
Interpolation Decoding

(A Chapter in the Concise Encyclopedia of Coding Theory)

Swastik Kopparty

1 Introduction

In this chapter we will see some beautiful algorithmic ideas based on polynomial interpolation for decoding
algebraic codes. Here we will focus only on (Generalized) Reed-Solomon codes, but these ideas extend very
naturally to the important class of algebraic-geometric codes.

Let us quickly recall the “polynomial-evaluation” based definition of (narrow-sense) Reed-Solomon codes
from Chapter ??. Following the notation from that chapter, let q be a prime power, let α ∈ Fq be a generator
of the multiplicative group of Fq, and define:1

Pk,q = {p(x) ∈ Fq[x] | deg(p) < k}

RS[q, k] = {(p(α0), p(α1), p(α2), . . . , p(αq−2) | p(x) ∈ Pk,q} ⊆ Fq−1
q .

Informally, the codewords of RS[q, k] are the vectors of all evaluations of a polynomial of degree < k at all
the nonzero points of Fq.

More generally, we can take an arbitrary S ⊆ Fq with |S| = n < q and consider evaluations of polynomials
of degree < k at all the points of S. This code is known as the Generalized Reed-Solomon code2:

GRS[q, k, S] = {(p(β))β∈S | p(x) ∈ Pk,q}.

Abusing notation, we will sometimes refer to the polynomial p(x) of degree < k as codewords.
Working with this more general family of codes greatly clarifies and even motivates the important ideas

in this chapter. We begin with the most basic and useful fact about polynomials.

Lemma 1.1. Let p(x) ∈ Fq[x] be a nonzero polynomial of degree at most d. Then the number of u ∈ Fq

such that p(u) = 0 is at most d.

This lemma lets us compute the minimum distance of GRS[q, k, S].

Lemma 1.2. Let S ⊆ Fq and let n = |S|. Suppose 1 ≤ k ≤ n. Then GRS[q, k, S] is an [n, k, n−k+1] code.

Indeed, by Lemma 1.1 every nonzero codeword of GRS[q, k, S] has at most k − 1 coordinates equal to
0, and thus at least n − k + 1 nonzero coordinates. This implies that the minimum distance is at least
n − k + 1. Finally, we can check that this bound is achieved by the codeword coming from the polynomial
p(x) =

∏k−1
i=1 (x− ui), where u1, . . . , uk−1 are arbitrary distinct elements of S.

For generalized Reed-Solomon codes, the question of decoding up to half the minimum distance takes
on the following pleasant form. Let e = ⌊(n − k)/2⌋. We are given a function r : S → Fq representing
the received vector. We would like to find the unique polynomial p(x) ∈ Fq[x] of degree < k such that
p(u) = r(u) for all but at most e values of u ∈ S.

1We will follow the convention that the degree of the 0 polynomial is −∞.
2Sometimes the word generalized is omitted.

1

In this formulation, the problem looks like one of “error-tolerant” polynomial interpolation. Classical
polynomial interpolation is the problem of finding a low degree polynomial taking desired values at certain
points. Here we need to do interpolation despite some of the values being wrong.

There is a naive brute force search algorithm for this problem, namely to try all
(

n
≤e

)
possible subsets of

S as candidates for the set of error locations E, and to do standard polynomial interpolation through the
remaining points. This takes time exponential in e.

Remarkably, there are polynomial time algorithms for this problem! In time (n log q)O(1) one can find
the polynomial p. The first such algorithm was found by Peterson [Pet60]. Below we will see the ingenious
algorithm of Berlekamp and Welch [BW] for this problem. Later we will see powerful generalizations and
extensions of this algorithm by Sudan [Sud97] and Guruswami-Sudan [GS99].

2 The Berlekamp-Welch Algorithm

Let p(x) ∈ Fq[x] be the polynomial that we are trying to find, namely the polynomial with degree < k such
that p(u) = r(u) for all but at most e values of u. Let E = {u ∈ S | p(u) ̸= r(u)} be the set of error
locations. Let Z(x) ∈ Fq[x] be the polynomial given by:

Z(x) =
∏
u∈E

(x− u).

Z(x) is called the error-locating polynomial.
We do not know Z(x) (indeed, finding Z(x) is as hard as finding p(x)). Nevertheless thinking about Z(x)

will motivate our algorithm.
The crux of the Berlekamp-Welch algorithm is the following identity. For each u ∈ S, we have:

Z(u) · r(u) = Z(u) · p(u) (1)

Indeed, if u ̸∈ E, then r(u) = p(u) and so the above identity holds. Otherwise u ∈ E and Z(u) = 0, and so
the above identity holds.

Let W (x) ∈ Fq[x] be the polynomial Z(x) · p(x). Observe that deg(Z) ≤ e and deg(W) < k + e. This
motivates the following idea: let us try to search for the polynomials Z and W by solving the linear equations

Z(u) · r(u) = W (u)

for each u ∈ S. Hopefully we will then recover p(x) as W (x)/Z(x). This algorithm actually works, but its
analysis is more subtle than the naive arguments given above suggest.

We formally present the algorithm below.
Algorithm RSDecode
Input: r : S → Fq.

1. Interpolation: Let a0, a1, . . . , ae and b0, b1, . . . , bk+e−1 be indeterminates. Consider the following
system of homogeneous linear equations in these indeterminates, one equation for each u ∈ S:(

e∑
i=0

aiu
i

)
· r(u) =

k+e−1∑
j=0

bju
j . (2)

Solve this system to get a nonzero solution (a0, . . . , ae, b0, . . . , bk+e−1) ∈ Fk+2e+1
q . If there is no nonzero

solution, FAIL.

2. Polynomial Algebra: For the solution found in the previous step, define A(x), B(x) ∈ Fq[x] by:

A(x) =

e∑
i=0

aix
i,

2

B(x) =

k+e−1∑
j=0

bjx
j .

If A(x) divides B(x), then return B(x)/A(x) (otherwise FAIL).

We will show the following theorem.

Theorem 2.1. Suppose r is within Hamming distance e of some codeword of GRS(q, k, S). Then Algorithm
RSDecode will output that codeword.

Before analyzing correctness of the algorithm, we make some observations about its running time. The
main operations involved are solving systems of linear equations and polynomial division. By well-known
algorithms, both of these can be solved in polynomial time (in fact, time O(n3 log2 q)). With more advanced
algebraic algorithms, the running time can even be made O(n(log q · log n)3). This is nearly-linear time, and
almost as fast as noiseless polynomial interpolation!

2.1 Correctness of the Algorithm RSDecode

Suppose p(x) is the desired polynomial whose distance from r is at most e. We need to show that the
algorithm outputs p(x). We do this through two claims.

• Claim 1: In step 1 there does indeed exist a nonzero solution (a0, . . . , ae, b0, . . . , bk+e−1) ∈ Fk+2e+1
q .

Let Z(x) be the error locating polynomial, and let W (x) = Z(x) · p(x). Note that Z(x) is a nonzero
polynomial.

Taking a0, . . . , ae to be the coefficients of Z(X), and taking b0, . . . , bk+e−1 to be the coefficients of
W (x), identity (1) immediately implies that this (a0, . . . , ae, b0, . . . , bk+e−1) is a nonzero solution to
the system of equations (3).

• Claim 2: In step 2 the polynomial A(x) does divide B(x), and B(x)/A(x) = p(x).

Take A(x), B(x) and consider the polynomial H(x) = B(x) − p(x)A(x) ∈ Fq[x]. We know that for
every u ̸∈ E, we have

H(u) = B(u)− p(u)A(u) = B(u)− r(u)A(u) = 0,

where the last equality follows from the fact that (a0, . . . , ae, b0, . . . , bk+e−1) satisfies Equation (3).

Observe that H(x) is a polynomial of degree at most k + e − 1. By the above, we have that H(u)
vanishes for at least n − e > k + e − 1 values of u ∈ S. By Lemma 1.1, this implies that H(x) is the
identically zero polynomial. Thus B(x) = p(x)A(x) and the claim follows.

It is worth noting that there may be multiple nonzero solutions to the system of equations (3). Claim
2 is about every such nonzero solution!

This completes the analysis of the Berlekamp-Welch algorithm.

Remark 2.2. Another way of viewing the Berlekamp-Welch algorithm is through the lens of rational
function interpolation.

Roughly, we start off trying to find a rational function B(x)/A(x) such that deg(A),deg(B) are both
small, and B(u)/A(u) = r(u) for all u ∈ S. We have to be careful about what we mean by division when the
denominator is 0.

Definition 2.3 (Rational function interpolation). Let S ⊆ Fq and let r : S → Fq be a function. We say
that the rational function B(x)/A(x) ∈ Fq(x) interpolates r if for every u ∈ S, either:

• A(u) ̸= 0 and B(u)/A(u) = r(u), or

• A(u) = 0 and B(u) = 0.

The Berlekamp-Welch algorithm is essentially based on the fact that rational interpolation can be effi-
ciently solved using linear algebra, and the analysis basically shows any low degree rational interpolation of
r is (after division) the nearby polynomial p(x).

3

3 List-decoding of Reed-Solomon codes

We now come to the most spectacular application of interpolation ideas: to a more general decoding problem
called list-decoding. Just as in the classical decoding problem for a code C ⊆ Σn, we are given a received
string r ∈ Σn. Now we are also given a radius parameter e, and we would like to find the list L of all
codewords c ∈ C such that dist(r, c) < e. In classical decoding, the radius parameter e is always at most half
the minimum distance of C where we are guaranteed that |L| ≤ 1. In list-decoding, we can allow a larger
radius e. Now the list size |L| may be larger than 1, but as long as it is not too big, it is reasonable to ask
for a fast algorithm that finds L.

In this section we will see how interpolation based ideas, vastly generalizing the ideas in the Berlekamp-
Welch algorithm, lead to efficient list-decoding algorithms for Reed-Solomon codes to suprisingly large radii.
This is known as the Sudan algorithm.

At the high level, this algorithm has two parts. The first step is interpolation. The goal of the interpolation
step is to find a bivariate polynomial Q(x, y) such that Q(u, r(u)) = 0 for all u ∈ S. Pictorially, this finds
an algebraic curve (which looks like a union of irreducible algebraic curves) in the Fq × Fq plane that passes
through all the points (u, r(u)).

For the second step, the key insight is to consider a polynomial p(x) ∈ Fq[x] that is close to r, and see
how the graph of the relation y = p(x) looks in relation to the above picture. We see that the two graphs
y = p(x) and Q(x, y) = 0 have many points of intersection. The classical Bezout Theorem implies that low
degree curves P (x, y) = 0 and Q(x, y) = 0 cannot have too many points of intersection unless P and Q have
a common factor. Thus3 in our case, the polynomial y − p(x), and Q(x, y) must have a common factor,
and the irreducibility of y − p(x) implies that y − p(x) must be a factor of Q(x, y). The second step of the
algorithm is to factor the polynomial Q(x, y) and to thus find p(x).

To gain some insight into this algorithm, we remark that it is a generalization of the Berlekamp-Welch
algorithm. Indeed, the first step of the Berlekamp-Welch algorithm is to find a polynomial Q(x, y) of the
form A(x)y −B(x) such that Q(u, r(u)) = 0 for all u ∈ S.

3.1 The Sudan Algorithm

We now give a formal description of (one version of) the Sudan algorithm.
Algorithm RSListDecodeV1
Input: r : S → Fq, decoding radius e.

1. Interpolation: Let I = ⌈
√
nk⌉ and J = ⌈

√
n
k ⌉. For each i, j with 0 ≤ i ≤ I and 0 ≤ j ≤ J , we let

aij be an indeterminate.

Consider the system of homogenous linear equations in these indeterminates, where for each u ∈ S, we
have the equation: ∑

i≤I,j≤J

aiju
i(r(u))j = 0.

Solve this system to find a nonzero solution (aij)i≤I,j≤J ∈ F(I+1)(J+1)
q . If there is no nonzero solution,

FAIL.

2. Polynomial Algebra: Let Q(x, y) ∈ Fq[x, y] be the polynomial given by:

Q(x, y) =
∑

i≤I,j≤J

aijx
iyj .

Factor Q(x, y) into its irreducible factors over Fq. Let L be the set of all p(x) for which y − p(x) is an
irreducible factor of Q(x, y). These are our candidate codewords. Now output those codewords of L
which are within distance e of the received word r.

3When we formally analyze the algorithm, everything will be elementary and we will not use the Bezout Theorem. We
mention the Bezout Theorem only to provide motivation.

4

We will show the following theorem.

Theorem 3.1. If e < n − 2
√
nk − k, then Algorithm RSListDecodeV1 outputs the list of all codewords in

GRS(q, k, S) that are within Hamming distance e of r. Furthermore, this list has size at most ⌈
√

n
k ⌉.

To understand how remarkable the above theorem is, consider the setting k = (0.01)n and e = (0.75)n.
Then the theorem says that Algorithm RSListDecodeV1 can find all codewords within distance (0.75)n of
any given received word r. Note that most entries of r may be wrong; yet we can find the corrected codeword!

Before analyzing the correctness of the algorithm, we discuss the running time. Factoring of bivariate
polynomials of degree d over Fq can be done in time (d log q)O(1) by a randomized algorithm (or (dq)O(1) by
a deterministic algorithm). Thus the entire algorithm above can be made to run in polynomial time.

3.2 Correctness of Algorithm RSListDecodeV1

Suppose p(x) is a codeword of GRS(q, k, S) whose distance from r is at most e. We want to show that p(x)
is one of the codewords output by the algorithm.

Let E ⊆ S be the set of u ∈ S such that p(u) ̸= r(u). This is the error set for p. By hypothesis, |E| ≤ e.
First we show that the interpolation step of the algorithm does not FAIL. In this step, we have to solve a

system of homogeneous linear equations to find a nonzero solution. There are n equations in (I + 1)(J + 1)
unknowns. It is well known, despite ample intuition to the contrary, that for general systems of linear
equations we cannot deduce anything about the solvability based on the number of equations and the
number of unknowns. But for homogeneous linear systems we can! If the number of unknowns is greater
than the number of equations, there is a nonzero solution.

In our case, the number of unknowns is (I + 1)(J + 1), which is greater than the number n of equations
because:

(I + 1)(J + 1) >
√
nk ·

√
n

k
= n.

Thus the first step of the algorithm succeeds in finding a nonzero solution.
Now we examine the second step. By construction, the polynomial Q(x, y) has the property that

Q(u, r(u)) = 0 for all u ∈ S.
Consider the polynomial H(x) = Q(x, p(x)). For any point u ∈ S \ E, we have H(u) = Q(u, p(u)) =

Q(u, r(u)) = 0. Furthermore, the degree of H is at most I + (k − 1)J .
Thus H(x) is a polynomial of degree most:

I + (k − 1)J < (
√
nk + 1) + (k − 1)

(√
n

k
+ 1

)
< 2

√
nk + k,

whose number of roots is at least:

|S| − |E| ≥ n− e > n−
(
n− 2

√
nk − k

)
= 2

√
nk + k.

