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Abstract

We study the problem of extracting randomness from somewhere-random sources, and re-
lated combinatorial phenomena: partition analogues of Shearer’s lemma on projections.

A somewhere-random source is a tuple (X1, . . . , Xt) of (possibly correlated) {0, 1}n-valued
random variables Xi where for some unknown i ∈ [t], Xi is guaranteed to be uniformly dis-
tributed. An extracting merger is a seeded device that takes a somewhere-random source as
input and outputs nearly uniform random bits. We study the seed-length needed for extracting
mergers with constant t and constant error.

Since a somewhere-random source has min-entropy at least n, a standard extractor can also
serve as an extracting merger. Our goal is to understand whether the further structure of
being somewhere-random rather than just having high entropy enables smaller seed-length, and
towards this we show:

• Just like in the case of standard extractors, seedless extracting mergers with even just one
output bit do not exist.

• Unlike the case of standard extractors, it is possible to have extracting mergers that
output a constant number of bits using only constant seed. Furthermore, a random choice
of merger does not work for this purpose!

• Nevertheless, just like in the case of standard extractors, an extracting merger which gets
most of the entropy out (namely, having Ω(n) output bits) must have Ω(log n) seed. This
is the main technical result of our work, and is proved by a second-moment strengthening
of the graph-theoretic approach of Radhakrishnan and Ta-Shma to extractors.

All this is in contrast to the status for condensing mergers (where the output is only required
to have high min-entropy), whose seed-length/output-length tradeoffs can all be fully explained
by using standard condensers.

Inspired by such considerations, we also formulate a new and basic class of problems in
combinatorics: partition analogues of Shearer’s lemma. We show basic results in this direction;
in particular, we prove that in any partition of the 3-dimensional cube [0, 1]3 into two parts, one
of the parts has an axis parallel 2-dimensional projection of area at least 3/4.
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1 Introduction

We study the problem of extracting randomness from somewhere-random sources, and related com-
binatorial phenomena: partition analogues of Shearer’s lemma on projections. For the (completely
self-contained) combinatorics, see Section 1.2, Section 6 and Section 7.

A t-part somewhere-random source is a tuple (X1, . . . , Xt) of (possibly correlated) {0, 1}n-valued
random variables Xi, where some unknown Xi is guaranteed to be uniformly distributed. We will
take t to be constant and n growing throughout this paper. A merger is a seeded device that takes
a somewhere-random source and purifies its randomness. Mergers have been extensively studied
in the theory of extractors, and have played an important role in their development. In fact, there
were at least 3 distinct points in the history of extractors [TS00, LRVW03, DKSS13] when the best
known explicit extractor constructions were based on new advances in explicit merger constructions.

An important observation is that t-part somewhere-random sources are special cases of sources with
(min) entropy rate 1/t. Thus any randomness purifying device (such as an extractor, condenser or
disperser) that can give guarantees when fed a source with entropy rate at least 1/t is automatically
some kind of merger for t-part somewhere-random sources.

In the literature, mergers have only been studied in the condensing regime: where their output is
required to have high entropy rate (rather than requiring the output to be near-uniform). It turns
out that information-theoretically, condensing mergers are completely overshadowed by classical
condensers. A condenser is a seeded device that takes in a source with sufficient entropy rate and
outputs a random variable with high entropy rate. Thus a condenser that can operate on sources
with entropy rate 1/t is automatically a condensing merger for t-part somewhere-random sources. It
turns out that whatever parameter ranges are achievable by condensing mergers can be completely
explained by condensers.

In this paper, we study mergers in the extracting regime: where their output is required to be
near-uniform. Our main result is a characterization of the seed-length needed for such extracting
mergers. Unlike the tragic case of condensing mergers and their relationship with condensers,
extracting mergers are able to step out of the shadow of extractors, and carve a niche, albeit small,
for themselves.

We also study extracting multimergers, where more random variables out of the given tuple of
random variables are required to be uniform and independent. This leads us to a number of
interesting combinatorial / geometric questions, for which we give some new and basic combinatorial
theorems (such as a partition analogue of Shearer’s lemma on projections of a set in a product
space).

1.1 Overview of results

Our results are best viewed in contrast to the situation with classical extractors and condensers.
An extractor takes a source with some min-entropy and an independent uniform seed, and outputs
a nearly-uniform distributed random variable. A condenser takes a source with some min-entropy
and an independent uniform seed, and outputs a source with higher min-entropy-rate.

Both extractors and condensers are functions of the form:

F : {0, 1}n × {0, 1}d → {0, 1}m,
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where d is the “seed-length” and m is the “output-length”.

Consider a random source X that is {0, 1}n-valued and has entropy rate 1/t (which means that its
min-entropy is ≥ n/t).

In the case of extractors, for (1 − ϵ)-fraction of j ∈ {0, 1}d, the output F (X, j) is required to be
ϵ-close in statistical distance to the uniform distribution over {0, 1}m. In the case of condensers,
for (1− ϵ)-fraction of j ∈ {0, 1}d, the output F (X, j) is required to be ϵ-close in statistical distance
to some {0, 1}m-valued random variable with min-entropy ≥ k′.

Extractors and condensers are qualitatively very different from the point of view of seed-length.
We summarize their salient features below:

• There are no seedless extractors or condensers.

• There are condensers with constant seed-length d = O(log 1
ϵ ) which are lossless (we can

take k′ as large as n
t + d), provided m > k′ +Ω(log 1

ϵ ).

• The seed-length required for an extractor to extract one bit of entropy from a random source
({0, 1}n)t is log n+2 log 1

ϵ +O(1). Furthermore, this seed-length suffices to extract almost all
the entropy out of the source.

A merger takes in a t-part somewhere-random source (which is a special case of a source with
entropy rate 1

t ) and an independent uniform seed, and outputs a source with purer randomness.
This naturally creates two kinds of mergers - condensing mergers and extracting mergers. To
the best of our knowledge, only condensing mergers have been studied in the literature, and the
(non-constructive) existence results for condensing mergers all follow from the existence results for
condensers mentioned above.

Let E : ({0, 1}n)t × {0, 1}d → {0, 1}m be an extracting merger, namely its output is guaranteed to
be ϵ-close to uniform on {0, 1}m whenever given a t-part somewhere-random source as input.

Theorem A (Informal): We have the following:

• There are no seedless extracting mergers, even with output length 1.

• There are extracting mergers with constant seed length O(log 1
ϵ ), which can output a constant

number of nearly-uniform bits.

• Nevertheless, if the seed length required for an extracting merger to extract almost all (or even
a constant fraction) the entropy out of a somewhere-random source is Θ(log n).

The first item is trivial. The second item is also not difficult, but it already gives a taste of why
things are different with extracting mergers. Indeed, randomly-chosen functions are not extracting
mergers. The third item in the above theorem is our main technical result. It is proved by a
second-moment strengthening of the graph-theoretic approach of Radhakrishnan and Ta-Shma to
extractors.

