University of Toronto's Symplectic Geometry Seminar

August 25, 2008, 2:10pm
Bahen 4010

Bill Goldman

University of Maryland

Geometry and dynamics of surface group representations


The deformation space of representations of the fundamental group of a surface in a Lie group enjoys rich geometric, algebraic and topological structure, some of which is invariant under the mapping class group of the surface. I will survey how the symplectic geometry of these moduli spaces relates invariant theory of the Lie group with the topology of curves on the surface, leading to a new proof of ergodicity of the mapping class group on SU(2)-representations.