By Lemma 1.1, we conclude that H(x) must be the zero polynomial.
Finally, we use the fact that if Q(x, y) is such that Q(x, p(x)) = 0, it means that the bivariate polynomial

y − p(x) divides Q(x, y). This is a form4 of the “factor theorem”.
So y − p(x) will appear in the list of factors of Q, and thus p(x) will appear in the output of Algorithm

RSListDecodeV1, as desired. The number of such factors is at most the y-degree of Q, which is at most
J = ⌈

√
n
k ⌉.

We make some remarks about the argument that we just saw.

1. The precise algebraic problem that we need to solve in the second step of the algorithm is “root
finding” rather than factoring. There are faster and simpler algorithms for root finding than for
general factoring.

4In more detail: write Q(x, z+ p(x)) as a h0(x) + zh1(x) + z2h2(x) + · · · . Then Q(x, p(x)) = 0 means that h0(x) = 0. Thus
z divides Q(x, z + p(x)). Setting y = z + p(x), we get the claim.

5

2. A slightly cleverer choice of monomials5 used in the polynomial Q(x, y) leads to an improvement of the
decoding radius to n−

√
2nk. This is the error-correction performance of the original Sudan algorithm.

This is larger than half the minimum distance for all k < n/3.

3. The significance of the Sudan algorithm is that it showed for the first time that it is possible to
efficiently list decode positive rate codes beyond what is possible for unique decoding. For a code of
rate R, the classical Singleton bound implies that it is not possible to unique-decode from more than
((1−R)/2)-fraction errors. We just saw that Reed-Solomon codes of rate R can be efficiently decoded
from (1− 2

√
R−R)-fraction errors, which for small R is larger than (1−R)/2.

4 List-Decoding of Reed-Solomon codes using multiplicities

Now we come to a powerful new tool that greatly strengthens the reach of the interpolation method: mul-
tiplicities. We will see the algorithm of Guruswami and Sudan for list-decoding Reed-Solomon codes from
n−

√
nk errors. This is larger than half the minimum distance for all k. It correspondingly shows that it is

possible to have codes of rate R for which efficient list-decoding from (1−
√
R)-fraction errors is possible –

this is larger than the unique-decoding limit of (1−R)/2 for all R.
We begin with a definition of multiplicity of vanishing.

Definition 4.1. Over a field F, let Q(x1, . . . , xm) ∈ F[x1, . . . , xm] be a polynomial. Let u = (u1, . . . , um) ∈
Fm be a point. We define the multiplicity of vanishing of Q at u, denoted mult(Q,u), to be the smallest

integer M such that the polynomial Q(u+ x) ∈ F[x1, . . . , xm] has no monomials
∏m

j=1 x
bj
j of degree < M .

If Q is the zero polynomial, we define mult(Q,u) = −∞ by convention.

Classically, over fields of characteristic 0 multiplicity is defined using derivatives. Over finite fields one
has to be careful. Everything works well if we use the notion of Hasse derivative. See [HKT08] for more on
this.

Example 4.2. The following multiplicity calculations are easy to check.

• mult((x− 1)2(3 + 2x), 1) = 2.

• mult(y2 − x3 − x4, (0, 0)) = 2.

The Guruswami-Sudan algorithm for list-decoding Reed-Solomon codes is based on interpolating a bi-
variate polynomial Q(x, y) that vanishes at each point (u, r(u)) for u ∈ S with high multiplicity. Asking that
a polynomial vanishes somewhere with high multiplicity imposes more linear constraints on the coefficients
of Q than simply asking that Q vanishes there. To accomodate this, we need to enlarge the space where we
search for Q, and thus we end up with such a Q of higher degree than before.

We then benefit from the increased vanishing multiplicity to deduce that for any p that is near the received
word r, the univariate polynomial H(x) = Q(x, p(x)) vanishes with high multiplicity at many points, and
thus must be identically 0. This lets us recover p(x) by factoring Q, as before. A-priori it is not clear
that there will be an improvement in the decoding radius: the larger degree of Q is traded off against the
increased vanishing multiplicity. Nevertheless there is an improvement. We discuss the philosphical reason
to expect an improvement later in this section.

4.1 Preparations

We state below some simple properties of multiplicity. We omit the (easy) proofs.

Lemma 4.3. Suppose H(x) ∈ F[x] and u ∈ F are such that mult(H,u) ≥ M . Then

(x− u)M | H(x).

5We will see this cleverer choice when we discuss the Guruswami-Sudan algorithm.

6

As an immediate consequence of the previous lemma, we get the multiplicity analogue of Lemma 1.1.

Lemma 4.4. Let H(x) ∈ F[x] be a nonzero polynomial of degree at most d. Then
∑

u∈F mult(H,u) ≤ d.