1.2 Projections of partitions

Our study of these questions about randomness extraction leads us to formulate and make progress
on a new and natural combinatorial question: the partition analogue of the Shearer/Loomis-
Whitney inequalities on volumes of projections. These questions arise when we consider the problem
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of extracting randomness from t-part s-where random sources (where s out of the t parts of the
source are uniform and independent). We call devices that do this extracting multimergers. For
the rest of this subsection we only focus on the combinatorial aspect.

Let A be an “nice” subset of the solid cube [0, 1]3 with (Lebesgue) volume α. Consider the three
axis-parallel 2-dimensional projections: ΠXY (A), ΠY Z(A), ΠXZ(A). The Shearer/Loomis-Whitney
inequality [CGFS86, LW49] implies that at least one of these three projections has area at least
α2/3. This is tight, as witnessed by the case where A is a cube of side-length α1/3 (and this is
roughly the only such example).

Now consider the following partition variant: Let A,B be “nice” subsets of [0, 1]3 that partition
[0, 1]3. Consider the six axis-parallel 2-dimensional projections of these two sets: ΠXY (A), ΠY Z(A),
ΠXZ(A) and ΠXY (B), ΠY Z(B), ΠXZ(B). How large can we guarantee that one of them is?

Using the previous inequality and the fact that at least one of A,B has volume at least 1/2, we
get that one of these six 2-dimensional projections has area at least (1/2)2/3 ≥ 0.6299. For this
bound to be tight, we would need both A and B to have volume 1/2, and both A and B to be tight
examples for the Shearer/Loomis-Whitney inequality. This would require us to be able to cover
[0, 1]3 by two cubes of volume 1/2 – which is clearly impossible. This suggests that there should
be a better bound!

We show, using a delicate study of the sections of the cube and some seemingly lucky inequalities,
a tight bound for this problem.

Theorem B (Informal): Let A,B be “nice” subsets of [0, 1]3 that partition [0, 1]3. Then at
least one of the six 2-dimensional projections

ΠXY (A),ΠY Z(A),ΠXZ(A),ΠXY (B),ΠY Z(B),ΠXZ(B),

has area at least 3/4.

Such “projections of partitions” questions can be formulated in great generality, and apart from
Theorem B (whose proof we find very interesting), we also make some general observations and
make some slightly non-trivial progress. We think these are very natural combinatorial questions
worthy of further study. Beyond having connections to mergers, these questions turn out to be
related to the KKL and BKKKL theorems/conjectures [KKL88, BKK+92, Fri04, FHH+19] on
influences of Boolean functions on the solid cube [0, 1]n. For example, Theorem B implies that any
3-variable Boolean function f : [0, 1]3 → {0, 1} has some variable and some bit b such that the
“influence towards b” of that variable is at least 1/4, and this is tight.

Another application of such results is to partition analogues of the Kruskal-Katona theorem. For
example, Theorem B implies that for any partition of

(
[n]
3

)
into two parts, one of the two parts has

shadow with size at least
(
3
4 − o(1)

) (
n
2

)
.

1.3 Related work

Mergers were introduced by Ta-Shma [TS00] in his thesis, and were used to construct state-of-
the-art extractors at the time (these were condensing mergers). Later, [LRVW03] proposed a
new condensing merger construction based on taking random linear combinations of vectors over
finite fields, and used it in their construction of the first extractors optimal upto constant factors.
This analysis was greatly improved by Dvir [Dvi09] through his solution to the finite field Kakeya
conjecture. Subsequently, [DW08, DKSS13] defined a higher degree polynomial variant of the
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[LRVW03] merger, and by developing the ideas from [Dvi09], were able to construct improved
(constant seed) mergers and state-of-the-art extractors. Subsequently [TU12] showed how to get
analogous explicit constructions of condensers (subsuming the [DKSS13] condensing mergers) by
improving the [GUV09] condensers.

Another interesting constant seed condensing merger is by [Raz05], which was constructed on the
way to multi-source extractors.

Our lower bounds for the seed length of extracting mergers are proved by developing ideas from
the paper of Radhakrishnan and Ta-Shma [RTS00]. A recent beautiful proof of [AGO+20] also
achieved a similar result to [RTS00] in a much cleaner way, but we were not able to adapt this
approach to our setting.

Other papers relevant to the study of multimergers are related to resilient functions [CGGL20,
CZ19, Mek17].

Finally, our combinatorial results are related to the KKL and BKKKL theorems/conjectures [KKL88,
BKK+92, Fri04, FHH+19] on influences of Boolean functions on the solid cube [0, 1]n.

1.4 Organization

We give the basic definitions of extracting mergers and extracting multimergers in Section 2. In
Section 3 we start with a simple proof that seedless mergers do not exist. This is followed by showing
the existence of mergers and multimergers in the extracting regime with constant seed-length. We
prove our lower bound on the seed length of extracting mergers in Section 4, which culminates
in Theorem 4. In Section 5 we explore the connection between seedless extracting mergers and
projections of partition questions. Section 6 is devoted to proving Theorem 6, our (optimal) lower
bound on partitioning the unit cube into 2 parts, and Section 7 is devoted to partitions of the cube
into 3 parts.
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2 Sources and Mergers

Definition 1 (k-source). For any k, we say that a random variable X is a k-source if for all x,
Pr[X = x] ≤ 2−k

2.1 Somewhere and s-where Random Sources

Definition 2 (Somewhere-Random Source). For a domain D, a tuple X = (X1, . . . , Xt) of jointly
distributed D-valued random variables is called a t-part somewhere random source if for some i ∈ [t],
the distribution of Xi is uniform over D.

Definition 3 (s-where Random Source). For a domain D and an integer s > 0, a tuple X =
(X1, . . . , Xt) of jointly distributed D-valued random variables is called a t-part s-where random
source if for some distinct i1, . . . , is ∈ [t], the joint distribution of (Xi1 , Xi2 , . . . , Xis) is uniform
over Ds.

2.2 Extracting Mergers and Multimergers

Definition 4 (Extracting Mergers). Let n, t, d,m be integers, and let ϵ > 0.

A function E : ({0, 1}n)t × {0, 1}d → {0, 1}m is called an (n, t, d,m, ϵ)-extracting merger if the
following holds.

Suppose X = (X1, . . . , Xt) is a somewhere-random source where each Xi is {0, 1}n-valued. Then
for at least (1− ϵ)-fraction of j ∈ {0, 1}d, the distribution of:

Z = E(X, j),

is ϵ-close to the uniform distribution on {0, 1}m.

We will sometimes refer to these as ϵ-extracting mergers (since n, d, t,m are related to the shape
of E).

Definition 5 (Extracting Multimergers). Let n, t, s, d,m be integers, and let ϵ > 0.

