃Y with Exti(Y,X) 6= 0}

iii) The homological dimension of A is

hdimA = max{pdimX : X ∈ ObA}
= max{idimX : X ∈ ObA}
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Lemma 2.6. Assume that A has enough projectives. Then

pdimX = min{i : ∃ projective resolution 0→ P−i → P−i+1 → · · · → P−1 → P 0 of X}

(it is clear that i ≥ pdimX.)

Example 2.3. pdimX = 0 ⇐⇒ X is projective. If pdimX = 0, then have an exact sequence
0→ Y → P → X with P projective, Y = Ker(P → X). Ext1(X, Y ) = 0 implies that P ' X ⊕ Y so
X is a direct summand of P . Thus X is projective.

Claim 2.1. Let 0→ Y1 → Y2 → Y3 → 0 be a short–exact sequence and let X ∈ Ob(A). Then

· · · → Exti(X, Y1)→ Exti(X, Y2)→ Exti(X, Y3)→ Exti+1(X, Y1)→ · · ·

is long exact. Similarly, for X, Y ∈ D(A), Exti(X, Y ) = HomD(A)(X, Y [i]).
More generally, given X ∈ D(A) and a distinguisheed triangle Y1 → Y2 → Y3 → Y1[1], there is a

long exact sequence of Ext’s. (Similar statements hold for X1 → X2 → X3 → X1[1].)

We will assume this claim without proof.

Proof. (of Lemma (2.6).) Use induction on pdim(X). Suppose pdimX = n. Want a projective
reolution of length n. Since A has enough projectives we have a sequence

0→ Y → P → X → 0

where P is projective.
Claim 2.2. pdimY ≤ n− 1

By the previous claim, get an exact sequence

Exti(P,Z)→ Exti(Y, Z)→ Exti+1(X,Z)

so by induction Y has a projective resolution of length less than or equal to n− 1. Composing with
Y ↪→ P , we get the projective resolution

→ P−(n−1) → · · · → P−2 → P−1 ↪→ P → X → 0

of length less than or equal to n.

Let R be a ring.

Definition 2.10. hdimR := hdim(R–Mod)

Claim 2.3. hdimR[x] = hdimR + 1

Proof. Next Time.

Corollary 2.5. hdimk[x1, · · · , xn] = n

Theorem 2.8 (Serre). Let R be a commutative Noetherian ring with unit. hdimR <∞ ⇐⇒ R is
regular and in this case it is the Krull-dimension of R.

Let P • be a projective resolution of X.

1. Exti(X, Y ) = H i(Hom(P, Y )).
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2. P ,Q projective resolutions of X, Y . Then

Exti(X, Y ) = Hom(P,Q[i])/homotopy.

Look at HomK(A)(P
•, Y [i]).

P−i−1 P−1 P−i+1 · · ·

0 Y 0 · · ·

ϕ

ϕ : P−i → Y defines a complex map if and only if ϕ ◦ di−1
P = 0 (?). In K(A), ϕ 7→ ϕ+ h · d−i (??).

(?) ⇐⇒ ϕ is an i–cocycle in Hom(P •, Y )

(??) ⇐⇒ allowed to change by coboundaries.

Thus, proving
Exti(X, Y ) = H i(Hom(P •, Y ))

is equivalent to proving
HomD(A)(X, Y [i]) = HomK(A)(P

•, Y [i]).

Given K• → P • a quasi–isomorphism we can find a subcomplex L• ↪→ K• where L• → K• is a
quasi–isomorphism. Then there exists P • → L• inverse to s in the diagram

K•

P • Y [i]

s f
.

Hence we can assume Ki = 0. Finish next time.

Lecture 5 [15.03.2016]

Let A and abelian category and let D(A) be the derived category. Given X, Y ∈ ObA, we defined
Exti(X, Y ) = HomD(A)(x, y[I]). Let P • be a projective resolution of X. Then

Exti(X, Y ) = H i(Hom(P 0, Y ).

Proof. For X1, X2 ∈ ObA with corresponding projective resolution P1, P2, a morphism ϕ : X1 → X2

is equivalent to a morphism P 0
1 → P 0

2 unique up to homotopy. In fact the same is true assuming
only that P 0

1 is projective. Need a quasi-isomorphism s fitting into the roof

K•

P • Y [i]

s

f

Can assume that Ki = 0 for i > 0. Replace K• by K̃• ⊂ K• with K̃i = 0 for any i > 0 and K̃i = Ki

for i < 0 and K̃0 = Ker(K0 → L1).
Then bothK• and P • are resolutions ofX so their exists a uniqyue up to homotopy map P • → K•

which induces and isomorphism on H0 which is inverse to H0(s). Thus we get P • → Y [i] a map of
complexes which is well–defined up to homotopy.
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Conclusion

HomK(A)(P
•, Y [i])→ HomD(A)(X, Y [i])

is surjective.

P−i−1 P−i P−i+1

0 Y 0

d

ϕ

d

ϕ ◦ d = 0 ⇐⇒ ϕ is a cocycle in Hom(P •, Y ) and h : P−i+1 → Y is 0 ⇐⇒ h is a cocylce in
Hom(P−i, Y ) (here ϕ 7→ ϕ+ hd. So homotopies are just adding a coboundary in Hom(P •, Y ).

K•

P P

P P

qis

id

Theorem 2.9. Let I denote the full subcategory of injective objects in A and let K+(A) be the
homotopy category of injective complexes bounded below. Then

1. K+(I) is a full subcategory of D+(A)

2. If A has enough injectives then K+(A) ∼= D+(A).

Proposition 2.3. Let C be a category and S a localizing class of morphisms. Let B ⊂ C be a full
subcategory and SB = S ∩ B so we have a functor F : B[S−1

B ] → C[S−1]. Assume that (a) or either
(b1) or (b2) are satisfied. Then F is fully faithful. Here

(a) SB is a localizing class in B.

(b1) For all s : X ′ → X, s ∈ S, X ∈ ObB there exists f : X ′′ → X ′, X ′′ ∈ ObB, sf ∈ S such that

X ′′ X ′

X

f

sf∈S
s

(b2) Same as (b1) with all arrows reversed

Proof. Exercise.

Remark 2.3. If we know (1) then (2) just means any (bounded below) complex is quasi–isomorphic
to an injective complex.

Sketch of proof of (1). Let C = K+(A), B = K+(I) and let S be quasi–isomorphisms. (a) Is proven
in the same way as for K+(A) itself and (b2) is satisfied.
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Lemma 2.7. Let I• → K• be a quasi–isomorphism in C+(A) with I• injective. Then there exists
t : Kbullet→ I• such that t◦s is homotopic to the identity. (This implies that any quasi–isomorphism
between injective complexes is invertible up to homotopy.)

Proof. Have a sequence
I

s−→ K −→ Cone(s) −→ I•[1]

and if s is a quasi–isomorphism then Cone(s) as acyclic.
Claim 2.4. Any map from an acyclic complex C• to an injective complex I• (in C+(A) is homotopic
to 0.

Recall that Cone(s) = K ⊕ I[1]. The idea is that hK• : K• → I• is a map of complexes which
satisfies the conditions of the lemma (check this as an exercise.)

Assume that Ci, I i = 0 for i < 0.

0 C0 C1 C2 · · ·

0 I0 I1 I2 · · ·

The dashed arrow in the above diagram exists since C0 → C1 is injective. Continue constructing the
homotopy by induection.

Lemma 2.8. For any K• ∈ C+(A) there exists f : K• → I• with I• injective and f a quasi–
isomorphism (we require that A has enough injectives as well.)

Proof. Exercise

The result follows if we can prove these two lemmas.
Remark 2.4. We really need to be in C+(A) since we need to start the inductive arguments somewhere.

2.6 Derived Functors

Let A,B be abelian categories and let F : A → B be a left exact functor.

Definition 2.11. The right derived functor of F is an exact functor (ie. exact triangles map to
exact triangles) RF : D+(A)→ D+(B) and a morphism εF : QB ◦ K+(F )→ RF ◦QA such that

D+(A)

K+(A) D+(B)

K+(B)

RFQA

K+(F ) QB

is universal in the sanse that for any exact functor G : D+(A)→ D+(B) and any ε : QB · K+(F )→
G ◦QA there exists a unique η : RF → G which makes the diagram

RF ◦QA G ◦QAη◦QA
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Remark 2.5. If RF exists it is defined uniquely by the universal condition.

Claim 2.5. If RF exists define RiF : A → B by RiF (X) = H i(RF (X)). Then RiF = 0 for i < 0
and R0F = F . Moreover, given an exact sequence

0→ X → Y → Z → 0

we get an exact sequence

0→ F (X)→ F (Y )→ F (Z)→ R1F (X)→ R1(Y )→ R1F (Z)→ R2F (X)→ · · ·

Example 2.4. Ext∗(X, Y ) = R`X(Y ) = RrY (X)

Example 2.5. Let R be an associative ring with unit, let M be a right R-module and let N be a left
R–module. Then we can form the tensor productM⊗RN and define the functor FM : left modules→
Abelian Groups by FM(N) = M ⊗R N . Then FM has a left derived functor

LFM(N) =: Tor(M,N)

and we define
Tori(M,N) := H−i(LFM(N))

Questions

1. When are we guaranteed that RF (or LF ) exists?

2. How to compute it?

Definition 2.12. Let F be a functor. A class of objects R ⊂ Ob(A) is called Adapted to F if

1. F maps acyclic complexes (in C+(R)) to acyclic complexes.

2. Any X ∈ Ob(A) embeds into Y ∈ R.

Usually we assume R is stable under direct sums also.

Lemma 2.9. Assume that A has enough injectives. Then I (the class of injective objects) is adapted
to any F (left exact!).

Theorem 2.10.

0. If F has an adapted class then RF exists.

1. D+(A) ∼= K+
R[S−1

R ] where SR are the quasi–isomorphisms in K+
R, the homotopy category of

complexes in R.

2. If K• ∈ C+(R) then
RF (QA(K•)) = QB(K+F (K•))

Example 2.6.

Definition 2.13. A left R–module N is called flat if the functor M 7→M ⊗N is exact.

Lemma 2.10. If K• is a complex (bounded above) of flat,acyclic R–modules then M ⊗ K• is also
acyclic.
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Projective modules are flat but the opposite is not true (Q is a flat Z module but not a projective
one.) Flat modules form an adapted class to FM .

Think of Q/Z as the complex Z→ Q where Z is in degree −1. Tensoring this sequence with Q/Z
gives Q/Z→ 0. Hence,

Tor0(Q/Z,Q/Z) = 0

Tor1(Q/Z,Q/Z) = Q/Z

If I• is an acyclic injective complex which is bounded below, then F (I•) is also acyclic. I• id−→ I• is
a quasi–isomorphism implies that id is homotopic to 0 so there exists h : I → I[−1] with id = dh+hd.
Then

idF (I•) = F (d)F (h) + F (h)F (d)

so idF (I) homotopic to 0 implies acyclicity.

Proof. (Of Part (1) of the theorem) To construct RF ,

D+(A) K+
R[S−1

R ]
φ

ψ

We have F : K+
R[S−1

R ] → D+(B). K• s−→ L• with s a quasi–isomorphism and K•, L• ∈ K+
R implies

that F (s) is a quasi–isomorphism and s is a quasi–isomorphism ⇐⇒ Cone(s) is acyclic. We have

F (K•)
F (s)−−→ F (L•)→ Cone(F (s)) = F (Cone(s))

and Cone(s) = L ⊕ K[1] also in K+
R implies F (Cone(s)) is also acyclic which is equivalent to F (s)

being a quasi–isomorphism.
Get a functor D+(A) → D+(B) which is F ◦ φ. This functor is exact and universal (Exercise:

Prove universality) with εF which is given by the map QB(F (K•))→ QB(F (L•)).

Let F be a left exact functor for which there exists an adapted class. RiF = 0 for i < 0. For any
X ∈ A, X has a resolution K• such that Ki = 0 for i < 0, Ki ∈ R and

H i(K•) =

{
X i = 0

0 otherwise

There exists α0 : X ↪→ K0 ∈ R so Coker(α0) ↪→ K1. Get

K0 d0

−→ K1 d1

−→ K2

There exists Coker(d0) ↪→ K2 ∈ R etc.
Hence, RF (X) is represented by F (K•) which lives in degrees ≥ 0. R0F (X) = Ker(F (K0) →

F (K1)) and F is leeft exact imply that

Ker(F (K0)→ F (K1)) = F (Ker(K0 → K1)) = F (X).

Let 0→ X → Y → Z → 0 be a short exacct sequence. Then get

RF (X)→ RF (Y )→ RF (Z)→ RF (X)[1]

A distinguished triangle yields a long exact sequence of cohomology so get a long exact sequence

· · · → RiF (X)→ RiF (Y )→ RiF (Z)→ Ri+1F (x)[1]→ · · ·
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Remark 2.6. {RiF}i≥0 form a δ–functor if R0F = F and the sequence

· · · → RiF (X)→ RiF (Y )→ RiF (Z)
δi−→ Ri+1F (x)[1]→ · · ·

is exact. Then you can define {RiF}i≥0 as a universal δ–functor with R0F = F .

Corollary 2.6. Exti(X, Y ) = Ri`X(Y ) if A has enough injectives and Exti(X, Y ) = RirY (X) if A
has enough projectives.

Remark 2.7. Assume that A is k–linear for some commutative ring k. Think of `X : A → k −mod.
Then R`X(Y ) ∈ D+(k − mod). In the case where there are not enough injectives, usually define
Ri`X(Y ) = RHom(X, Y ) ∈ D+(Ab) (or D+(k −mod) if A is k–linear.

Lecture 6 [22.03.2016]

2.7 Derived Functors of Composition

Suppose we have functors
A F−→ B G−→ C

between abelian categories where F and G are exact functors. Then G ◦ F is also left exact.

Theorem 2.11. Assume there exists RA ⊂ ObA which is an adapted class to F and there exists
RB ⊂ ObB which is an adapted class to G. Assume also that F (RA) ⊂ RB. Then R(G ◦ F ) exists
and there is a natural isomorpism RG ◦RF ∼= R(G ◦ F ) of functors D+(A)→ D+(C).

Remark 2.8. Can also consider RpF ◦RqG but the theorem says nothing about the relation between
these and Ri(G ◦ F ).

Example 2.7 (Group Cohomology). Let Γ be a finite group and let A be the category of Γ-modules
(so these are modules over ZΓ.) Given M ∈ Γ-mod we can define the cohomology in two ways:

H i(Γ,M) = ExtiΓ−mod(Z,M) = RiF (M)

where F : Γ−mod→ Ab is defined by F (M) = MΓ = HomΓ(Z,M).
Let 1 → Γ1 → Γ2 → Γ3 → 1 be a short exact sequence. Let A be Γ2-modules, B be Γ3-modules

and C = Ab so that F (M) = MΓ1 is a functor A → B and G(M) = MΓ3 is a functor B → C.
Exercie 2.6. The functors above satisfy the conditions of the theorem.

If M is a Γ2-module we will show there is a relationship Hq(Γ3, H
p(Γ1,M)) and H i(Γ2,M). In

genereal we will later prove a relation ship between higher derived functors and composition which
strengthens the following.
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Weak Statement

Ri(G ◦ F ) is a subquotient of
⊕

p+q=iR
qG ◦RpF .

To compute the group cohomology, we need to compute an injective resolution of the Γ-module
Z. Can define the resolution

· · · → ZΓ⊗ ZΓ⊗ ZΓ→ ZΓ⊗ ZΓ→ ZΓ→ Z

where the map ZΓ→ Z is defined by {
∑

γ∈Γ aγ · γ} →
∑
aγ.

By Lemma 2.11, Z⊗ Z is a free module and it has basis given by pairs (γ1, γ2). Define the map
ZΓ⊗ ZΓ→ ZΓ by (γ1, γ2) 7→ γ1γ2 − γ1.

Similarly, ZΓ ⊗ ZΓ ⊗ ZΓ has a basis given by triples (γ1, γ2, γ3) and the map ZΓ ⊗ ZΓ ⊗ ZΓ is
defined by

(γ1, γ2, γ3) 7→ (γ1γ2, γ3)− (γ1, γ2γ3) + (γ1, γ2)

In general, the map (ZΓ)⊗
n+1 → (ZΓ)⊗

n is defined by

(γ0, · · · , γn
dn−→)

∑
i

(−1)i+1(γ0, γ1, · · · , γiγi+1, γi+1, · · · , γn) + (−1)n(γ0, · · · , γn−1).

Exercie 2.7. dn−1 ◦ dn = 0 so this is a free resolution of Z.
This resolution is called the bar complex and is denoted by B•.

Lemma 2.11. Let M be any Γ-module. Then Z⊗M with the diagonal action is a free module over Γ.

Let M be a Γ-module. To compute Hn(Γ,M) we have Hom(B−n,M) which is all maps Γn →
M . Note that 1 ⊗ γ1 ⊗ · · · ⊗ γn+1 ∈ B−n−1 gets mapped to

∑n
i=1(−1)i(1, γ1, · · · , γiγi+1, · · · ) +

(−1)n+1(1, γ1, · · · , γn) + (γ1 · · · , γn+1).
So, given f ∈ Hom(B−n,M) we get

df(γ1, · · · , γn+1) = γ1f(γ2 · · · , γn+1) +
n∑
i=1

(−1)if(γ1, · · · , γiγi+1, · · · , γn+1 + (−1)nf(γ1, · · · , γn)

In low degrees, we get
M

d0−→ {f : Γ→M} d1−→ {Γ× Γ→M}

where m 7→ γ(m)−m and for f : Γ→M d1f = g where g(γ1, γ2) = γ1f(γ(2)− f(γ1γ2) + f(γ1).
So 1–cocycles are functions f : Γ→ M which satisfy f(γ1γ2) = γ1f(γ2)) + f(γ1), called a skew-

homomorphism.

Remark 2.9. Assume that Γ acts trivially on M . Then we get f(γ1γ2) = f(γ1) + f(γ2) so f : Γ→M
is a homomorphism of groups.

Conclusion: If Γ acts trivially on M then H1(Γ,M) = Hom(Γ,M).
If Γ is a finite group then the category of QΓ–modules is semi–simple.

Corollary 2.7. If Γ is finite then H i(Γ,M) (i > 0) is a torsion group for any M . More precisely,
H i(Γ,M) is killed by #Γ.
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Proof.
ZΓ–modules

QΓ–modules Ab

Q–vector spaces

⊗Q−exact
F :M→MΓ

M→MΓ⊗Q

M→MΓ

G=⊗Q

Since Γ is finite the composition M → (M ⊗ Q)Γ. R(G ◦ F ) ∼= RG ◦ RF and Ri(G ◦ F )(M) =
H i(Γ,M)⊗Q) = 0 for i > 0 since G ◦ F is exact.

The same thing works when we replace Q by Z[(#Γ)−1].

Example 2.8 (Hochschild Cohomology). Let A be any associative ring (which is an algebra over a
field k) with 1 (so all tensor products will be over k.) Let A be the category of A–bimodules (ie.
modules over A⊗ Aop. A is naturally a bimodule over itself. If M is any other bimodule, define

HH i(M) = ExtiA(A,M).

Hom(A,M) = {m ∈ M | am = ma for all a ∈ A} so if M = A for example then HomA(A,A) =
Z(A) is the centre. To compute this cohomology group it is enough to find a resolution of A by free
bimodules.

· · · → A⊗ A2 ⊗ Aop → A⊗ A⊗ Aop → A⊗ A d−→ A

The map A⊗ Aop → A is defined by a⊗ b 7→ ab. In general the map A⊗ A⊗n ⊗ Aop is defined by

d(a0 ⊗ a1 · · · ⊗ an ⊗ an+1) =
∑

(−1)i(a0, a1, · · · , aiai+1, ai+1, · · · , an+1)

Lemma 2.12. This is a resolution of A by free bimodules.

HHn(M) is computed by the complex which in degree n has Homk(A
⊗n,M). In low degrees get

0 1 2

M {f : A→M} g : A⊗2 →M

m f(a) = am−ma, f : A→M g(a1, a2) = a1f(a2)− f(a1a2) + f(a1)a2

So, 1–cocycles are functions f : A → M which satisfy f(a1a2) = a1f(a2) + f(a1)a2, ie. they are
derivations. So these are related to vector fields in certain contexts.

There is a dual theory of Hochschild homology, which is the derived functor of the functor from
Bimodules to k-Vect defined by M 7→ M/Span(am −ma, a ∈ A,m ∈ M). Then the first homology
is related to differential forms in certain contexts.
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2.8 Spectral Sequences

Let A be an abelian category. A spectral sequence is given by Ep,q
r ∈ ObA, En ∈ ObA plus

(a) For all r differentials dp,qr : Ep,q
r → Ep+r,q+1

r (p, q ∈ Z, r ≥ 1) such that d2
r = 0

(b) Hp,q(E∗r )
∼= Ep,q

r+1

(c) For all p, q there exists r0 ≥ 1 such that for all r ≥ 0, dp,qr ◦ dp+r,q+1
r = 0. This ensures that

limr→∞E
p,q
r exists. Call this limit Ep,q

∞ .

(d) There exists a regular filtration F PEn ⊃ F p+1En ⊃ · · · on En such that Ep,q
∞
∼= F pEp+q/F p+1Ep+q.

The associated graded grEn = ⊕pF pEn/F p+1En is a subquotient of ⊕p+q=nEp,q
1 .

Spectral Sequence of a Filtration

This generally appears in the following way. Let K• be a complex in C(A) and assume we have
a filtration on K•, ie. for each n we have a filtration · · · ⊃ F pKn ⊂ F p+1Kn ⊃ · · · such that
d(F pKn) ⊂ F pKn+1.
Example 2.9 (Canonical Filtration).

(F pK•)n =


Kn n ≤ −p
Ker d−p n = −p
0 n > −p

This has cohomology

Hn(F pK•) =

{
Hn(K) n ≤ p

0 otherwise

Example 2.10 (Stupid Filtration).

F̃ p(K) =

{
0 n < p

Kn n ≥ p

This has cohomology

Hn(F̃ pK•) =


0 n < p

Hn(K) n > p

Ker dp n = p

Claim 2.6. Given a filtered complex K• (under the finiteness condition that for a given n, F pKn = 0
for p >> 0 although this can often be relaxed) we can construct a spectral sequence with E1 = grFK

•.
Ie. Ep,q

1 = F pKp+q/F p+1Kp+q, En = Hn(K•)

Theorem 2.12. Let A,B be abelian categories with enough injectives and suppose we have functors
A F−→ B G−→ C with F,G left exact and F (IA) ⊂ RB (RB is an adapted class to G. Then for all
X ∈ ObA there exists a spectral sequence Ep,q

r such that

Ep,q
1 = RpG(RqF (X))

En = Rn(G ◦ F )(X).

En has a filtration such that grEn = ⊕p+q=nRpG(RqF (X)).
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Corollary 2.8. Assume that there exists i, j with

RqF = 0 for q > i

RpG = 0 for p > j.

Then Rn(G ◦ F ) = 0 for n > i+ j.

Let F : A → B be a left exact functor and let K• ∈ D+(A). Then we can consider either
Hn(RF (K•)) or Hp(RqF (K•)).

Claim 2.7. Assume A has enough injectives. There exists a spectral sequence with

Ep,q
1 = Hp(Rq(F (K•)))

En = Hn(RF (K•))

Moreover, in this case the filtration on En is trivial.

In general, Hn(F (K•)) is a subquotient of ⊕p+q=nRpF (Hq(K•)).
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Sheaves

3.1 Sheaf Cohomology

Let X be a topological space.

Definition 3.1. A presheaf F (of sets) on X consists of a set F(U) for overey open subset of X
and for every inclusion I ⊂ V a restriction map rUV : F(V )→ F(U) such that for any U ⊂ V ⊂ W
rUV ◦ rVW = rUW .

Remark 3.1. Can define sheaves in any category by replacing the set F(U) by an abject in the
category and the restriction maps by morphisms in the category.

Definition 3.2. A presheaf F is a Sheaf if for all open covers U =
⋃
i∈I Ui the map

F(U)→ {si ∈ F(Ui) : si|Ui∩Uj = sj|Ui∩Uj}

is an isomorphism.

There is functor Sh : PSh(X) → Sh(X) which is a left adjoint of the forgetful functor F :
Sh(X)→ PSh(X) so that

HomPsh(g, F (F) ∼= HomSh(Sh(g),F)

Sh(g) can be explicitly constructed as a direct limit over all open coverings U =
⋃
i∈I Ui of {si ∈

F(Ui) : si|Ui∩Uj = sj|Ui∩Uj}
Sh and PSh are abelian categories.

Warning 3.1. In Psh Ker and Coker are the obvious ones but given CF (U)
ϕU−→ g(U). KerϕU and

CokerϕU are presehaves but {CokerϕU} does not form a sheaf. In Sh the Cokernel is defined as
Sh(CokerPsh).

Example 3.1. Let A be an abelian group. The constant sheaf AX on X defined by A is given by
AX(U)” = ”A. Assigning A to every open set only gives a presheaf though so we define (AX)Sh =
Sh((AX)PSh).

There is a functor Γ : Sh(X) → Ab defined by F 7→ F(X) = Hom(ZX ,F) called the Global
Sections Functor. It is a left exact functor.

