University of Toronto

Ph.D. 1969 (Wisconsin)

Department of Mathematics

University of Toronto

Toronto, ON M5S 3G3

Tel: (416) 978-3953

Fax: (416) 978-4107

tall@math.utoronto.ca

In addition to mathematics, he is interested in the psychology of teaching and learning, and complementary medicine. He is a certified Master Practitioner of Neurolinguistic Programming, is trained in hypnotherapy, a Reiki Master and has published in Nursing Science.

- F.D. Tall, Productively Lindelof spaces may all be D
*Canad. Math. Bull.*to appear. - F.D. Tall, Some set-theoretic problems concerning Lindelof spaces
*Questions and Answers in General Topology*to appear. - F.D. Tall, PFA(S)[S]: more mutually consistent topological consequences of PFA and V = L
*Canad. J. Math.*to appear. - P. Larson and F.D. Tall, On the hereditary paracompactness of locally compact, hereditarily normal spaces
*Canad. Math. Bull.*to appear. - F.D. Tall, PFA(S)[S] and locally compact normal spaces
*Top. Appl.*to appear. - P. Burton and F.D. Tall, Productive Lindelofness and a class of spaces considered by Z. Frolik
*Top. Appl.*to appear. - F.D. Tall, A Useful Model (notes).
- F.D. Tall, A Useful Model (slides).

- L.F. Aurichi and F.D. Tall, Lindelof spaces which are indestructible, productive or D
*Top. Appl.***159**(2012) 331–340. - F.D. Tall, PFA(S)[S] and the Arhangel'skii-Tall problem
*Top. Proc.***40**(2012) 99-108. - F.D. Tall and B. Tsaban, On productively Lindelof spaces,
*Top. Appl.***158**(2011) 1239–1248. - O.T. Alas, L.F. Aurichi, L.R. Junqueira, and F.D. Tall, Non-productively Lindelof spaces and small cardinals
*Houston J. Math.***37**(2011) 1373-1381. - F.D. Tall, Lindelof spaces which are Menger, Hurewicz, Alster, productive or D
*Top. Appl.***158**(2011) 2556-2563. - F.D. Tall, Some problems and techniques in set-theoretic topology In
*Set Theory and its Applications*Contemp. Math., ed. L. Babinkostova, A. Caicedo, S. Geschke, M. Scheepers. (2011) 183-209 - P. Larson and F.D. Tall, Locally compact perfectly normal spaces may all be paracompact
*Fund. Math.***210**(2010) 285-300 - M. Scheepers and F.D. Tall, Lindelof indestructibility, topological games and selection principles
*Fund. Math.***210**(2010) 1-46 - F.D. Tall, On a core concept of Arhangel'skii
*Top. Appl.***157**(2010) 1541-1547 - L.-X. Peng and F.D. Tall, A note on linearly Lindelof spaces and dual properties
*Top. Proc.***32**(2008) 227-237 - L.R. Junqueira, P. Larson, and F.D. Tall, Compact Spaces, elementary submodels, and the countable chain condition
*Ann. Pure and Applied Logic,***144**(2006) 107-116 - F.D. Tall, Compact Spaces, Elementary Submodels,
and the Countable Chain Condition, II,
*Top. Appl.,***153**(2004) 273-278. - F.D. Tall, Problems arising from Balogh's
"Locally nice spaces under Martin's axiom",
*Top. Appl.,***5**(2005) 215-225. - Y.Q. Qiao and F.D. Tall, Perfectly normal
non-Archimedean non-metrizable spaces are generalized Souslin lines,
*Proc. Amer. Math. Soc.,***131**(2003) 3929-3936. - F.D. Tall, Reflections on dyadic compacta,
*Top. Appl.,***137**(2004) 251-258. - F.D. Tall, Consistency results in topology,
II: Forcing and large cardinals, (invited paper), 423-427 in
*The Encyclopedia of General Topology,*Elsevier, New York, 2003. - K.P. Hart and F.D. Tall, Consistency results
in topology, I: Quotable principles, 419-422 in
*The Encyclopedia of General Topology,*Elsevier, New York, 2003. - L.R. Junqueira and F.D. Tall, More reflections
on compactness,
*Fund. Math.,***176**(2003) 127-141. - F.D. Tall, An irrational problem,
*Fund. Math.,***175**(2002) 259-269. - P. Koszmider and F.D. Tall, A Lindelof
space with no Lindelof subspace of size
*w*,_{1}*Proc. Amer. Math. Soc.,***130**(2002) 2777-2787. - J.E. Baumgartner and F.D. Tall, Reflecting
Lindelofness,
*Top. Appl.,***12**(2002) 35-49. - R.G.A. Prado and F.D. Tall, Characterizing
*w*and the long line by their topological elementary reflections,_{1}*Israel J. Math.,***127**(2002) 81-94. - F.D. Tall, If it looks and smells like the
reals,
*Fund. Math.***163**(2000) 1-11. (Available from Topology Atlas.) - K. Kunen and F.D. Tall, The real line in elementary
submodels of set theory,
*J. Symb. Logic***65**(2000) 683-691. (Available from Topology Atlas.)

**Last Updated: March 2011**