A function E : ({0, 1}n)t × {0, 1}d → {0, 1}m is called an (n, d, t,m, ϵ, s)-extracting multimerger if
the following holds.

Suppose X = (X1, . . . , Xt) is an s-where random source where each Xi is {0, 1}n-valued. Then for
at least (1− ϵ)-fraction of j ∈ {0, 1}d, the distribution of:

Z = E(X, j),

is ϵ-close to the uniform distribution on {0, 1}m.

We will sometimes refer to these as (ϵ, s)-extracting multimergers (since n, d, t,m are related to the
shape of E).

Observe that the s = 1 case in the above definition corresponds to extracting mergers.

Note on the definitions In all our definitions, we chose to define the “strong” versions (where
the output bits are required to be independent of the seed) for simplicity. In fact, our existence
result for mergers is for the strong version, and our impossibility result is for the weak version.
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3 Simple results about extracting mergers

For the rest of this paper, we only talk about extracting (not condensing) mergers and multimergers.

3.1 Seedless Mergers do not exist

We begin with the simple observation that there are no seedless extracting mergers.

Theorem 1. (There are no seedless mergers) Let n be an integer and ε < 1/2. There does not
exist a function M : {0, 1}n × {0, 1}n → {0, 1} that is an ε-merger.

Proof. Fix an ε < 1/2. Assume for the sake of contradiction there exists an ε-merger M : {0, 1}n×
{0, 1}n → {0, 1}.
In particular, this means for every function f : {0, 1}n → {0, 1}n, when X is distributed uniformly
over {0, 1}n, the distribution of M(X, f(X)) is ε-close to uniform on {0, 1} – and in particular, it
has full support on {0, 1}. We will now demonstrate a function g : {0, 1}n → {0, 1}n such that
M(g(Y ), Y ) is constant for uniformly distributed Y , thus contradicting the merger assumption.

Fix any y ∈ {0, 1}n. Consider the constant function fy : {0, 1}n → {0, 1}n given by fy(x) = y
for all x. By our hypothesis above, the distribution of M(X, fy(X)) has full support {0, 1}. Thus
there exists x ∈ {0, 1}n such that M(x, y) = 0. Pick one such x and call it g(x).

Thus we have M(g(y), y) = 0 for all y ∈ {0, 1}n. We conclude that for uniform Y ∈ {0, 1}n,
M(g(Y ), Y ) = 0, which is the desired contradiction.

3.2 Extracting mergers with constant seed exist

We now show that constant seed extracting mergers with constant output length exist. While the
proof is quite simple, it is interesting because (1) constant seed extractors do not exist, (2) a random
choice of E : ({0, 1}n)t × {0, 1}d → {0, 1}m does not give a constant seed extracting mergers, and
most importantly (3) as we will later see, the seed length still needs to be superconstant to produce
a superconstant number of output bits, as we will see in the next section.

Theorem 2. Let n, t be integers and ϵ > 0.

Then for any integer m ≤ n, setting:

d = logm+ log(t− 1) + 2 log
1

ϵ
+O(1),

there exists a function E : ({0, 1}n)t × {0, 1}d → {0, 1}m that is an ε-extracting merger.

Thus with O(log t+ log 1
ϵ ) bits of seed, we can extract poly(1ϵ ) bits out.

Proof. We want to get an extracting merger E((x1, . . . , xt), j), where the xi ∈ {0, 1}n and j ∈
{0, 1}d.
The nature of a somewhere-random source is that applying a truncation to each element of the
source yields a smaller somewhere-random source. The idea of our extracting merger is to truncate
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our somewhere-random source, and to then apply a standard seeded extractor to the entire trun-
cated source. The truncation makes the instance size smaller, enabling us to use a reduced seed
length in the extractor.

We truncate each xi to the first m bits, thus obtaining x′1, . . . , x
′
t ∈ {0, 1}m.

We can verify that our truncation to the first m bits produces a source (X ′
1, . . . , X

′
t) of length

mt and min-entropy m. By the standard result on existence of extractors (See Theorem 6.14
in [Vad12]), there exists a strong (m, ϵ)-extractor Ext0 : {0, 1}mt × {0, 1}d → {0, 1}m with seed
length d = logm+ log(t− 1) + 2 log 1

ϵ +O(1).

We can thus define the function E : ({0, 1}n)t × {0, 1}d → {0, 1}m:

E((x1, . . . , xt), j) = Ext0((x
′
1, . . . , x

′
t), j).

Observe that the function E is an ϵ-extracting merger that uses a seed j of length d and outputs
m bits as required.

In contrast, a random E : ({0, 1}n)t × {0, 1}d → {0, 1} is not an extracting merger at all! To see
this, it suffices to fix t = 2. If E is chosen at random, then for every j ∈ {0, 1}d and x ∈ {0, 1}n, it
is very likely that there exists a y ∈ {0, 1}n such that E((x, y), j) = 0. Define fj : {0, 1}n → {0, 1}n
by fj(x) = any such y. Then for every j ∈ {0, 1}d, E(X, fj(X), j) is constant when X is picked
uniformly at random, showing that E is not a merger.

3.3 Extracting Multimergers

Using the same idea, we also get interesting multimergers.

Theorem 3. Let n, t, s be integers with s < t, and ϵ > 0. Then for any integer a ≤ n, setting
m = s · a and:

d = log a+ 2 log
1

ϵ
+ log(t− s) + Ω(1),

there exists a function E : ({0, 1}n)t × {0, 1}d → {0, 1}m that is an (ε, s)-extracting multimerger.

Taking for example s = t − 1 and a = poly
(
1
ϵ

)
≪ n, we get that by investing O(log 1

ϵ ) bits of
seed, we can extract poly

(
1
ϵ

)
· t bits of randomness from any t-part (t − 1)-where random source

X ∈ ({0, 1}n)t.
In this setting of parameters, the seed length does not even depend on t, and we could take t to be
growing superconstantly while preserving constant seed-length.

3.4 Seedless Multimergers

Our final observation of this section is that for multimergers with large t and where s is a large
fraction of t, seedless multimergers with small error do exist. Indeed, if s = t − 1, and we define
E : ({0, 1}n)t → {0, 1} by

E(x1, . . . , xt) = Maj(x11, x21, . . . , xt1),

it is easy to see that E is a seedless (ϵ, t − 1)-multimerger for ϵ = O( 1√
t
). Replacing E with any

resilient function gives other examples of seedless multimergers (including with larger output size).
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Investigation of this phenomenon leads us to the projections of partitions question, and we explicitly
give the connection and some results about it in a later section. Nevertheless, this seems like the
tip of an iceberg.

4 Mergers with large output need large seed

In this section we show a lower bound on the seed-length for 2-source extracting mergers, essentially
showing that the dependence of the seed-length for extracting mergers in Theorem 2 on m and ϵ is
tight.