Lemma 3.1. Sh has enough injectives so all left exact functors have right derived functors.

Definition 3.3. H i(X,F) = RiΓ(F). In particular, H i(X,A) = RiΓ(AX).
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Example 3.2 (Hypercohomology). Let F be a complex of sheaves in D+(Sh)). Then we can define
H i(X,F) = H i(RΓ(F). There exists a spectral sequence Ep,q

r with

Ep,q
1 = Hp(X,Hq(F))

En = Hn(X,F)

Lecture 7 [29.03.2016]

We will compare sheaf cohomology to the singular and de Rham cohomoloy theories. Let X be a
topological space and let SAb(X) be the category of sheaves of abelian groups.

Lemma 3.2. SAb(X) has enough injectives.

There is a functor Γ : SAb(X)→ Ab defined by Γ(F) = F(X) for a sheaf F . The cohomology is
then defined to be

H i(X,F) = Ri(F).

For A an abelian group let AX be the constant sheaf. Then

H i
Sh(X,A) = H i(X,AX)

Singular Cohomology

Define
Cn(X,A) = {ϕ : {maps ∆n → X} → A}

where ∆n is the n-simplex. There exists a map d : Cn(X,A)→ Cn+1(X,A) and we define

H i
sing(X,A) = H i(C•(X,A)).

Theorem 3.1. Assume that X is locally contractible. Then

H i
Sh(X,A) ∼= H i

sing(X,A)

for all A.

X is contractible implie sthat H i
sing = 0 for i > 0. For the theorem, we need that for any x ∈ X,

there exists a base of neighbourhoods U such that H i
sing(U,A) = 0 for all i > 0.

de Rham Cohomology

Assume now that X is a (C∞) manifold. Let Ω•(X) be the de Rham complex. Then

H i
dR(X) = H i(Ω•(X)).

Theorem 3.2.
H i
dR(X) = H i

Sh(X,R)

Let Ωi
X denote the sheaf of i-differentials on X. Then ddR : Ωi

X → Ωi+1
X is a map of sheaves.
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Lemma 3.3 (Poincare).

H i(Ω•X) =

{
0 i > 0

RX i = 0

To prove Theorem 3.2 it is enough to show that the sheaves Ωi
X belong to some class of sheaves

adapted to Γ which is true if and only if Hq(X,Ωi
X) = 0 for all q > 0. The same thing is going to be

true for the sheaf of C∞ sections of any C∞ vector bundle on X.
Let Ci(X,A) be the sheaf of singular cochains. We would like Ci(X,A)(U) to be singular cochains

on U but this only defines a presheaf so we need to take the sheafification of this presheaf. Then d
is a well-defined map of sheaves.

If X is locally contractible, then

H i(C•(X,A)) =

{
0 i > 0

Ax i = 0

so Theorem 3.1 would follow if we knew that Ci(X,A) are acyclic with respect to Γ.

Γ(Ci(X,A)) = Ci(X,A)

/
{interiors = 0 locally}.

Definition 3.4. A sheaf F is called flabby if for all U ⊂ X open, the map F(X) → F(U) is
surjective. This implies that for all U ⊂ V , the mape F(V ) → F(U) is surjective due to the
commuting diagram

F(V ) F(U)

F(X)

Lemma 3.4. i The class of flabby sheaves is adapted to Γ.

ii Any injective sheaf is flabby.

Definition 3.5. For F a sheaf over X, the stalk of F at x ∈ X is

Fx = lim−→
U3x
F(U).

Given any sheaf F we can construct a sheaf F̃(U) by defining

F̃(U) =
∏
x∈U

Fx.

This sheaf is flabby, and there is an injective map F → F̃ .
Exercie 3.1. Show that if we have an exact sequence

0 −→ F1 −→ F2 −→ F3 −→ 0

and if F1 is flabby, then Γ(F2)→ Γ(F3) is surjective.
This exercise implies that an acycic complex of flabby sheaves remains acyclic under Γ.

Observation: Ci(X,A) is flabby.
Pick some s ∈ Ci(X,A)

36



CHAPTER 3. SHEAVES Alexander Braverman

Soft and Fine Sheaves

Definition 3.6. Let f : Y → X be a map of topological spaces and suppose F is a sheaf on X. The
inverse image sheaf f ∗(F) is the sheaf on Y defined by

f ∗(F)(U) = Sh

(
lim−→

V⊃f(U)

F(V )

)

where the sets V must be open.

For Y a closed subset of X, f ∗(F) = F|Y and we have a map F(X)→ F|Y (Y ) for any closed Y .

Definition 3.7. F is called soft if the above map is surjective for every closed set Y .

Lemma 3.5. Any flabby sheaf on a paracompact X is soft.

Proof. Exercise.

Lemma 3.6. Assume that X is paracompact and Hausdorff. Then soft sheaves are acyclic for Γ (ie.
soft sheaves form an adapted class for Γ.)

Definition 3.8. Let F ,G be two sheaves on X. The inner hom is the sheaf on X defined by

Hom(F ,G)(U) = HomSheaves(F|U ,G|U)

Definition 3.9. Let F be a sheaf on X and let s ∈ F(X). The support of s is

supp(s) = minimal closed subset Y of X such that s|X\Y = 0.

Definition 3.10. Assume that X is paracompact F is called fine if one of the following equivalent
conditions is satisfied:

1. Hom(F ,F) is soft.

2. For any A,B ⊂ X closed with A ∩ B 6= ∅ there exists α : F → F such that α|A = id and
α|B = 0.

3. There exists a sheaf of rings A acting on F (so there is a map A → Hom(F ,F) such that
for any locally finite covering {Ui} of X there exists ai ∈ A(X) such that supp(ai) ⊂ Ui and
1 =

∑
ai.

Corollary 3.1. Assume that X is a manifold, E → X is a C∞ vector bundle and FE is the sheaf of
C∞ sections of E. Then FE is soft.

Proof. Let A = C∞(X) = sheaf of C∞–functions. C∞(X) acts on every FE.

Claim 3.1. If X is paracompact and F is fine then Hp(X,F) = 0.

Proof. Let A–mod be the category of sheaves of A–modules. For φ : A − −mod → Ab have φX :
A−mod→ SAb(X) and A = Γ(A). Γ : A−mod→ A−mod and ΓA : A−mod→ A−mod. Then

Rφ ◦RΓA ∼= RF ◦RφX

Step 1 We have enough sheaves of A-modules which are acyclic both as sheaves of A modules and
as abstract sheaves (with respect to Γ.)
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1. A–mod has enough injectives.

2. Any injective A–module is flabby. For F ∈ A–mod, we defined the map F ↪→ F̃ into the
flabby sheaf F̃ . F̃ is also a sheaf of A–modules. Since F is a direct summand of F̃ , F is
flabby.

Step 2 Given F we can find a resolution

0→ F → I0 d−→ I1 d−→ I2 → · · ·

where Ip is a sheaf of A-modules acyclic with respect to Γ. For p > 0 and s ∈ Γ(X, Ip), ds = 0.
There exists a locally finite covering X = ∪Ui such that for all i, si ∈ Iq−1(Ui) and dsi = s|Ui .
Choose ai’s with supp(ai) ⊂ Ui and

∑
ai = 1.

aisi ∈ Iq+1(X) and X = Ui ∪X\ supp(ai) so can define t =
∑
aisi and then locally dt = s.

Definition 3.11. Let f : X → Y . The direct image sheaf is the sheaf f∗F on Y defined by

f∗F(U) = F(f−1(U)).

Lemma 3.7.

1. f∗ is right adjoint to f ∗.

2. f∗ is left exact and f ∗ is exact.

3. For f : X → pt, f∗ = Γ.

Variant

Change of notation: We will write f • instead of f ∗ for the inverse image. Let (X,RX) be a ringed
space. A morphism

(X,RX)
f−→ (Y,RY )

consists of a continuous map f : X → Y plus a morphism of sheaves of rings f •RY → RX . The
usual direct image can be naturally though of as f∗ : RX −mod→ RY −mod (RX(f−1(U)) acts on
F(f−1(U)r) and we have RY (U)→ f •RY (f−1(U))→ RX(f−1(U)) so RY (U) also acts.)

Let F ∈ RY −mod. f •F has an action of f •RY so can define f ∗F = RX ⊗f•RY f •F . We have a
pair of adjoint functors

RX −mod RY −mod
f∗

f∗

where f∗ is the left adjoint and f ∗ is the right adjoint.

