
LIPSCHITZ MAPS ON TREES

STEVO TODORCEVIC

Abstract. We introduce and study a metric notion for trees and
relate it to a conjecture of Shelah [10] about the existence of a
finite basis for a class of linear orderings.
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0. Introduction

The notion of a tree in this note is to be interpreted in its order-
theoretic sense, i.e. a partially ordered set (T,≤T ) with the property
that the predecessors of every point form a well-ordered chain1. If we
think of trees as natural generalizations of ordinals, then we would put
a tree S to be smaller than a tree T , or S ≤ T in short, if there is a
strictly increasing map f : S −→ T . We say that S and T are equiv-
alent, and write S ≡ T , whenever S ≤ T and T ≤ S. We shall write
S < T , whenever S ≤ T and T � S. Note that if f : S −→ T is
strictly increasing, then g : S −→ T defined by g(t) = f(t) ¹ ht(t) is

1The order-type of {x ∈ T : x <T t} is called the height of t in T and denoted
by ht(t). The αth level of T is the set Tα = {t ∈ T : ht(t) = α}. If α ≤ ht(t), then
t ¹ α denotes the s ≤T t such that ht(s) = α. We make the implicit assumption
that different nodes of the same level of T have different sets of predecessors. This
allows us to define s ∧ t = {x ∈ T : x ≤ s and x ≤ t}.
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also strictly increasing. So, without loss of generality, we may restrict
ourselves to strictly increasing maps that are also level-preserving. It
turns out that there is a more natural and more general way to intro-
duce these maps. Consider ∆ : T 2 −→ Ord, defined by

∆(s, t) = otp{x ∈ T : x <T s and x <T t}.
One should view ∆ as some sort of distance function on T by inter-
preting inequalities like ∆(x, y) > ∆(x, z) as saying that x is closer to
y than to z. A partial map g from a tree S into a tree T is Lipschitz,
if g is level-preserving and

∆(g(x), g(y)) ≥ ∆(x, y)

for all x, y ∈ dom(g). Note that this notion is equivalent to the notion
of a strictly increasing level-preserving map, when the domain of g is
a downward closed subset of S, but is otherwise more general. Any
partial Lipschitz map g from S into T , however, naturally extends to
a strictly increasing level-preserving map ĝ on the downward closure
of dom(g) in S, defined by letting ĝ(x) = g(s) ¹ ht(x) for some (equiv-
alently, for all) s ∈ dom(g) extending x. With the order ≤ and the
corresponding equivalence relation ≡, the class T of all trees has been
successfully used as a source of invariants in places where ordinals are
not sufficient (see e.g. [16]). Unfortunately, the structure of (T ,≤)
is immense in comparison with the structure of the ordinals, so one
is naturally constrained to study smaller subclasses of T . A natural
way to split T into subclasses that can be studied separately is to con-
sider the class B of all trees which are comparable with any other tree.
Clearly, every ordinal belongs to B and the ordinals split T into classes
of trees according to their heights. But B is much more extensive than
the class of ordinals and therefore a much finer partition of T is possi-
ble. For example, Ohkuma [9] showed that B includes the class S of all
scattered trees, the class of trees that do not contain isomorphic copies
of the tree of all finite binary sequences. In [8], Ohkuma also showed
that S is well-ordered under ≤. It is unknown however whether B is
included in the class Sσ of all sigma-scattered trees, the class of trees
for which the analogues of Ohkuma’s results can be proved. The most
natural class of trees for testing the extent of B relative to Sσ would
be the class A of all uncountable trees with no uncountable chains nor
levels, the class of so-called Aronszajn trees. This class of trees is of
independent interest as there is a growing number of problems in com-
binatorial set theory that have their reformulation inside A. In fact,
the results of this note were obtained during the course of working on
one such problem, the basis problem for uncountable linear orderings
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(see e.g. [14]). From experience one learns that any naturally defined
member of A has plenty of Lipschitz self-maps. Motivated by this, we
isolate the notion of a Lipschitz tree, an uncounable tree T with the
property that every level-preserving map from an uncountable subset
of T into T has an uncountable Lipschitz restriction. It turns out that
with the exceptions of a few pathological examples, every Lipschitz tree
belongs to A and conversely, that any naturally defined member of A
is Lipschitz. It was therefore quite unexpected to find out that it is
impossible to define two incomparable Lipschitz trees. In fact, for quite
a long time we did not know if the whole class A is a chain or not, and
the comparability problem for A seemed to us a closely related to a
conjecture of Shelah [10] about a basis for a class of linear orderings.
We shall show that while A inherits lots of structure from the chain C
of Lipschitz trees, it is possible to construct large families of pairwise
incomparable members of A. As one might have expected, the con-
struction is based on a particular infinite strictly decreasing sequence
of members of C. Both results can be used to solve an old problem of
Laver [6], who asked whether the class A is well-quasi-ordered under a
stronger quasi-order than ≤. Curiously, the analogy between the pair
(S,Sσ) and the pair (C,A) still stands, though perhaps this could not
have been guessed at the time Laver was writting his papar. A con-
siderable part of our paper concerns the structure that one finds inside
the class C of Lipschitz trees. For example, we prove that the class of
uniformly branching Lipschitz trees has the Schroeder-Bernstein prop-
erty, that there is a reduction of C into the space of uniform ultrafilters
on ω1, and that there is a natural shift operation on C which respects
the quasi-ordering ≤. It turns out that the shift T (1) of a tree T ∈ C
is the immediate successor of T in C,2 so every T ∈ C belongs to the
N-chain T (n) (n ∈ N) of positive shifts. We shall also determine when
a negative shift is defined and in particular, when a Lipschitz tree T
belongs to a Z-chain T (n) (n ∈ Z) of its shifts. It should be pointed out
that we always have the equation T (n+m) ≡ (T (n))(m) whenever these
shifts are properly defined.