Theorem 4. Let ϵ < 1/40. Let E : ({0, 1}n)2 × {0, 1}d → {0, 1}m be a ε-extracting merger.

Then for ϵ ≥ 2−Ω(m), we have:

d ≥ logm+ log
1

ϵ
−O(1).

and for ϵ < 2−Ω(m), we have:
d ≥ Ω(m).

For the proof of this theorem, the representation of the inputs and output of E in terms of bits is
a distraction. So, letting N = 2n, D = 2d, M = 2m and identifying {0, 1}n, {0, 1}d, {0, 1}m with
[N ], [D], [M ] respectively, we will view E as a function E : [N ]2 × [D] → [M ].

Recalling the ϵ-extracting merger property, we have that E is such that whenever X,Y are jointly
distributed [N ]-valued random variables, with at least one of them uniformly distributed, and J
is picked uniformly from [D] and independently of (X,Y ), then the distribution of E((X,Y ), J) is
ϵ-close to the uniform distribution on [M ].

We will show that for ϵ ≥ M−Ω(1), we have:

D ≥ Ω

(
1

ϵ
logM

)
,

and for ϵ < M−Ω(1), we have:

D ≥ Ω
(
MΩ(1)

)
.

Our proof is based on the following idea. Consider a uniformly random subset S ⊆ [M ] of size λM .
For each y ∈ [N ], we look for an x such that for all j ∈ [D], E(x, y, j) ̸∈ S. If there is such an x,
then we define g(y) = x. If such an x exists for most y, then for uniformly chosen Y ∈ [N ], J ∈ [D],
we have PrY,J [E(g(Y ), Y, J) ∈ S] ≪ λ − ϵ, contradicting the merger property. Thus for most S,
for many y there is no such x; namely, for most S, for many y, for all x, there is some j, such that
E(x, y, j) ∈ S. For this to happen for even one y turns out to be very abnormal, and we derive our
lower bound on D by digging into its structure. This part uses a second moment variation of the
Radhakrishnan-TaShma [RTS00] approach to extractor lower bounds.

4.1 Abnormal conductors

A map C : [N ] × [D] → [M ] is called a conductor (this is a general term capturing the shape of
seeded extractors and seeded condensers). We will also view this as a bipartite multigraph with
[N ] on the left, [M ] on the right and D labelled edges coming out of every left vertex.

10
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If C is chosen at random, then for most S ⊆ [M ] of size λM and most x ∈ [N ], we expect about
λ fraction of the edges coming out of x to land in S. But we do not expect that this will happen
for all x! When C is chosen at random, then for most S there will be some x ∈ [N ] for which a
very small (≪ λ) fraction of edges coming out of x lie in S. We capture this with the following
definition.

Definition 6. Let C : [N ]× [D] → [M ] be a conductor. Let S be a subset of [M ].

We say the vertex x ∈ [N ] totally misses S (under C) if

|{j ∈ [D] | C(x, j) ∈ S}| = 0.

We say the vertex x ∈ [N ] mostly misses S (under C) if

|{j ∈ [D] | C(x, j) ∈ S}| < 1

2

|S|
M

D.

Definition 7 (Abnormal conductors). Let C : [N ]× [D] → [M ] be a conductor.

We say that C is (γ, λ)-abnormal if

Pr
S∈([M ]

λM)
[∃x ∈ [N ] s.t. x mostly misses S] < 1− γ.

Lemma 1 (Extracting mergers contain abnormal conductors). Suppose 0 < γ < λ
2 − ϵ. Suppose

E : [N ]2 × [D] → [M ] is an ϵ-extracting merger. For y ∈ [N ], let Ey : [N ] × [D] → [M ] be the
function E(·, y, ·). Then for some y ∈ [N ], Ey is (γ, λ)-abnormal.

Proof. Suppose not; namely that for all y ∈ [N ], we have that Ey is not (γ, λ)-abnormal.

Pick S ∈
([M ]
λM

)
uniformly at random.

Let By be the event that there exists some x ∈ [N ] that mostly misses S under Ey.

By our assumption, Pr[By] ≥ 1− γ. So the expected number of y for which By happens is at least
(1− γ)N .

Thus there exists some particular choice of S for which By happens for at least (1− γ)N many ys.
Call this choice S0. Define f : [N ] → [N ] by defining f(y) as follows:

f(y) =

{
any x that mostly misses S0 under Ey By happened,

arbitrary By did not happen.

Then

Pr
Y ∈[N ],J∈[D]

[E(f(Y ), Y, J) ∈ S0] <
λ

2
(1− γ) + γ < λ− ϵ.

But |S0| = λM , and thus we get a contradiction to the ϵ-extracting merger property of E. This
completes the proof.

11



4.2 The structure of abnormal conductors

The previous lemma gave us a y for which Ey is abnormal. We now use show that abnormal
conductors are very structured, and thus get a lower bound on D.

Lemma 2. Let C : [N ]× [D] → [M ] be a (γ, λ)-abnormal conductor. Suppose 10ϵ < λ < 1
2 .

Suppose that for X ∈ [N ] and J ∈ [D] picked uniformly and independently, C(X, J) is ϵ-close to
the uniform distribution on [M ]. Then

D ≥ min

{
Ω

(
1

λ
log(λγM)

)
,Ω

(
λγM)1/4

)}
.

Proof. We begin with a pruning phase to remove the high degree vertices from the right side. At
first reading, it will be helpful to consider the case where B = ∅.
Let β = λ

5 − ϵ. Note that the average right degree is ND/M . Define the set of high-degree right
vertices by:

B = {z ∈ [M ] | there are at least
1

β

ND

M
edges to z}.

Thus |B| ≤ βM . By the hypothesis on C(X, J), we have

Pr
X∈[N ],J∈[D]

[C(X,J) ∈ B] ≤ β + ϵ.

Let G be the set of all vertices on the left that do not have too many edges to B; namely:

G = {x ∈ [N ] | x has at most 2(β + ϵ)D edges to B }.

Then |G| ≥ N/2.

Now pick S ∈
([M ]
λM

)
uniformly at random. If there is a vertex x ∈ G that totally misses S \B, then

by choice of G:

|{j | C(x, j) ∈ S}| ≤ 2(β + ϵ)D <
1

2
λD,

namely, x mostly misses S.

By our hypothesis on the abnormality of C, the existence of such an x cannot happen too often.
Thus:

Pr
S
[∃x ∈ G | x totally misses S \B] < 1− γ. (1)

For each x ∈ G, let Ax be the event that x totally misses S \B under C.

We are interested in the event that some x ∈ G totally misses S \B, namely, the event
∨

x∈GAx.

Observe that1

Pr[Ax] ≥
(
M−D
λM

)(
M
λM

) ≥ e−4λD =: p.

1Here we use the observation that (1− D
(1−λ)M

) < e
− 2D

(1−λ)M < e−4D/M , which follows from the fact that 1−x < e−2x

for x < 1/2.
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Define A =
∑

x∈GAx. Then E[A] ≥ |G|p.
By the second moment method, we have:

Pr[A = 0] ≤ Var[A]

E[A]2
.

But Equation (1) tells us that Pr[A = 0] > γ.

Thus Var[A] ≥ γE[A]2 ≥ γ · p2|G|2.
We now extract some structure from this.

We have:
Var[A] =

∑
x,x′∈G

(Pr[Ax ∧Ax′ ]− Pr[Ax] Pr[Ax′ ]) .

Two simple observations about this expression:

• Each term in the sum above is at most 1.

• Furthermore, if x, x′ have no common neighbors in [M ] \ B, then the corresponding term of
the sum above is ≤ 0. Indeed, if Ux, Ux′ ⊆ [M ] \ B are the neighborhoods of x and x′ in
[M ] \B, and if they are disjoint, then:

Pr[Ax] =

(M−|Ux|
λM

)(
M
λM

) ,

Pr[Ax′ ] =

(M−|Ux′ |
λM

)(
M
λM

) ,

Pr[Ax ∧Ax′ ] =

(M−|Ux∪Ux′ |
λM

)(
M
λM

) =

(M−|Ux|−|Ux′ |
λM

)(
M
λM

) .

So

Pr[Ax ∧Ax′ ]

Pr[Ax] Pr[Ax′ ]
=

λM−1∏
i=0

(M − i) · (M − |Ux| − |Ux′ | − i)

(M − |Ux| − i) · (M − |Ux′ | − i)
≤ 1.

Combining the largeness ofVar[A] with these two observations tells us that there are many x, x′ ∈ G
which have a common neighbor in [M ] \B. Specifically:

γp2|G|2 ≤ Var[A] ≤
∑

x,x′∈G
1[x, x′ have a common neighbor in [M ] \B].

Thus there are at least γp2|G|2 ≥ 1
4γp

2N2 pairs x, x′ from G that have a common neighbor in
[M ] \B.

Now the initial pruning we did will help us. Since all the vertices in [M ] \ B have degree at most
1
β
ND
M , we can bound the number of such pairs x, x′. For every vertex x ∈ G, there are at most

13



D · 1β
ND
M vertices x′ such that x and x′ share a common neighbor in [M ]\B. Thus the total number

of pairs x, x′ from G that have a common neighbor in [M ] \B is at most

N ·D · 1
β

ND

M
=

1

β

D2

M
N2.

Thus 1
4γp

2 ≤ 1
β
D2

M . Since p = e−4λD, we get:

M ≤ 4

γβ
D2e8λD.

This means that either D ≥ Ω
(
(γβM)1/4

)
= Ω

(
(γλM)1/4

)
, or else:

D ≥ Ω

(
1

λ
log(γβM)

)
≥ Ω

(
1

λ
log(γλM)

)
.

4.3 Putting everything together

We now prove Theorem 4.

Proof. Let E : [N ]2 × [D] → [M ] be an ϵ-extracting merger.

Set λ = 20ϵ and γ = ϵ. Lemma 1 tells us that there is some y := y0 for which Ey is (λ, γ)-abnormal.

Now, since E is ϵ-extracting, we have that Ey(X, J) = E(X, y, J) is ϵ-close to the uniform dis-
tribution on [M ] for uniform and independent X ∈ [N ] and J ∈ [D]. Thus Lemma 2 tells us
that

D ≥ min

{
Ω

(
1

ϵ
log(ϵ2M)

)
,Ω

(
(ϵ2M)1/4

)}
.

If ϵ ≥ 1
M1/10 , then the first expression is smaller and

D ≥ Ω(
1

ϵ
logM),

and if ϵ < 1
M1/10 , then E is also a 1

M1/10 -extracting merger, and thus using the above lower bound

for 1
M1/10 in place of ϵ, we get that:

D ≥ MΩ(1).
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5 Seedless Extracting Multimergers and Projections of Partitions

In this section, we study seedless multimergers. Here our understanding is far from complete, and
we suggest many directions for research.

We begin by observing a connection between seedless multimergers and a very natural and clean
geometric question: how do we partition the unit cube [0, 1]t into c parts to ensure that all s-
dimensional axis-parallel projections of all parts are small? We then prove some interesting positive
and negative results about special cases of this general question. We conclude by collecting a number
of observations and questions about this natural partitioning problem.

5.1 Seedless Multimergers with 1 bit output

In Section 3.1 we have already seen that there are no seedless mergers (i.e., with s = 1). We now
look into seedless multimergers.

Let us consider the simplest nontrivial situation: t = 3 and s = 2, and m = 1 (we only try to
extract 1 bit of randomness), with n big. Suppose a given function E : ({0, 1}n)3 → {0, 1} is known
to be a (ϵ, s)-multimerger. For convenience, we identify {0, 1}n with [N ], for N = 2n.

By the multimerger property, for every function f : [N ]2 → [N ], the distribution of E(X,Y, f(X,Y ))
should be ϵ-close to uniform. Let

PXY,0 = {(x, y) ∈ [N ]2 : ∃z | E(x, y, z) = 0}.

Notice that this is the projection of E−1(0) to two coordinates.

If PXY,0 is bigger than 1+ϵ
2 N2, then we can violate the multimerger property: we define f : [N ]2 →

[N ] by f(x, y) = z, if any, such that E(x, y, z) = 0”. Then E(X,Y, f(X,Y )) for uniform and
independent X,Y ∈ [N ] is ϵ-far from uniform.

We have a similar observation for all the other two dimensional projections, and also for the set
E−1(1). Thus if a seedless one-bit output multimerger for 3-part 2-where random sources exists,
then there is a partition of [N ]3 into 2 parts such that each part has all its 2-dimensional axis
parallel projections have size at most 1+ϵ

2 N2.

The connection also goes in reverse. Suppose we have a partition A,B of [N ]3 for which each part
has all its 2-dimensional axis parallel projections with size at most 1+ϵ

2 N2. Let E : [N ]3 → {0, 1}
be the unique function with E−1(0) = A and E−1(1) = B. Suppose (X,Y, Z) is an [N ]3-valued
random variable that is 2-where random. Then we claim that E(X,Y, Z) is ϵ-close to the uniform
distribution. Indeed, if (X,Y ) is uniformly distributed over [N ]2 (the cases of (Y,Z) and (X,Z)
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being uniformly distributed are similar), then:

Pr[E(X,Y, Z) = 0] ≤ Pr
X,Y

[∃z ∈ [N ] s.t. E(X,Y, z) = 0]

≤ Pr
X,Y

[∃z ∈ [N ] s.t. (X,Y, z) ∈ A]

≤ |ΠXY (A)|
N2

≤ 1 + ϵ

2
,

Pr[E(X,Y, Z) = 1] ≤ Pr
X,Y

[∃z ∈ [N ] s.t. E(X,Y, z) = 1]

≤ Pr
X,Y

[∃z ∈ [N ] s.t. (X,Y, z) ∈ B]

≤ |ΠXY (B)|
N2

≤ 1 + ϵ

2
,

which implies the desired ϵ-closeness to uniform of E(X,Y, Z).