Lemma 3.8. Let f : X → Y be a continuous map and F ∈ SAb(X). Then Rif∗(F) is the
sheafification of the presheaf

U → H i(f−1(U),F|f−1(U))

Corollary 3.2. Flabby sheaves are acyclic with respect to f∗. Or, on paracompact spaces fine sheaves
are acyclic with respect to f∗.
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For F ∈ RX −mod the two notions of Rf∗(F) coincide.
So far, we have three functors f∗, f ∗,Hom(−,−) out of the 6. From now on assume all topological

spaces are assumed to be locally compact. There is another functor f! : SAb(X)→ SAb(Y ). Define

f!(F)(U) =
{
s ∈ F(f−1(U))| supp(s)→ U is proper

}
(recall that f : X → Y is proper (assuming all spaces are locally compact and Hausdorff) if it
is universally closed, ie. for every g : Z → Y the map X ×Y Z → Z is closed. Equivalently, the
preimage of compact sets is compact.) f!(F) is a subsheaf of f∗(F) and is again left exact.

Lemma 3.9. Let f : X → Y , F ∈ SAb(X). Then

f!(F) = Γc(f
−1(y),F|f−1(y))

(where the c subscript denotes compat support.) Γc = f! when f : X → pt.

More generally, given
X ×Y Z X

Z Y

g̃

f̃ f

g

we have g∗f! = f̃!g̃
∗ (this is called base change.) Note that this is wrong if we use f∗ instead of f!.

We also want to consider Rf!. In particular, H i
c(X,F) = RiΓc(F). If F = AX then we can define

H i
c(X,AX) = H i

c(X,A), the cohomology with compact support. If X is a (Hausdorff) manifold,
sheaves of the form FE can still be used for computing H i

c (acyclic with respect to Γc.

Example 3.3. Let X = Rn. Then

H i
c(Rn,R) =

{
R i = n

0 otherwise

Exercie 3.2. Let X = {(x, y) ∈ R2| xy = 0}. What is H i
c(X,R)?

If f is proper, then f! = f∗. Assume that f is an open embedding. Then f∗ is right adjoint to f ∗
and f! is left adjoint to f ∗. Hence, there is a morphism f∗f

∗ ←− F . f : X ↪→ Y is an open embedding
and so we need a map

F(Y )→ f∗f
∗(F)(Y ) = f ∗(F)(X) = F(X)

which is the obvious map.
For the other adjoint relation, we have

f!f
∗(F) = {s ∈ F(X)| supp(s) is closed in Y }

Given such an s we can construct a section of F on all of Y to produce this map.
Under some assumptions on X and Y we’ll show that Rf! always has a right adjoint f ! so the

complete list of 6 functors is f∗, f ∗, f!,Hom(−,−), f ! and D which comes from Verdier duality.
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Lecture 8 [05.04.2016]

3.2 The Functors f! and Rf!

Assume all spaces are locally compact and Hausdorff. For f : X → pt, RF!(·) = H∗c (·) is cohomology
with compact support. Suppose that f : X → Y is locally compact. We have

H i
c(Rn,R) =

{
0 i 6= n

R i = n

and

H i(R,Z) =

{
0 i 6= 1

Z i = 1

(where here X = R and Z = ZX .) This follows since we have a short exact sequence of sheaves

0→ ZR → C∞(R)→ C∞(R, S1)→ 0

{f : R→ R| supp is compact} α−→ {ϕ : R→ R/Z| suppϕ is compact}

Exercie 3.3. Define a map from the second set above to Z which produces an isomorphism with
Cokerα.

Definition 3.12. dimX ≤ n if for any sheaf F of abelian groups, H i
c(X,F) = 0 for i > n. dimX = n

if dimX ≤ n but dimX 6≤ n− 1.

Remark 3.2. If Hn+1
c (X,F) = 0 for all F then dimX ≤ n by induction on i. There exists

0→ F → H → G → 0

where H is injective so on cohomology,

0→ H i
c(X,G)

∼−→ H i
c(X,F)→ 0.

Proposition 3.1.

1. dimRn = n and for any X, dim(X × R) = dimX + 1.

2. For any Y ↪→ X which is locally closed, dimY ≤ dimX.

3. dimX is local; ie. if any point x ∈ X has a neighbourhood Ux then dimUx ≤ n implies
dimX ≤ n.

Proof.

1. Will prove dimR = 1. It is clear that dimR ≥ 1. Assume that there exists α ∈ H2
c (R,F) with

α 6= 0. For a closed subset i : Z ↪→ X, FZ = i∗F and by adjointness

F → i∗i
∗F = i!i

∗F = i!(FZ)

Given α ∈ H∗c (X,F) let α|Z be the image via the map H∗c (X,F)→ H∗c (X,FZ).
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Let Z be a minimial closed subset of R such that α|Z 6= 0 and let z ∈ Z be a point which
seperates two other points of Z. Define Z− = {y ∈ Z|y ≤ z} and Z+ = {y ∈ Z|y ≥ z}. Then
α|Z− = 0 and α|Z+ = 0 so α|Z−∩Z+ = 0.

Let X be a space, X−, X+ be closed subsets and F be a sheaf. Then

H i
c(X,F)→ H i

c(X−,F|X−)⊕H i
c(X+,F|X+)→ H i

c(X− ∩X+,F|X−∩X+)→ H i+1
c (· · · )

is exact since
0→ F → i−∗i

∗
− ⊕ i+∗i∗+F → j∗j

∗F → 0

is a short exact sequence of sheaves (here i± : X± → X and j : X− ∩X+ → X.)

In our previous situation, Z− ∩ Z+ = {z} so for any sheaf G on Z (in particular for G = F|Z),

H1
c (Z− ∩ Z+,G|Z−∩Z+) H2

c (Z,G) 3 α|Z

H2
c (Z−,G|Z−)⊕H2

c (Z+,G|Z+) αZ− = 0, αZ+ = 0

a contradiction.

2. i : Y ↪→ X closed, F ∈ SAb. i! = i∗ so

H i
c(Y,F) = H i

c(X, i!F)

3. Exercise

Proposition 3.2. If i : Y ↪→ X is an open embedding then i! is still exact and for any sheaf F ,
i!F = Ri!F .

Proof. i!FY = F since the stalks of i!F on X\Y are all 0.
Warning 3.2. This is NOT true for i∗.

Corollary 3.3. If F → G is surjective then i!F → i!G is surjective.

Remark 3.3. For α : X\Y → X, α∗i!F = 0. i!F is called the extension of F by zero.

Theorem 3.3. Let X,Y be locally compact, Hausdorff finite dimensional topological spaces. Let
f : X → Y be a continuous map. Then Rf! : Db(X) → CDb(Y ) (or Rf! : D+(X) → D+(Y )) has a
right adjoint f !, ie.

Hom(RF!F ,G) ∼= Hom(F , f !G)

Let D(X) be the derived category of sheaves of abelian groups on X. RF! : D+(X)→ D+(Y ) but
for finite dimensional spaces Rf! : Db(X)→ Db(Y ).

Remark 3.4. Given X f−→ Y
g−→ Z and if f !, g! exist then (g ◦ f)! also exists and (g ◦ f)! = g! ◦ f !.
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Example 3.4. Lets replace abelian groups by Q–vector spaces in this example. Let Y = pt, X a
compact oriented, connected manifold of dimension n, F = QX [i] for i ∈ Z and G = Q. Then the
adjointness relation becomes

Hom(H i(X,Q),Q) = H i(X,Q)∗ ∼= HomD(X)(Q[i], f !G)i = H−i(X, f !G)

By Poincaré duality, H i(X,Q)∗ ∼= Hn−i(X,Q) so we should define f !G = QX [n].
For X (possibly) not compact but oriented, Poincaré duality says

H i
c(X,Q)∗ ∼= Hn−i(X,Q).

If X is any (possibly not orientable) manifold of dimension n, let ωX be the orientation sheaf given
by

U 7→ Hn
c (U,Z).

This is a locally constant sheaf so a similar analysis shows that if f ! exists for f : X → pt where X
is a connected manifold then f !A = ωX ⊗ A[dimX]. This generalizes Poincaré duality.

Definition 3.13. The dualizing sheaf on X is DX = f !Z where f : X → pt.

Our previous example show that for X a manifold, DX = ωX [dimX].

Explicit Descriptions of f !

Case 1: f is an open embedding. Then f ! = f ∗. If F ∈ SAb(X) and G ∈ SAb(Y ) then

Hom(f!F ,G) = Hom(F ,G|X)

(the map arising from f!F|X = F is easily seen to be injective on stalks and the map arising
from restricting α : F → GX to s ∈ f!F(U) for any U is surjective.)

Case 2: f is a closed embedding. f∗ = f! and f ∗ is left adjoint to f∗ = f! but not right adjoint.