Lemma 4.5. Suppose Q(x, y) ∈ F[x, y] and p(x) ∈ F[x]. Suppose u ∈ F is such that mult(Q, (u, p(u))) ≥ M .
Then, letting H(x) = Q(x, p(x)), we have mult(H,u) ≥ M .

We will be dealing with certain weighted degrees of bivariate polynomials. For a monomial xiyj , its
(α, β)-weighted degree is defined to be αi+ βj.

4.2 The Guruswami-Sudan Algorithm

With these lemmas in hand we can now formally describe the Guruswami-Sudan algorithm.
Algorithm RSListDecodeV2
Input: r : S → Fq, decoding radius e.

1. Interpolation: Let M = k. Let D = M
√
nk.

We let LD be the set of all monomials xiyj for which the (1, k−1)-weighted degree is at most D. Thus:

LD = {xiyj | i+ (k − 1)j ≤ D}.

We also consider the corresponding sets of exponents.

TD = {(i, j) | i, j ≥ 0, i+ (k − 1)j ≤ D}.

For each (i, j) ∈ TD, we let aij be an indeterminate.

Let Q(x, y) ∈ Fq[x, y] be the polynomial of (1, k− 1)-weighted degree at most D whose coefficients are
aij :

Q(x, y) =
∑

(i,j)∈TD

aijx
iyj .

Consider the system of homogeneous linear equations on the aij by imposing the condtion, for each
u ∈ S:

mult(Q, (u, r(u))) ≥ M.

Find a nonzero solution (aij) ∈ FTD
q . If no nonzero solution exists, FAIL.

2. Polynomial Algebra: Factor Q(x, y) into its irreducible factors over Fq. Let L be the set of all p(x)
for which y− p(x) is an irreducible factor of Q(x, y). These are our candidate codewords. Now output
those codewords of L which are within distance e of the received word r.

We will show the following theorem.

Theorem 4.6. If e < n −
√
nk, then Algorithm RSListDecodeV2 outputs the list of all codewords in

GRS(q, k, S) that are within Hamming distance e of r. Furthermore, this list has size at most 2
√
nk.

4.3 Correctness of the Algorithm RSListDecodeV2

Suppose p(x) is a codeword of GRS(q, k, S) whose distance from r is at most e. We want to show that p(x)
is one of the codewords output by the algorithm.

Let E ⊆ S be the set of u ∈ S such that p(u) ̸= r(u). This is the error set for p. By hypothesis, |E| ≤ e.
First we look at the interpolation step. Since it is a system of homogeneous linear equations, we can

show existence of a nonzero solution by counting equations and unknowns. The total number of unknowns
is |TD|, which can be lower bounded by:

|TD| =
∑

j≤D/(k−1)

((D + 1)− (k − 1)j) ≥ D2

2(k − 1)
.

7

How many equations are there? Asking that Q vanishes at a point (u, r(u)) with multiplicity at least M
is the same as asking that

(
M+1

2

)
coefficients of the polynomial Q(x + u, y + r(u)) vanish. Thus the total

number of equations in the system is n ·
(
M+1

2

)
.

We now check that the number of unknowns is larger than the number of constraints holds.

D2

2(k − 1)
=

nkM2

2(k − 1)

= n · M
2

2
· k

k − 1

≥ n · M(M + 1)

2
,

where the last inequality uses the fact that M+1
M < k

k−1 , since M = k.
Thus the system of equations has a nonzero solution, and the first step of the algorithm succeeds.
Now we consider the second step. By construction, the polynomial Q(x, y) has the property that

mult(Q, (u, r(u))) ≥ M for all u ∈ S.
Consider the polynomial H(x) = Q(x, p(x)). For any point u ∈ S \ E, we have that p(u) = r(u), and

thus by Lemma 4.5, mult(H,u) ≥ M . Furthermore, the degree of H is at most D.
Thus H(x) is a polynomial of degree at most D whose total multiplicity of vanishing at all points in S

is at least:
(|S| − |E|) ·M ≥ (n− e) ·M > (n− (n−

√
nk)) ·M =

√
nk ·M = D.

By Lemma 4.4, we conclude that H(x) must be the zero polynomial.
Again, since Q(x, p(x)) = H(x) = 0, we get that y − p(x) divides Q(x, y). So y − p(x) will appear in the

list of factors of Q, and thus p(x) will appear in the output of Algorithm RSListDecodeV2, as desired. The

number of such factors is at most the y-degree of Q, which is at most D
k−1 ≤ k

√
nk

k−1 ≤ 2
√
nk.

4.4 Why do multiplicities help?

The role of multiplicities in the previous argument seems mysterious. Why did multiplicities improve the
decoding radius of the Sudan algorithm?

In the univariate case, if we have a set T ⊆ Fq, then we have the simple fact that any polynomial Q(x)
that vanishes at all points of T must be a multiple of ZT (x) =

∏
u∈T (x− u). Analogously, any polynomial

Q(x) that vanishes with multiplicity M at each point of T must be a multiple of ZT (x)
M . Informally, this

means that in the univariate case, we don’t get more information by asking Q to vanish with high multiplicity
at the points of a set.