The exact same argument applies to general t, s. We record this below.

Theorem 5. Let N = 2n. There exists a seedless (n, d, t,m, ϵ, s)-multimerger if and only if there
is a partition of [N ]t into two sets A,B such that for every subset U ⊆ [t] of size s, the projections
ΠU (A) and ΠU (B) onto the coordinates U are of size at most 1+ϵ

2 N s.

Motivated by this, we consider general projections of partitions questions, where the set [N ]t

is partitioned into c parts, and we seek to minimize the maximum s-dimensional axis parallel
projection of all the parts2.

As noted in the introduction, there is a basic bound for this problem that comes from Shearer’s

lemma. It says that there is a lower bound of
(
1
c

)s/t
N s on the size of some projection. This bound

is usually not tight – but it sometimes is! Whenever c is a perfect t’th power, then this bound is
tight, and is realized by a partition into product sets. But for other c this kind of partition does
not work, and very interesting questions ensue. In particular, we would like to highlight the case
of N gigantic, and c = poly(t) (so that c is clearly not a perfect t’th power).

Here is one observation that gives a flavor of what happens for large t and s. When c is a constant,
and s = t − o(

√
t), there is a partition so that all s-dimensional projections of size 1

c + o(1).
This comes by considering suitable threshold partitions. Extensions of this are related to the
BKKKL [BKK+92, Fri04] conjectures on low influence functions.

This question is also equivalent to a problem in the continuous domain about open covers of [0, 1]t.
Here we want to minimize the maximum s-dimensional projection size when we cover [0, 1]t by c
open sets.

In the following sections, we discuss two results on partitioning in three dimensions. For the first
result, we get (to our surprise!) the tight bound for partitioning the cube into two parts. For the

2For c > 2, the problem of getting such partitions with c parts is somewhat related to the problem of multimergers
with log2(c) bit output, but the connection is not as tight as for the case of c = 2
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second result, we get nontrivial bounds (both upper and lower) for partitioning the cube into three
parts.

Apology: These questions are more naturally phrased as questions about covers rather than
partitions. However we stick to the partition language because of the particular sequence of events
that led us to these problems.

6 Partitioning the 3-dimensional cube into two parts

In this section, we prove a tight bound on the largest 2 dimensional axis parallel projection of a
part when partitioning [0, 1]3 into 2 parts.

Let πXY , πY Z , πXZ : [0, 1]3 → [0, 1]2 be the 2-dimensional projection maps.

The following example gives a nice partitioning with small projections.

Definition 8. (Majority Partitioning Scheme)

We define the function MAJ3 : [0, 1]
3 → {0, 1} as

MAJ3(x, y, z) = Maj(x1, y1, z1)

where Maj denotes the Majority function on 3 bits, and where x1, y1, z1 denote the indicator vari-
ables for whether x > 1/2, y > 1/2, z > 1/2 respectively.

We refer to the partition naturally induced by the output of MAJ3 on the input space [0, 1]3 i.e.
{MAJ−1

3 (0),MAJ−1
3 (1)}, as the Majority Partitioning Scheme.

We next record the observation tha all 2-dimensional axis-parallel projections of all parts in the
majority partitioning scheme on [N ]3 are of size at most 3

4N
2, which is stated in the following

lemma:

Lemma 3. (Majority Partitions Optimally)

Every 2-dimensional projection of every partition in the majority partitioning scheme MAJ3 on
[0, 1]3 is of size at most 3

4 .

In the other direction, we first prove a lower bound on projection sizes for a discrete version of the
problem.

Let N be a large positive integer. We reuse notation and let πXY , πY Z , πXZ : [N ]3 → [N ]2 be the
2-dimensional projection maps.

Theorem 6. Let A,B ⊆ [N ]3 be a partition.

Then one of the six 2-dimensional projections of A and B

πXY (A), πY Z(A), πXZ(A), πXY (B), πY Z(B), πXZ(B)

has size at least 3
4N

2.
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Figure 1: Majority Partitioning of the cube into 2 parts, where the partitioned sets are coloured in
red and blue. Observe that all projections of the red set and the blue set are of equal size 3

4 , and
Theorem 6 implies this partitioning is optimal.

Proof. Suppose πXY (A) and πXY (B) are both at most 3
4N

2.

Fix z ∈ [N ]. Let us consider the slice Sz = [N ]2 × {z}, and focus on the X and Y projections of
the sets A ∩ Sz and B ∩ Sz (so four projections in all, each being a subset of [N ]).

Define3:
AXz = {x | ∀y ∈ [N ], (x, y, z) ∈ A}.

BXz = {x | ∀y ∈ [N ], (x, y, z) ∈ B}.

AY z = {y | ∀x ∈ [N ], (x, y, z) ∈ A}.

BY z = {y | ∀x ∈ [N ], (x, y, z) ∈ B}.

Let αXz, βXz, αY z, βY z ∈ [0, 1] be their fractional sizes (= size divided by N).

Then we have the following:

• AXz ∩BXz = ∅ and AY z ∩BY z = ∅. Thus:

αXz + βXz ≤ 1, (2)

αY z + βY z ≤ 1. (3)

•
((AXz × [N ]) ∪ ([N ]×AY z)) ⊆ πXY (A).

This is because any (x, y) ∈ (AXz × [N ]) has (x, y, z) ∈ A, and thus (x, y) ∈ πXY (A).

3If A,B was merely a cover of [N ]3 rather than a partition, the correct definition would be

AXz = {x |̸ ∃y ∈ [N ] s.t. (x, y, z) ∈ B},

etc, and the rest of the proof would remain the same.
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The fractional size of the left hand side is 1− (1− αXz)(1− αY z), and the fractional size of
the right hand side is ≤ 3/4.

This gives us (after applying the AM-GM inequality4):

αXz + αY z ≤ 1. (4)

• Similarly,
((BXz × [N ]) ∪ ([N ]×BY z)) ⊆ πXY (B),

βXz + βY z ≤ 1. (5)

• At most one of AXz, BY z can be nonempty, and at most one of AY z, BX,z can be nonempty.
This is because x ∈ AXz and y ∈ BY z imply that (x, y, z) ∈ A and (x, y, z) ∈ B respectively.
Thus at most one of αXz, βY z, and at most one of αY z, βXz can be nonzero.

Putting everything together, we get that only two of the four numbers αXz, βXz, αY z, βY z can be
nonzero, and furthermore, the sum of those two is bounded above by 1.