Claim 3.2. f ! = sections with support on X.

Define a functor f ? : SAb(Y )→ SAb(X) by

f ?F(U) = lim−→
V open,V ∩X=U

{s ∈ F(V )| supp(s) ⊂ U}

Remark 3.5. It is enough to take some particular V .

f ? is left exact but not right exact. Given F α−→ G with Ker(α) = 0 it follows directly from the
definition that Ker f ?(α) = 0

Claim 3.3. f ! = Rf ?

Proof. It is enough to show that f! is left adjoint to f ?.

HomSAb(Y )•(f!F ,G) ∼= HomSAb(X)(F , f ?G).

For any V ⊂ Y , a map α : f!F → G is given by f!F(V )
αV−→ G(V ). But f!F(V ) = F(V ∩X)

so ImαV is contained in sections supported on V ∩X. This gives a map from left to right and
the other direction is obvious.
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Let Y be an oriented manifold and X = {y}. For any f : X → Y , f !DY = DX so f !ZY [dimY ] =
Z so define f !ZY = Z[− dimY ].

Case 3: f : Y ×M → Y the projection and M a manifold.

Definition 3.14. Let Z,W be spaces, F a sheaf on Z and G a sheaf on W . Then define the
sheaf F � G on Z ×W as follows. Given U ⊂ Z ×W define

F � G(U) = lim−→
coverings of U by Uα1 ×Uα2

{sα ∈ F(Uα
1 )⊗ G(Uα

2 ) compatible on intersections}

Then
f !G = G �DM = G � ωM [dimM ].

Note that f ! only makes sense in the derived category.

Remark 3.6. Suppose that X, Y are quasi–projective varieties (over R or C) and f : X → Y is
an algebraic map. Then f is always a composition of maps of the form 1,2,3 so f ! has an explicit
description.

Theorem 3.4 (Base Change). Given

X ×Z Y X

Y Z

g̃

f̃ f

g

,

g∗f! ' f̃!g̃
∗ and g!f∗ ' f̃∗g̃

!

Definition 3.15. Define the contravariant functor

DF = RHom(F ,DX).

We have constructed the functors f∗, f ∗, f!, f
!,Hom(F ,G) and D between derived categories of

sheaves.
We will need to define a nice subcategory of Db(X) which is preserved by all six of these functors

and such that D2 = Id on this category. This will be the category of constructible sheaves. Then for
f : X → Y we will have f! = Df∗D and f ! = Df ∗D and Df! = f∗D

Note that DZX = DX . Given f : X → pt and F a sheaf on X, Df!(F) = f∗(D(F). Working with
Q–vector spaces, we will get Verdier duality, ie. that

H i
c(X,F)∗ = H−i(DF).

For X an oriented manifold of dimension 2n, F = ZX [n], DF ' F so

H i
c(X,F)∗ = H−i(X,F).
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Preview

When X is any complex algebraic variety, we’ll define ICX such that DICX ' ICX and

ICX |Xsmooth = QXsmooth [dimCX]

Moreover we’ll define an abelian category Perv(X) of perverse sheaves on X such that D :
Perv(X) → Perv(Y ) and ICX ∈ Perv(X). Then H∗(X, ICX) = IH∗(X) is the intersection
cohomology of X.

Exercie 3.4. Compute DX for X = x.

Remark 3.7. For f : Y ×M → Y the projection, we saw that f !(F) = F �DM . Suppose that X, Y
are algebraic varities over C (or smooth manifolds) and that f : X → Y is a smooth map (or a
submersion). Then

f !(F) = f ∗[2(dimCX − dimC Y )]

Lecture 9 [12.04.2016]

Recall

From now on, all topological spaces will be complex algebraic varieties and all maps will be algebraic
(quasi–projective.) Further, we’ll work iwth sheaves of vector spaces over /BC.

Given f : X → Y , we have f∗, f! : Db(ShX) → Db(ShY ), and f !, f ∗ in the opposite direction.
There is an isomorphism f! → f∗ if f is proper and f∗ is right adjoint to f ∗ and f! is left adjoint to
f !.

Given a diagram
X × Z X

Z Y,

g̃

f̃ f

g

g∗f! ' f̃!g̃
∗, and g!f∗ ' f̃∗g̃

!.
Assume that f is a smooth morphism (equivalently, locally on X f looks like a product with a

smooth manifold.) Then f ! = f ∗p[(dimCX − dimC Y )].
Given U

j
↪−→ X

i←−↩ Z with U open, let Z = X\U and F ∈ Db(ShX). Then i!i!F → F → j∗j∗F
and j∗j∗F → F → i∗i

∗F are both exact triangles. This follows since we have K → F → j∗j
∗F (K

is the cone) and K is supported on Z. But from i!K−̃→i!F → i∗j∗j
∗F we know K is supported on Z

if and only if K = i!i
!K.

Given f : X → pt we defined DX = f !C and

D(F) = Rhom(F , DX).

For X smooth, DX = CX [2 dimX] and there is a canonical morphism Id→ D2.
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3.3 Constructible Sheaves

Let X be smooth and CX constructible. More generally, any locally constant sheaf with finite
dimensional stalks will be constructible.

Remark 3.8. Assume that X is connected. Then locally constant sheavese are equivalent to repre-
sentations (finite dimensional since our sheaf has finite dimensional stalks) of π1(X, x). These are
sometimes also called local systems. In fact, these are also equivalent to representations of the
fundamental groupoid (ie. for any path γ : [0, 1] → X we have an isomorphism Fγ(0)→̃Fγ(1) which
depends only on the homotopy class of γ and such that these isomorphism are compatible with com-
position.) It is clear that a locally constant sheaf gives such a representation by choosing an open
cover of γ with each open set small enough that F is constant in it. In the other direction given a
representation V , take the universal cover X̃ π−→ X. Then X = X̃/π1(X). On f!VX̃ there is an action
of π1(X) and we can take F = (f!VX̃)π1(X).

Definition 3.16. The sheaf F on X is called constructible if any of the following equivalent
conditions are satisfied:

1. For any Y ↪→ X locally closed there exists an open U ⊂ Y such that F|U is locally constant.

2. There exists a stratification X = X0 ⊃ X1 ⊃ X2 ⊃ · · · ⊃ Xn such that Xi is closed and F|Si is
locally constant where Si = Xi\Xi+1.

Example 3.5. For dimX = 1, F is constructible if and only if X has an open dense subset U such
that F|U is locally constant and F has finite dimensionals stalks on X\U .

Let Db
c(X) be the full subcategory of Db(ShX) consisting of complexes whose cohomology is

constructible.

Theorem 3.5.

1. f∗, f ∗, f!, f
! and Rhom map Db

C(−) to Db
C(•).

2. on Db
C, Df∗ = f!D, Df ∗ = f !D for f : X → Y .

3. D2 = Id on Db
c(X) and so f! = Df∗D and f ! = Df ∗D.

Proof.

3. We have the map Id → D2. F → D(D(F))i is an isomorphism for all F ∈ Db
C(F). The proof

is by induction onf dim suppF .
If dim suppF = 0 then the statement is equivalent to thee statement for vector spaces. Let U
be a smooth dense open subset of X such that F|U is locally constant. Have

i∗i
∗F → F → j!(F|U)

supported on X\U . If we have a morphism between two exact triangles and two of the three
maps are isomorphisms, then so is the third. Hence, it is enough to show that D2(j! (F|U)) =
j!(F|U)).

Suppose X is smooth and F is locally constant. Let F∨ be the dual locally constant sheaf.
Then DF = F∨[2 dimX]

Corollary 3.4. D2 = Id for locally constant sheaves on asmooth varieties.
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It now follows that

Dj!(F|U) = j∗D(F|U) = D(Dj∗(F|U)) = Dj∗D(F|U) = j!(D2(F|U)) = j!(F|U)

1. Let f : X → Y

f ∗: It is clear for f ∗ since given Y ⊃ Y1 ⊃ · · · ⊃ Yn, F|Yi\Yi+1
is locally constant. Letting

Xi = f−1(Yi), f ∗F|Xi\Xi+1
= f ∗(F|Yi\Yi+1

) and the result is immediate.

f!: Want to show f!F ∈ Db
c(Y ) if F ∈ Db

c(X). The proof is by induction on dim suppF . For
dim suppF = 0 the result is obvious.
Assume f!G ∈ Db

c(Y ) for all G ∈ Db
c(X) with dim suppG < dim suppF . There exists dense

open subsets U ⊂ X, V ⊂ Y such that F|U is locally constant and such that f : U → V

is a locally trivial fibration (topologically.) Replace X by suppX. We have U j−→ X
i←− Z

where Z is the complement of U and the maps are the inclusions, and hence we have the
distinguished triangle

i∗i
∗F → F → j!(FV ).