In the multivariate case, there is no similar tight connection between simply vanishing at all points of a
set T ⊆ Fm

q and vanishing with high multiplicity at all points of T .
The following facts shed further light on this phenomenon. If we take a “typical” polynomial Q(x, y) ∈

Fq[x, y] of low degree, it will vanish at approximately q points in Fq × Fq. On the other hand, a typical Q
will vanish with multiplicity ≥ 2 at only O(1) points of Fq ×Fq. This means that a polynomial that vanishes
with high multiplicity at all the points of a set of interest is a very special polynomial, and presumably its
fate is more strongly tied to that of the set.

There have been many successful uses of the idea of interpolation in several areas of mathematics, and
taking multiplicities into account is often useful [Sch09, Sch06, DKSS09].

5 Decoding of interleaved Reed-Solomon codes under random er-
ror

We give one final example of the power of interpolation ideas for decoding algebraic codes. This example
concerns interleaved Reed-Solomon codes, which we now define.

8

Let q be a prime power, S ⊆ Fq, and let k ≥ 0 and s ≥ 1 be integers. We define the interleaved
Reed-Solomon code IRS[q, k, S, s] as follows. The alphabet Σ of this code equals Fs

q, and the coordinates
of each codeword are indexed by S (thus the blocklength equals |S|). For each s-tuple of polynomials
(p1(x), . . . , ps(x)) ∈ (Fq[x])

s with deg(pi) < k for each i, there is a codeword:

((p1(α), p2(α), . . . , ps(α)) | α ∈ S) ∈ ΣS .

Another way to view this is as follows. To get codewords of the interleaved Reed-Solomon code IRS[q, k, S, s],
we take a s × |S| matrix whose rows are codewords of GRS[q, k, S, s], and view each column of the matrix
as a single symbol in Σ = Fs

q. The strings in Σ|S| so obtained are the codwords of IRS[q, k, S, s].
Clearly, interleaved Reed-Solomon codes are very closely related to Reed-Solomon codes. It is easy to see

that the rate of IRS[q, k, S, s] equals k/|S| and the minimum distance of IRS[q, k, S, s] equals |S| − k + 1
(exactly as in the case of Reed-Solomon codes).

We now turn our attention to decoding algorithms. The problem of decoding interleaved Reed-Solomon
codes from e errors is the following natural-looking question. Let r : S → Fs

q be the “received word”. We

will sometimes think of r as a tuple of s functions r(1), r(2), . . . , r(s), where r(i) : S → Fq is the ith output
coordinate of r. Our goal is to find one/many/all tuples of polynomials p = (p1, . . . , ps) ∈ (Fq[x])

s with
deg(pi) < k such that r(u) = (p1(u), . . . , ps(u)) for all but at most e values of u ∈ S (in this case we write
dist(p, r) ≤ e.

Clearly, if dist(p, r) ≤ e, then we have that for all i, dist(pi, r
(i)) ≤ e. Note that the converse does not

hold: the sets of coordinates u ∈ S where pi and r(i) agree can look very different for different i. When the
e is at most (|S| − k)/2 (half the minimum distance of the code), then the above observation gives an easy
algorithm to decode interleaved Reed-Solomon codes from adversarial errors: for each i, decode r(i) (using
a standard Reed-Solomon decoder) to find the unique polynomial pi of degree < k that is within distance e
of it. Taking these pi together to form a tuple p, we get a candidate codeword p of IRS, and then we check
that dist(p, r) ≤ e. 6

We will now describe an algorithm that can decode from a signficantly larger number of random errors.
Specifically, the model for generating r is as follows. There is some unknown tuple of polynomials p =
(p1, . . . , ps) ∈ (Fq[x])

s where deg(pi) < k. There is an unknown set J ⊆ S (the set of error locations) of size
at most e. Based on these unknowns, the received word r : S → Fs

q is generated by setting:

r(u) =

{
(p1(u), p2(u), . . . , ps(u)) u ̸∈ J

a uniformly random element of Fs
q u ∈ J

.

Note that the number of errors (i.e., the number of u ∈ S for which p(u) ̸= r(u)) is always at most |J |, and
is with high probability equal to |J |, but it could be smaller.

In this setting, we would like to design a decoding algorithm that takes r as input and recovers p,
the underlying codeword. Below we give a natural (given the previous sections) algorithm for this due to
Bleichenbacher, Kiayias and Yung. A clever and nontrivial analysis shows that this algorithm succeeds with
high probability even when the number of errors e which is as large as s

s+1 · (n − k), which for large s is
close to the minimum distance of the code (twice the worst-case unique decoding radius!). This result is very
surprising.

The key idea is to run a Berlekamp-Welch type decoding algorithm for each of the r(i), while taking into
account the fact that the error locations, and hence the error-locating polynomials, are the same.
Algorithm IRSDecode
Input: r : S → Fs

q.