Therefore, for each z ∈ [N ],
αXz + βXz + αY z + βY z ≤ 1.

Averaging in z, we get that
Ez[αXz + βXz + αY z + βY z] ≤ 1,

and thus one of the four numbers:

Ez[αXz],Ez[βXz],Ez[αY z],Ez[βY z]

is at most 1/4.

Finally, observe that (1 − Ez[αXz]) is the fractional size of πXZ(B) (and similarly for the other
three numbers), and so one of the four projections

πXZ(B), πXZ(A), πY Z(B), πY Z(A)

has size at least 3
4N

2.

By a simple discretization argument, we get the following corollary:

Corollary 1. Any cover of [0, 1]3 by two open sets A,B has one of the following 6 sets:

ΠXY (A),ΠY Z(A),ΠXZ(A),ΠXY (B),ΠY Z(B),ΠXZ(B)

having area at least 3/4.

Thus we get that MAJ3 is an optimal partition for partitioning [N ]3 into two parts.

4For any non-negative real numbers x and y,
√
x · y ≤ x+y

2
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Figure 2: Golden Ratio Partitioning of the cube into 3 parts, where the partitioned sets are coloured
in red, green and blue. The green and red parts are just translates of each other. Here u is the
positive root of x2 + x = 1.

7 Partitioning the 3-dimensional cube into three parts

In this section we study the case of partitioning the 3 dimensional cube [0, 1]3 into 3 parts.

We begin with a nice partition of [0, 1]3 into 3 parts so that each part has small 2-dimensional
axis-parallel projections.

Definition 9. (Golden Ratio Partitioning Scheme)
Let u be the positive root of x2 + x = 1. We define the function GR3 : [0, 1]

3 → {0, 1, 2} as

GR3(x, y, z) =


0, |x| > u, |y| > u

1, |x| ≤ u, |y| ≤ u, |z| ≤ 1
2

2, otherwise.

We refer to the partition into 3 parts naturally induced by the output of GR3 on the input space
[0, 1]3 i.e. {GR−1

3 (0), GR−1
3 (1), GR−1

3 (2)}, as the golden ratio partitioning scheme.

Observe that all 2-dimensional projections of all partitions in the golden ratio partitioning scheme
on [0, 1]3 are of size u ≤ 0.619, which is stated in the following lemma:

Lemma 4. (Golden Ratio Partitioning Bound) Every 2-dimensional projection of every partition
in the golden ratio partitioning scheme GR3 on [0, 1]3 is of size u ≤ 0.619.

We do not know if this is the optimal partition into 3 parts.

For the rest of this section, we prove the best lower bound that we know. As in the previous section,
we do this via an analogous discrete problem.

Let η0 ≈ 0.5264 be the real number ∈ [0.5, 1.0] satisfying:

(2− 3η0) ·
(
2− 2

√
1− η0

)
+ (3η0 − 1) =

1

6
(4− η0).
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Theorem 7. Let A,B,C ⊆ [N ]3 be a 3-partition of [N ]3. Then one of the nine 2-dimensional
projections of A, B and C, i.e.,

ΠXY (A),ΠXY (B),ΠXY (C),ΠY Z(A),ΠY Z(B),ΠY Z(C),ΠXZ(A),ΠXZ(B),ΠXZ(C) has size at least
η0N

2.

Before embarking on the proof of Theorem 7, we note down a simple set intersection lemma that
will be useful.

Lemma 5 (Set intersection inequality). Suppose U, V,W be arbitrary sets which have union equal
to T .

Then

|U |+ |V |+ |W | ≥ 2|T | − (|U \ (V ∪W )|+ |V \ (W ∪ U)|+ |W \ (U ∪ V )|) + |U ∩ V ∩W |.

This lemma gives a way to get a lower bound on the average size of three sets U, V,W that cover
a set T by first proving an upper bound on the sizes of the “unique” parts U \ (V ∪W ), V \ (U ∪
W ),W \ (U ∪ V ). The proof is simple and omitted.

We now prove Theorem 7.

Proof. Consider any partition A, B and C of [N ]3 into 3 parts. Suppose ΠXY (A), ΠXY (B) and
ΠXY (C) are at most η0. (If not we are done).

Fix z ∈ [N ].

Our first step is to consider the slice Sz = [N ]2×{z}, and focus on the X and Y projections of the
3 sets A ∩ Sz, B ∩ Sz, C ∩ Sz (so six projections in all, each being a subset of [N ]).

Define:
AXz = {x ∈ [N ] | ∃y ∈ [N ] s.t. (x, y, z) ∈ A}.

BXz = {x ∈ [N ] | ∃y ∈ [N ] s.t. (x, y, z) ∈ B}.

CXz = {x ∈ [N ] | ∃y ∈ [N ] s.t. (x, y, z) ∈ C}.

AY z = {y ∈ [N ] | ∃x ∈ [N ] s.t. (x, y, z) ∈ A}.

BY z = {y ∈ [N ] | ∃x ∈ [N ] s.t. (x, y, z) ∈ B}.

CY z = {y ∈ [N ] | ∃x ∈ [N ] s.t. (x, y, z) ∈ C}.

Note that:
AXz ∪BXz ∪ CXz = [N ]

AY z ∪BY z ∪ CY z = [N ]

since A,B,C is a partition of [N ]3.

Next we indentify the “pure” parts of these projections, defined below:

ÃXz = AXz \ (BXz ∪ CXz)

B̃Xz = BXz \ (CXz ∪AXz)

C̃Xz = CXz \ (AXz ∪BXz)
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ÃY z = AY z \ (BY z ∪ CY z)

B̃Y z = BY z \ (CY z ∪AY z)

C̃Y z = CY z \ (AY z ∪BY z)

Furthermore, we have:
{x | Π−1

XZ(x, z) ⊆ A} ⊆ ÃXz

and five similar containments for B̃Xz, C̃Xz, ÃY z, B̃Y z, C̃Y z.

Let α̃Xz, β̃Xz, γ̃Xz, α̃Y z, β̃Y z, γ̃Y z ∈ [0, 1] be their fractional sizes.

Note that since the corresponding sets are disjoint, we have:

α̃Xz + β̃Xz + γ̃Xz ≤ 1 (6)

α̃Y z + β̃Y z + γ̃Zz ≤ 1 (7)

Lemma 6. For any z ∈ [N ], out of the 6 variables α̃Xz, β̃Xz, γ̃Xz, α̃Y z, β̃Y z, γ̃Y z, let H be the set
of those variables that are nonzero. Then H is a subset of at least one of the following sets of
variables:

{α̃Xz, α̃Y z}, {β̃Xz, β̃Y z}, {γ̃Xz, γ̃Y z}, {α̃Xz, β̃Xz, γ̃Xz}, {α̃Y z, β̃Y z, γ̃Y z}

Proof. It is a consequence of the easy observation that α̃Xz and β̃Y z cannot both be nonzero (and
5 similar easy observations).