As it will precisely be explained in §8, further development of the
structure theory for C and A requires a natural hypothesis about the
profusion of partial Lipschitz maps between members of A which turns
out to be closely related to a well-known basis problem for uncountable
linear orderings. We shall use the standard approach one takes when

2The shift T (1) is also an immediate successor of T in the whole class (A,≤) if
we use a natural conjecture about Lipschitz maps, a conjecture which turn out to
be equivalent to an old conjecture of Shelah[10, Conjecture 1]; see §8.
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working on this kind of problem (see e.g. [14] for more explanations).
On one hand, one tries to identify all members of the basis, i.e., to
list all the critical structures of a given class. These are the canonical
structures whose description should not rely on any additional set-
theoretical assumption. On the other hand, to show that a given list of
critical structures is in some sense complete, it is frequently necessary
to use additional set-theoretic assumptions that postulate some sort of
logical completeness of the natural framework where all the structure
of our class can be found. For example, for the problems involving
the structure (A,≤), the natural framework is the class H(ω2) of sets
whose transitive closures have cardinalities not larger than ℵ1. In fact,
all problems involving the structure of (C,≤) and (A,≤) are sentences
of (H(ω2),∈) with only one change of quantifiers. The fact that there
is a quite robust such theory of (H(ω2),∈) (see [17]) gives us some
reassurance to this approach. For studying (C,≤) and (A,≤) we shall
in fact need a rather weak form of this logical completeness, appearing
as postulates about possible extensions of the Baire category theorem
(see e.g. [3] or [13]). More precisely, for all our purposes here, we need
only to postulate the existence of filters that would meet given families
of ℵ1-many dense sets in proper partial orderings of size at most ℵ1.
Since there seem to be no commonly accepted notation for this set-
theoretic postulate, we will denote it here by (*) and use this symbol
to mark any result in the paper that makes use of it. As a matter
of fact, a large majority of our results needs (*) for partial orderings
satisfying the countable chain condition, so most of the time, we shall
be working in an even older framework (see [3]). It should also be
noted that the two sides of work on a given basis problem described
above usually benefit from each other and there is no exception in the
problem we choose to study here. For example, the fact that under (*),
C is a chain in (A,≤) which is both cofinal and coinitial, indicates that
to describe a tree from A with certain properties, it is likely that some
Lipschitz trees will be used in the construction. This indeed was the
hint behind the construction of §3 of a pair of incomparable trees from
A. The fact that under (*), C has no minimal nor maximal elements,
was the hint towards the definition of the shift operation that gave
us a Z-chain of Lipschitz trees thus solving the old problem of Laver
[6]. Conversely, the definition of the shift operation suggests the very
natural question of whether there is any tree strictly between T and
its shift T (1) leading us towards the result that under (*), there is no
Lipschitz tree S such that T < S < T (1). Whether T (1) is an immediate



LIPSCHITZ MAPS ON TREES 5

successor of T in the larger class A as well, lies at the very heart of the
conjecture of Shelah [10, Conjecture 1].

I would like to thank Bernhard König and Justin Moore for help in
the preparation of this paper. The paper was written during the Fall of
2000 while I was a guest of the Mittag-Leffler Institute in Djursholm,
Sweden.

1. Lipschitz trees

We have remarked above that the notion of Lipschitz map captures
the quasi-ordering ≤ we wish to study here. The following derived
notion is then quite natural.

1.1 Definition. A Lipschitz tree is any Aronszajn tree T with the
property that every level-preserving map from an uncountable subset
of T into T is Lipschitz on an uncountable subset of its domain.

1.2 Remark. It should be noted that if we restrict ourselves to count-
ably branching trees of height ω1, there are essentially no Lipschitz
trees outside the class of Aronszajn trees. A tree of height ω1 in which
every node has extensions to all higher levels cannot have an uncount-
able chain if it is to satisfy the requirement of Definition 1.1. Similarly,
with (*) such a tree must have all levels countable as well.

The following property of Lipschitz trees will be frequently used be-
low:

1.3 Lemma. Suppose T is a Lipschitz tree, n is a positive integer,
and that A is an uncountable subset of the nth power of T .3. Then
there exists an uncountable B ⊆ A such that ∆(ai, bi) = ∆(aj, bj) for
all a 6= b in B and i, j < n. It follows that the nth power of T is a
Lipschitz tree as well.

Proof. Fix i, j < n and apply the Definition 1.1 to the partial map
ai 7−→ aj (a ∈ A) obtaining an uncountable A0 ⊆ A such that
∆(ai, bi) ≤ ∆(aj, bj). