University of Toronto

Ph.D. 1969 (Wisconsin)

Department of Mathematics

University of Toronto

Toronto, ON M5S 2E4

Tel: (416) 978-3323

Fax: (416) 978-4107

tall@math.utoronto.ca

In addition to mathematics, he is interested in the psychology of teaching and learning, and complementary medicine. He is a certified Master Practitioner of Neurolinguistic Programming, a Reiki Master, is trained in hypnotherapy and has published in Nursing Science.

- C. Hamel, C.J. Eagle, and F.D. Tall, Two applications of topology to model theory, submitted.
- C. Hamel and F.D. Tall, C
_{p}-theory for model theorists, submitted. - F.D. Tall, S. Todorcevic, and S. Tokgöz, The strength of Menger's conjecture, submitted.
- F.D. Tall, Co-analytic spaces, K-analytic spaces, and definable versions of Menger's conjecture
*Top. Appl.*to appear.

- C. Hamel and F.D. Tall, Model theory for C
_{p}-theorists*Top. Appl.*(2020), https://doi.org/10.1016/j.topol.2020.107197 - A. Dow and F.D. Tall, Hereditarily normal manifolds of dimension greater than one may all be metrizable
*Trans. Amer. Math. Soc.***372**(2019) 6805-6851. - F.D. Tall and L. Zdomskyy, Completely Baire spaces, Menger spaces, and projective sets
*Top. Appl.***258**(2019) 26-31. - A. Dow and F.D. Tall, Normality versus paracompactness in locally compact spaces,
*Canad. J. Math.***70**(2018) 74-96. - F.D. Tall, PFA(S)[S] for the masses,
*Top. Appl.***232**(2017) 13-21. - A. Dow and F.D. Tall, PFA(S)[S] and countably compact spaces,
*Top. Appl.***210**(2017) 393-416. - F.D. Tall and S. Tokgöz, On the definability of Menger spaces which are not σ-compact,
*Top. Appl.***220**(2017) 111-117. - F.D. Tall, Some observations on the Baireness of C
_{k}(X) for a locally compact space X,*Top. Appl.***213**(2016) 212-219. - A.J. Fischer, F.D. Tall, and S. Todorcevic, Forcing with a coherent Souslin tree and locally countable subspaces of countably tight compact spaces,
*Top. Appl.***195**(2015) 284-296. - F.D. Tall and T. Usuba, Lindelöf spaces with small pseudocharacter and an analogy of Borel's conjecture for subsets of [0,1]
^{ℵ1}*Houston J. Math.***40**(2014) 1299-1309. - P. Larson and F.D. Tall, On the hereditary paracompactness of locally compact, hereditarily normal spaces
*Canad. Math. Bull.***57**(2014) 579-584. - F.D. Tall, PFA(S)[S] and locally compact normal spaces
*Top. Appl.***162**(2014) 100-115. - H. Duanmu, F.D. Tall, and L. Zdomskyy, Productively Lindelöf and indestructibly Lindelöf spaces,
*Top. Appl.***165**(2013) 2443-2453. - R.R. Dias and F.D. Tall, Indestructibility of compact spaces,
*Top. Appl.***160**(2013) 2411-2426. - F.D. Tall, PFA(S)[S]: more mutually consistent topological consequences of PFA and V = L
*Canad. J. Math.***64**(2012) 1182-1200. - P. Burton and F.D. Tall, Productive Lindelöfness and a class of spaces considered by Z. Frolík
*Top. Appl.***159**(2012) 3097-3102. - F.D. Tall, Some set-theoretic problems concerning Lindelöf spaces
*Questions and Answers in Gen. Top.***29**(2011) 91-103. - L.F. Aurichi and F.D. Tall, Lindelof spaces which are indestructible, productive or D
*Top. Appl.***159**(2012) 331-340. - F.D. Tall, PFA(S)[S] and the Arhangel'skii-Tall problem
*Top. Proc.***40**(2012) 99-108. - F.D. Tall and B. Tsaban, On productively Lindelof spaces,
*Top. Appl.***158**(2011) 1239-1248. - O.T. Alas, L.F. Aurichi, L.R. Junqueira, and F.D. Tall, Non-productively Lindelof spaces and small cardinals
*Houston J. Math.***37**(2011) 1373-1381. - F.D. Tall, Lindelof spaces which are Menger, Hurewicz, Alster, productive or D
*Top. Appl.***158**(2011) 2556-2563. - F.D. Tall, Some problems and techniques in set-theoretic topology In
*Set Theory and its Applications*Contemp. Math., ed. L. Babinkostova, A. Caicedo, S. Geschke, M. Scheepers. (2011) 183-209 - P. Larson and F.D. Tall, Locally compact perfectly normal spaces may all be paracompact
*Fund. Math.***210**(2010) 285-300 - M. Scheepers and F.D. Tall, Lindelof indestructibility, topological games and selection principles
*Fund. Math.***210**(2010) 1-46 - F.D. Tall, On a core concept of Arhangel'skii
*Top. Appl.***157**(2010) 1541-1547 - L.-X. Peng and F.D. Tall, A note on linearly Lindelof spaces and dual properties
*Top. Proc.***32**(2008) 227-237 - L.R. Junqueira, P. Larson, and F.D. Tall, Compact Spaces, elementary submodels, and the countable chain condition
*Ann. Pure and Applied Logic,***144**(2006) 107-116 - F.D. Tall, Compact Spaces, Elementary Submodels,
and the Countable Chain Condition, II,
*Top. Appl.,***153**(2004) 273-278. - F.D. Tall, Problems arising from Balogh's
"Locally nice spaces under Martin's axiom",
*Top. Appl.,***5**(2005) 215-225. - Y.Q. Qiao and F.D. Tall, Perfectly normal
non-Archimedean non-metrizable spaces are generalized Souslin lines,
*Proc. Amer. Math. Soc.,***131**(2003) 3929-3936. - F.D. Tall, Reflections on dyadic compacta,
*Top. Appl.,***137**(2004) 251-258. - F.D. Tall, Consistency results in topology,
II: Forcing and large cardinals, (invited paper), 423-427 in
*The Encyclopedia of General Topology,*Elsevier, New York, 2003. - K.P. Hart and F.D. Tall, Consistency results
in topology, I: Quotable principles, 419-422 in
*The Encyclopedia of General Topology,*Elsevier, New York, 2003. - L.R. Junqueira and F.D. Tall, More reflections
on compactness,
*Fund. Math.,***176**(2003) 127-141. - F.D. Tall, An irrational problem,
*Fund. Math.,***175**(2002) 259-269. - P. Koszmider and F.D. Tall, A Lindelof
space with no Lindelof subspace of size
*w*,_{1}*Proc. Amer. Math. Soc.,***130**(2002) 2777-2787. - J.E. Baumgartner and F.D. Tall, Reflecting
Lindelofness,
*Top. Appl.,***12**(2002) 35-49. - R.G.A. Prado and F.D. Tall, Characterizing
*w*and the long line by their topological elementary reflections,_{1}*Israel J. Math.,***127**(2002) 81-94. - F.D. Tall, If it looks and smells like the
reals,
*Fund. Math.***163**(2000) 1-11. (Available from Topology Atlas.) - K. Kunen and F.D. Tall, The real line in elementary
submodels of set theory,
*J. Symb. Logic***65**(2000) 683-691. (Available from Topology Atlas.)

**Last Updated: March 2020**