Let

δXz =

{
1 α̃Y z, β̃Y z, γ̃Y z > 0

0 otherwise
.

δY z =

{
1 α̃Xz, β̃Xz, γ̃Xz > 0

0 otherwise
.

Note that δXz depends on the projections in the Y direction (and vice versa). The reason for this
definition is the following observation: if δXz = 1, then we have

AXz ∩BXz ∩ CXz = AXz = BXz = CXz = [N ], (8)

and similarly, if δY z = 1, then we have

AY z ∩BY z ∩ CY z = AY z = BY z = CY z = [N ], (9)

which is something that our set intersection lemma can exploit.

Define
λXz = α̃Xz + β̃Xz + γ̃Xz − δXz,

λY z = α̃Y z + β̃Y z + γ̃Y z − δY z.

λz = λXz + λY z.
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Note that by Equations (6), (7), for all z,

λXz ≤ 1. (10)

λY z ≤ 1. (11)

By the set intersection lemma,

|AXz|+ |BXz|+ |CXz| ≥ 2N −
(
|ÃXz|+ |B̃Xz|+ |C̃Xz|

)
+ |AXz ∩BXz ∩ CXz|

≥ (2− λXz)N

Similarly,

|AY z|+ |BY z|+ |CY z| ≥ (2− λY z)N

Summing over z ∈ [N ] and adding these two equations, we get:

ΠXZ(A) + ΠXZ(B) + ΠXZ(C) ≥ (2−Ez[λXz])N
2, (12)

ΠY Z(A) + ΠY Z(B) + ΠY Z(C) ≥ (2−Ez[λY z])N
2, (13)

ΠXZ(A) + ΠXZ(B) + ΠXZ(C) + ΠY Z(A) + ΠY Z(B) + ΠY Z(C) ≥ (4−Ez[λz])N
2. (14)

Our goal is now to get an upper bound on Ez[λz].

To get our main result, we will show that Ez[λz] ≤ λ∗ := 4 − 6η0 ≈ 0.856 (or else we find a large
projection in some other way). This will show that one of the 6 projections on the left hand side
is at least η0N

2, as desired.

If we just want to get a projection of size ≥ 1
2N

2, then it suffices to show that λ∗ ≤ 1, and this
turns out to be simpler.

Towards that end, we define αX to be the fraction of x for which {x} × [N ] ⊆ ΠXY (A). Similarly
define αY , βX , βY , γX , γY .

Note that since ÃXz × [N ]× {z} ⊆ A, we have:

αXz ≤ αX ,

and 5 similar inequalities.

Note that αX ≤ η, and 5 similar inequalities.

Define u : [0, 1] → [0, 2] by:
u(a) = 2− 2

√
1− a.

Using the argument used to arrive at Equation (4) (by the AM-GM inequality), we have

α̃Xz + α̃Y z ≤ u(η0) ( and thus αX + αY ≤ u(η0) ).

and 2 similar pairs of inequalities.

Let
gX = max{αX + βX , βX + γX , αX + γX}.

gY = max{αY + βY , βY + γY , αY + γY }.
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By the inequalities above, we have:

gX + gY ≤ 2η0 + u(η0).

Now let
qX = Pr

z∈[n]
[exactly two of αXz, βXz, γXz are nonzero].

qY = Pr
z∈[n]

[exactly two of αY z, βY z, γY z are nonzero].

q = Pr
z∈[n]

[at most one of αXz, βXz, γXz and at most one of αY z, βY z, γY z is nonzero]

We are now in a position to state a key lemma which will prove our lower bound:

Lemma 7.
Ez[λz] ≤ q · u(η0) + qX ·min(gX , 1) + qY ·min(gY , 1)).

Proof. Let z ∈ [N ]. We take cases on which of the 6 numbers α̃Xz, β̃Xz, γ̃Xz, α̃Y z, β̃Y z, γ̃Y z are
nonzero.

By Lemma 6, there only a few cases to consider.

• If the first three numbers are nonzero or the second three numbers are nonzero, then λz is
nonpositive because the sum of those three is at most 1 (by Equations (6), (7), and δXz = 1
or δY z = 1.

• If exactly two of the first three numbers are nonzero, then λz is at most min(gX , 1).

This happens for qX fraction of the z’s.

• If exactly two of the second three numbers are nonzero, then λz is at most min(gY , 1).

This happens for qY fraction of the z’s

• If at most one of the first three numbers and at most one of the second three numbers is
nonzero, then λz is at most 2− 2

√
1− η0.

This happens for q fraction of the z’s.

Now q + qX + qY ≤ 1. At this point, we already see that Ez[λz] ≤ 1 (since u(η0) ≈ 0.6237 ≤ 1),
and this gives us the result that some projection has size at least 1

2N
2.

To get our improved bound of η0N
2, we need one more idea.

Lemma 8.

qX +Ez[λY z] ≤ 1 (15)

qY +Ez[λXz] ≤ 1 (16)
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Proof. We prove the first inequality, the second being similar.

qX is the fraction of z for which exactly two of {α̃Xz, β̃Xz, γ̃Xz} are nonzero. For such a z, we have
α̃Y z = β̃Y z = γ̃Y z = δY z = 0, and thus λY z = 0.

Along with Equations (10), (11), this completes the proof of the lemma.

By Equation (12), if Ez[λXz] is at most 2−3η0, then we get a projection onto the XZ plane of size
at least η0N

2, and we are done. Similarly, by Equation (13), if Ez[λY z] is at most 2− 3η0, then we
get a projection onto the Y Z plane of size at least η0N

2, and we are done. Thus we may assume
that both Ez[λXz] and Ez[λY z] are at least 2− 3η0.

By the previous lemma, we thus get that qX , qY ≤ 3η0 − 1.

Summarizing everything we know:

gX + gY ≤ 2η0 + u(η0)

qX , qY ≤ 3η0 − 1.

q + qX + qY ≤ 1.

Under these constraints, we claim that:

q · u(η0) + qX ·min(gX , 1) + qY ·min(gY , 1) ≤ λ∗.

By inspection, we see that the LHS is maximized when:

gX = 1, qX = 3η0 − 1, q = 1− qX = 2− 3η0,

which makes it evaluate to:

(2− 3η0) · u(η0) + (3η0 − 1) =
1

6
(4− η0) = λ∗,

where the first equality is the defining equation of η0, and the second equality is the definition of
λ∗. This completes the proof.

This gives us a corresponding result about covers of [0, 1]3 with 3 open sets.

Corollary 2. Any cover of [0, 1]3 by three open sets A,B,C has one of the following 9 sets:

ΠXY (A),ΠY Z(A),ΠXZ(A),ΠXY (B),ΠY Z(B),ΠXZ(B),ΠXY (C),ΠY Z(C),ΠXZ(C)

having area at least η0.
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