Applying f we have an exact triangle

f!i∗i
∗F → f!F → f!j!(F|U).

By induction f!i∗i
∗FDb

c so by the following exercise
Exercie 3.5. Let F → G → H be a distinguished triangle where F ,G ∈ DB

c (X).. Then
H ∈ Db

c(X).

it is enough to prove f!j!(F|U) ∈ Db
c(X).

Writing α : V ↪→ Y , it is easy to see f!j!(F|U) = α!((f |U)!(F|U)). We want the RHS to
be constructible which is equivalent to the constructibility of (F |U)!(F|U). Hence, it is
enough to assume f : X → Y is a topologically locally trivial fibration and F is locally
constant.
Exercie 3.6. Show that in this case f!F is also locally constant.

f∗: There exists an open X
j
↪−→ X which can be put in the diagram

∃X X

Y

f

j open

f

where f̄ is proper. We have f∗ = f ∗ ◦ j∗ and f ∗ = f !. It is enough to show f∗ preserve
constant sheaves for f an open embedding.
Let j : X ↪→ Y , F ∈ Db

c(X). There exists F ∈ Db
c(Y ) with G|X = F (eg. G = j!F .) There

is an exact triangle
i!i
IG → G → j∗F .

The result follows from a theorem of Deligne

Theorem 3.6 (Théorème de finitude (SGA 41
2
)).

f !: It is enough to prove the theorem for f being a locally closed embedding since you can
factorize f as a product f = g ◦ h with h a closed embedding and g smooth.
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Exercie 3.7. RHom(F ,G) = ∆!(DF � G) where ∆ : X → X × X and F ⊗ G = ∆∗(F � G).
∆ : X → X ×X

Basic Problem

Let X be smooth and F a locally constant sheaf. Then DF [dimX] = F∨[dimX]. Look for more gen-
eral such things. In particular, we want some ICX ∈ Dn

c b(X) such that ICX |Xsmooth = CXsmooth [dimX]
and DICX = ICX . We’ll constuct Perv ⊂ Db

c(X) which is abelian and stable under D.

3.4 t-Structures and Triangulated Categories

Given Db(A), how can we produce other big abelian categories inside?

Definition 3.17. A Triangulated Category is an additive category D with the structures

a) T : D → D an auto–quivalence called the shift and we write T (X) = X[1]. A triangle in D
is then a sequence X → Y → Z → X[1].

b) A class of triangles called “distinguished triangles”.

We require the following axioms be satisfied:

TR1: a) X → X → 0 is distinguished.

b) Any triangle is isomorphic to a distinguished triangle.

(c) Any X u−→ Y ca be completed to a distinguished triangle X u−→ Y
v−→ Y → X[1].

TR2: X → y → Z is distinguishied if and only if Y → Z → X[1]→ Y [1] is distinguisheed.

TR3:
X Y Z X[1]

X ′ Y ′ Z ′ X ′[1]

f g h f [1]

There exists H : Z → Z ′ making the diagram commute.

TR4: (Octahedron axiom) Any upper cap can be completed to an octahedron. Here, given three
objects X, Y, Z an upper cap is a diagram

X ′ Z

Y

Z ′ X

[1] ?

� �

[1]

?
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and a lower cap is a diagram
X ′ Z

Y

Z ′ X

[1] ?

�

?

[1]

�

where a triangle with a ? in it indicates a distinguished triangle while a triangle with a � in it
indicates a commutative triangle in these diagrams. We say an upper cap can be completed to
an octahedron if it can be completed to a lower cap.

Motivation for octahedron axiom.

For A abelian and X ⊂ Y ⊂ Z, Z/X ⊃ Y/X and (Z/X)/(Y/X) ' Z/Y . Here we can think of
Z ′ = Y/X and Y ′ = Z/X so that Z/Y is the upper cap and X ′ = (Z/X)/(Y/X) is the lower cap.

Example 3.6.

1. For A abelian, D(A),D+(A),D−(A) and Db(A) are triangulated.

2. K(A) is a triangulated category.

3. For B ⊂ A a full abelian subcategory stable under extension, DB(A) ⊂ D(A), the complexes
with cohomology in B is triangulated.

4. Let V be a finite dimensional vectors space over C and let ∧ = ∧(V ) be the exterior algebra.
Then F ⊂ D̃ where F are free modules and D̃ are graded ∧–modules. Let D = D̃/F so
ObD = Ob D̃ and for all X, Y ∈ Ob D̃ Hom0(X, Y ) is the collection of all maps f which
factorize as

X Y

Z

f

for Z ∈ ObF . Then
HomD(X, Y ) = HomD̃(X, Y )/Hom0(X, Y ).

This is a triangulated category which is isomorphic to Db(CohP(V )).

Lecture 10 [19.04.2016]

Definition 3.18. LetD be a triangulated category. A t–structure onD is a pair of full subcategories
D≤0, D ≥ 0 (and therefore D≤n,D≥n for all n using the shift) such that

1. D≤0 ⊂ Dleq1 and D≥0 ⊃ D≥1. This implies that for any n ≤ m, D≤n ⊂ D≤m and D≥n ⊃ D≥m.

2. Hom(X, Y ) = 0 for all X ∈ ObD≤0, Y ∈ ObD≥1.
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3. For all X ∈ ObD there exists a distinguished triangle

A→ X → B → A[1]

with A ∈ ObD≤0 and B ∈ ObD≥1

Proposition 3.3 (Main Example). Let A be an abelian category and D −D(A). Then

D≤0 = {X ∈ D|H i(X) = 0 i > 0}
D≥0 = {X ∈ D|H i(X) = 0 i < 0}

is a t–structure.
Proof. Let C be a complex. Have the truncation τ≤0 : C → C

(τ≤0C)i =


0 i > 0

Ci i < 0

Ker(d : C0 → C1) o = 0

for which

H i(τ≤0C) =

{
0 i > 0

H i(C) i ≤ 0
.

Part (i) of the definition of a t–structure then follows from the sequence

τ≤0C → C → C/τ≤0C.

The proof of part (ii) follows from the diagram
Definition 3.19. The core of A of the t–structure is D≤0 ∩ D≥0 (which is a full subcategory in D.)
Theorem 3.7. A (core) is an abelian category.
Warning 3.3. D is not necessarily equivalent to D(A). Take A ⊃ B abelian and stable under
extensions. Then D(A) ⊃ DB(A) and DB(A) has a t–structure with core B. Explicitly, let g be a
simple Lie algebra over C, let A be g–modules and take B to be the finite dimensional g–modules.
Then B is semisimple and Ext3(C,C) 6= 0.
Example 3.7 (dg-Algebras). Let A be a graded algebra, A = ⊕i∈ZAi. A is a dg-algebra if it is endowed
with a differential dA : A→ A such that (dA)i : Ai → Ai+1 and dA(ab) = (dAa)b+adAb. Then H•(A)
is a graded algebra.

A dg–module over A is a graded A–module M = ⊕i∈ZMi such that AiMj ⊂ Mi+j together with
a differential dM : M → M such that (dM)i : Mi → Mi+1 and dM(am) = dA(a)m + adM(m). Then
H•(A) is a module over H•(A).

Let DG −mod(A) be the category of dg–modules. Localizing by quasi–isomorphisms yields the
derived category of DG–modules D(A).
Theorem 3.8.

1. This is a triangulated category.

2. Assume Ai = 0 for all i > 0. Then the usual definition of D≥0 and D≥0 again gives a t–structure
with core the modules over H0(A) = Coker(A−1 → A0).

For example, take A = C[t]/t2 where deg t = −1 and take dA = 0. Then A0 = H0(A) = C.
Letting D be the derived category of dg–modules, Ext2

D(C,C) = C since the short exact sequence

0→ C · t→ C[t]/t2 → C→ 0

is aa distinguished triangle (here think of C · t as C[−1]. Hence we have a map C→ C[2] which gives
a nonzero element in Ext2(C,C). In fact Ext•(C,C) = C[x] where deg x = 2.
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3.5 Perverse Sheaves

Let X be an algebraic variety over C and D = Db
c(X). The goal is to define another t–structure

such that D(D≤0) = D≥0 =⇒ A = D≤0 ∩ D≥0. Then D : A → A and A is the category of perverse
sheaves.

If X is smooth, then D(CX) = CX [2 dimCX] and D(CX [dimX]) = CX [dimX]. Let i : Y ↪→ X
be a closed smooth subvariety. Then sheaves on Y can be thought of as sheaves on X by taking F
to i∗F . D(i∗CY ) = i∗CY [2 dimY ] and D(i∗CY [dimY ]) = i∗CY [dimY ].

Want: If i : Y ↪→ X is a closed smooth subvariety and E is a locally constant sheaf on Y , then
i∗E [dimY ] should be perverse.

Definition 3.20 (Perverse t–structure). F ∈ Ob(
c
D≤0) if and only if for all k,dim suppH−k(F) ≤ k

for F ∈ D≤0. Equivalently, for x ∈ X and i∗ : {x} ↪→ X, dim{x|H−k(i∗xF) 6= 0} ≤ k.

Another equivalent way of stating the definition is given a stratification X0 ⊃ X1 ⊃ X2 ⊃ · · · ,
Si = Xi\Xi+1 smooth, and F|Si locally constant, F|Si ∈ D≤−dimSi .
F ∈ pD≥0 = D(pD≤0) ⇐⇒ dim{x|Hk(i!xF) 6= 0} ≤ k.

Theorem 3.9 (Beilinson–Bernstein–Deligne).

1. This is a t-structure.

2. Let X be smooth and let E be an irreducible local system on X. Then E [dimX] is an irreducible
perverse sheaf.

3. Any object of Perv has finite length.

Definition 3.21. Let A be an abalian category. An object X ∈ ObA has finite length if there
exists

0 ⊂ X1 ⊂ X2 ⊂ · · · ⊂ Xn = X

such that Xi/Xi+1 is irreducible.

Definition 3.22. The category Perv of Perverse sheaves is the core of this t–structure.

Example 3.8. Let X be smooth, dimX = 1. U = C∗
j
↪−→ C = X.

Claim 3.4. F = j∗CU [1] ∈ D≥0 is perverse.
Let i : {0} ↪→ C.
To show something is in D≥0, need to show Hk(i!F) = 0, k < 0 and i!F ∈ D ≥ 0. But this is

obvious for this sheaf since i!F = 0.
To show a sheaf is in D≤0 need to show JHk(i∗F) = 0, k > 0.

i∗j∗CU = lim−→
V

H∗(V \0,C)

for V neighbourhood of 0. But then

Hk(i∗j∗CU [1]) =

{
0 k 6= 0, 1

C k = 0,−1
.

Perv ⊂ D≤0 ∩ D≥−dimX .
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Have a short exact sequence
CX → j∗CU → δ0[−1]

where δ0 is the sky–scraper sheaf at 0, i∗C for i : {0} → C.

CX [1]→ j∗CU [1]→ δ0

Let j : U ↪→ X be an open subset, F ∈ Perv(U).

Theorem 3.10 (Perverse,Intermediate or Goresky–MacPherson extension). There exists a unique
extension j!∗F of F to a perverse sheaf on X such that j!∗F has neither subobjects nor quotient
objects supported on X\U .

D : Perv(X) → Perv(X) is an exact contravariant functor with D2 = Id. The theorem implies
that Dj!∗(F) = j!∗(DF).

If X is irreducible and j : U ↪→ X is open, dense and smooth, then j!∗CU [dimX] = ICX ∈
Perv(X) and D(ICX) = ICX .

Construction

Remark 3.9. Given D,D≥0 and D≤0 we can talk about truncation functors τ≤nLD → D≤n and
τ≥n : D → D≥n. Further, Hn = τ≤nτ≥n ' t≥nτ≤n.

Let X ∈ ObD and consider an exact triangle A→ X → B → A[1] with A ∈ D≤0 and B ∈ D≥1.

Exercie 3.8. Show that A and B are canonically unique.

Given F ∈ Db
C(X) and n ∈ Z, then have pHn(F) ∈ Perv(X).

Let A ∈ D≤0 and B ∈ D≥0. Any map f : A→ B factorizes as

A B

H0(A) = τ≥0A H0(B) = τ≤0B

f

We have a map pD≤0 3 j!F → j∗F ∈ pD≥ so by the remark it factorizes as

j!F j∗F

p
H0(j!F)

p
H0(j∗F)α

Define
j|!∗F = Imα.

Let g be a subobject of j!∗F supported on X\U . This factorizes as

g ↪→ j!∗F ↪→ p
H0(j∗F)→ j∗F

Hom(g, j∗F) = Hom(g|U ,F) = 0

and also Hom(g,
p
H0(j∗F) = 0 which implies g = 0. A similar argument works for quotients.

Assume that we have K ∈ Perv(X), K|U = F . K has neither subbjects nor quotients on X\U .
We want K → j!∗F .
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The fact that K|U = F implies we have a diagram

→ j!F → K → K → J∗F .

But then K sits in the sequence

p
H0(j!F)→ K → p

H0(j∗F)

and the first map is surjective while the second map is injective. Therefore K = Imα.

Lemma 3.10. Let F ∈ Perv(U) and assume that F is irreducible. Then j!∗F isi irreducible.

Proof. It follows from the fact that g ↪→ j!∗F and g|U ↪→ F .

Exercie 3.9. Show that any irreducible perverse sheaf on X has the form j!∗E [d] where j : U ↪→ is
locally closed, U is smooth, connected and of dimension d and E is an irreducible local system on U .

In the situation
V U X,i

α

j

Given F ∈ Perv(V ), α!∗F = j!∗(i!∗F).
For i : U ↪→ X any smooth dense open subset, ICX = j!∗CU [dimU ], DICX = ICX and

H i(X, ICX)∗ = H−ic (X, ICX).

How to compute ICX

Example 3.9. Let X = {v ∈ Cn|Q(v) = 0} for some non–degenerate quadratic form Q.

n = 2 : xy = 0
ICX = CX1 [1]⊕ CX2 [1]

where X1 (X2) is given by z2 = 0(z1 = 0).

n = 3 : {xy = z2} ' C2/± 1.

Exercie 3.10. Let Γ be a finite group acting on a smooth variety Y . Let X = Y/Γ. Then
ICX = CX [dimX].

n = 4 : Want a nice map π : X̃ → X with X̃ smooth and π proper and generically an isomorphism.
There exists a resolution such that π is an isomorphism away from 0 and such that π−1(0) ' P1.

Claim 3.5. ICX = π∗CX̃ [3].

To construct the resolution, identify C4 = Mat(2× 2,C) and identify Q with the determinant
so that X = degenerate 2× 2 matrices. Take X̃ = {x ∈ X, ` ∈ P1 : x|` = 0}. This clearly maps
to P1 and in fact η : X̃ → P1 is a vector bundle of rank 1 since η−1(`) = Hom(C2/`,C2). There
is also a map π : X̃ → X with fibre P1.

Given j : U ↪→ X smooth and E a local system on on U , let F = j!∗E . Given a stratification
X = X0 ⊃ X1 ⊃ X2 ⊃ · · · with Si = Xi\Xi+1 smooth, F is locally constant on Si’s. Perversity
implies F|Si ∈ D≤−dimSi and the dual condition.
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Have
X̃

X = X\{0}
⊔
{0}

π

π∗CX̃ [3] is self–dual and π∗CX̃ [3]|{0} lives in degrees −3,−1 so

H∗(X, ICX) = H∗(X̃,C)[3] = H∗(P1,C)[3].

Theorem 3.11 (Decomposition). Let π : X → Y be a proper morphism and F ∈ Perv(X) which is
irreducible. Then π∗F is a semi–simple complex, ie. it is isomorphic to a direct sum of things of the
form g[i] where g is an irreducible perverse sheaf on Y .

53


	Category Theory
	Lecture 1 [02.02.2016]
	Introduction
	Basic Definitions
	Adjoint Functors
	Abelian Categories
	Lecture 2 [09.02.2016] (Notes taken and typed by Anne Dranovski)

	Additive functors
	Cohomology

	Derived Categories
	Main idea of derived categories
	Lecture 3 [23.02.2016]

	Structures on Derived Categories
	Explicit Description of Derived Categories
	The Ext Functors
	Lecture 4 [01.03.2016]

	Yoneda Extensions
	Lecture 5 [15.03.2016]

	Derived Functors
	Lecture 6 [22.03.2016]

	Derived Functors of Composition
	Spectral Sequences

	Sheaves
	Sheaf Cohomology
	Lecture 7 [29.03.2016]
	Lecture 8 [05.04.2016]


	The Functors f! and Rf!
	Lecture 9 [12.04.2016]

	Constructible Sheaves
	t-Structures and Triangulated Categories
	Lecture 10 [19.04.2016]

	Perverse Sheaves