1. Interpolation: Let a0, a1, . . . , ae be indeterminates and for each ℓ ∈ {1, . . . , s}, let bℓ,0, bℓ,1, . . . , bℓ,k+e−1

be indeterminates. Consider the following system of homogeneous linear equations in these indetermi-

6A more sophisticated variation using the Guruswami-Sudan list-decoding algorithm can extend the above algorithm to
decode interleaved Reed-Solomon codes from any e ≤ n−

√
nk errors. Further improvements seem difficult: decoding from an

even larger number of errors in the worst case would need a breakthrough on decoding of standard Reed-Solomon codes.

9

nates, one equation for each (u, ℓ) ∈ S × {1, . . . , s}:(
e∑

i=0

aiu
i

)
· r(ℓ)(u) =

k+e−1∑
j=0

bℓ,ju
j . (3)

Solve the system to find any nonzero solution (a0, . . . , ae, b1,0, . . . , bs,k+e−1) ∈ Fe+s(k+e)
q . If there is no

nonzer solution, then FAIL.

2. Polynomial Algebra: For the solution found in the previous step, defineA(x), B1(x), B2(x), . . . , Bs(x) ∈
Fq[x] by:

A(x) =

e∑
i=0

aix
i,

Bℓ(x) =

k+e−1∑
j=0

bℓ,jx
j .

If A(x) divides Bℓ(x) for each ℓ, then return the tuple

(B1(x)/A(x), B2(x)/A(x), . . . , Bs(x)/A(x))

(otherwise FAIL).

The correctness guarantee of the above algorithm is given by the following theorem.

Theorem 5.1. Suppose e < s
s+1 ·(n−k), and let J ⊆ S be of size at most e. Suppose p = (p1(x), . . . , ps(x)) ∈

(Fq[x])
s is such that deg(pi) < k. Finally, let r be generated based on p and J by the random process described

above.
Then with probability at least 1− n

q , Algorithm IRSDecode on input r will return p.

A proof of this theorem is a bit too involved to give here. We instead just give a high-level overview of
what we expect will happen.

Our hope is that A(x) ends up equalling the error-locating polynomial for this setting, namely:

Z(x) =
∏
α∈J

(x− α).

This error-locating polynomial has degree at most e. Consider also the polynomial Wℓ(x) = Z(x) · pℓ(x),
which has degree < k + e. We clearly have:

Z(x)r(i)(x) = Wi(x)

for each x ∈ S. Thus (Z(x),W1(x),W2(x), . . . ,Ws(x)) is a valid solution to the system of linear equations
above, and then the correct solution pi(x) = Wi(x)/Z(x) does get returned.

There may be other valid solutions to the system of linear equations. For example, if the error set J has
size < e, then A(x) = Z(x) · (X+1) and Bi(x) = Wi(x) · (X+1) is also a valid solution, but the final output
of the algorithm is still the same.

The actual proof of Bleichenbacher, Kiayias and Yung is very interesting, and shows that these are the
only possibilities with high probability. It is is based on treating the random variables (r(i)(u))u∈J as formal
variables, and careful studying the multivariate polynomials that arise as subdeterminants of the matrix
underlying the system of linear equations. Most crucially, one needs to identify appropriate Vandermonde
matrices inside this matrix, and then apply the Schwartz-Zippel lemma (which says that nonzero multivariate
polynomials evaluate to nonzero at a random point with high probability).

10

6 Further reading

Algorithms for decoding interleaved Reed-Solomon codes from random error were given by Bleichenbacher,
Kiayas and Yung [BKY07] (the algorithm we saw here) and Coppersmith and Sudan [CS03] (a different but
related algorithm).

There have been many advances on the list-decoding of error-correcting codes (and list-decoding of
algebraic codes in particular) in recent years. The most important result is the construction and decoding
of “capacity achieving” list-decodable codes by Guruswami and Rudra [GR08] (based on a breakthrough
by Parvaresh and Vardy [PV05]). These codes, called Folded Reed-Solomon codes, are a variation on
Reed-Solomon codes, and achieve the optimal tradeoff between rate and number of errors correctable by
list-decoding with polynomially bounded list size.

Another family of algebraic codes called Multiplicity Codes (based on evaluating polynomials and their
derivatives), were also shown to achieve list-decoding capacity by Guruswami and Wang [GW13] and Kop-
party [Kop12].

All these list decoding algorith:ms use extensions of the interpolation decoding technique using high-
variate interpolation. Very recently, Kopparty, Ron-Zewi, Saraf and Wootters [KRZSW18] showed that both
Folded Reed-Solomon codes and Multiplicity codes achieve list-decoding capacity with constant list size.

The list-decodability of Reed-Solomon codes themselves is still open. For all we know, Reed-Solomon
codes themselves may be list-decodable upto list decoding capacity: this corresponds to list-decoding from
O(k) agreements (instead of the

√
nk agreements that the Guruswami-Sudan algorithm needs). The best

negative result in this direction is by Ben-Sasson, Kopparty and Radhakrishnan [BSKR09], who show that
the list size may become superpolynomial for Reed-Solomon codes of vanishing rate.

Interpolation methods have a long history in mathematics. Some striking classical applications include the
Thue-Siegel-Roth theorems on diophantine approximation, the Gelfond-Schneider-Baker theorems on tran-
scendental numbers [Bak90], and the Stepanov-Bombieri-Schmidt proofs of the Weil bounds [Sch06]. More re-
cent applications include the results of Dvir, Lev, Kopparty, Saraf and Sudan [Dvi09, SS08, DKSS09, KLSS11]
on the Kakeya problems over finite fields, and the results of Guth and Katz [GK10, GK15] in combinatorial
geometry, and the results of Croot, Lev, Pach, Ellenberg and Giswijit on the cap set problem [CLP17, EG17].

References

[Bak90] Alan Baker. Transcendental number theory. Cambridge university press, 1990.

[BKY07] Daniel Bleichenbacher, Aggelos Kiayias, and Moti Yung. Decoding interleaved reed-solomon
codes over noisy channels. Theor. Comput. Sci, 379(3):348–360, 2007.

[BSKR09] Eli Ben-Sasson, Swastik Kopparty, and Jaikumar Radhakrishnan. Subspace polynomials and
limits to list decoding of reed–solomon codes. IEEE Transactions on Information Theory,
56(1):113–120, 2009.

[BW] E. R. Berlekamp and L. Welch. Error correction of algebraic block codes. US Patent Number
4,633,470.

[CLP17] Ernie Croot, Vsevolod F Lev, and Péter Pál Pach. Progression-free sets in are exponentially
small. Annals of Mathematics, pages 331–337, 2017.

[CS03] Don Coppersmith and Madhu Sudan. Reconstructing curves in three (and higher) dimensional
spaces from noisy data. In Proceedings of the 35th Annual ACM Symposium on Theory of
Computing, pages 136–142, 2003.

[DKSS09] Z. Dvir, S. Kopparty, S. Saraf, and M. Sudan. Extensions to the method of multiplicities,
with applications to Kakeya sets and mergers. In 50th IEEE Symposium on Foundations of
Computer Science (FOCS), pages 181–190, 2009.

11

[Dvi09] Zeev Dvir. On the size of kakeya sets in finite fields. Journal of the American Mathematical
Society, 22(4):1093–1097, 2009.

[EG17] Jordan S Ellenberg and Dion Gijswijt. On large subsets of with no three-term arithmetic
progression. Annals of Mathematics, pages 339–343, 2017.

[GK10] L. Guth and N. H. Katz. Algebraic methods in discrete analogs of the kakeya problem. Advances
in Mathematics, 225(5):2828–2839, 2010.

[GK15] Larry Guth and Nets Hawk Katz. On the erdős distinct distances problem in the plane. Annals
of mathematics, pages 155–190, 2015.

[GR08] Venkatesan Guruswami and Atri Rudra. Explicit codes achieving list decoding capacity: Error-
correction with optimal redundancy. IEEE Transactions on Information Theory, 54(1):135–150,
2008.

[GS99] Venkatesan Guruswami and Madhu Sudan. Improved decoding of Reed-Solomon and algebraic-
geometric codes. IEEE Transactions on Information Theory, 45:1757–1767, 1999.

[GW13] Venkatesan Guruswami and Carol Wang. Linear-algebraic list decoding for variants of reed-
solomon codes. IEEE Trans. Information Theory, 59(6):3257–3268, 2013.

[HKT08] J. W. P. Hirschfeld, G. Korchmaros, and F. Torres. Algebraic Curves over a Finite Field
(Princeton Series in Applied Mathematics). Princeton University Press, 2008.

[KLSS11] Swastik Kopparty, Vsevolod F Lev, Shubhangi Saraf, and Madhu Sudan. Kakeya-type sets in
finite vector spaces. Journal of Algebraic Combinatorics, 34(3):337–355, 2011.

[Kop12] S. Kopparty. List-decoding multiplicity codes. In Electronic Colloquium on Computational
Complexity (ECCC), TR12-044, 2012.

[KRZSW18] Swastik Kopparty, Noga Ron-Zewi, Shubhangi Saraf, and Mary Wootters. Improved decoding
of folded reed-solomon and multiplicity codes. In 2018 IEEE 59th Annual Symposium on
Foundations of Computer Science (FOCS), pages 212–223. IEEE, 2018.

[Pet60] Wesley Peterson. Encoding and error-correction procedures for the bose-chaudhuri codes. IRE
Transactions on Information Theory, 6(4):459–470, 1960.

[PV05] F. Parvaresh and A. Vardy. Correcting errors beyond the Guruswami-Sudan radius in poly-
nomial time. In 46th IEEE Symposium on Foundations of Computer Science (FOCS), pages
285–294, 2005.

[Sch06] Wolfgang M Schmidt. Equations over finite fields: an elementary approach, volume 536.
Springer, 2006.

[Sch09] WM Schmidt. Diophantine Approximation, volume 785. Springer, 2009.

[SS08] Shubhangi Saraf and Madhu Sudan. Improved lower bound on the size of Kakeya sets over
finite fields. Analysis and PDE, 2008.

[Sud97] M. Sudan. Decoding of reed solomon codes beyond the error-correction bound. J. Complexity,
13(1):180–193, 1997.

12

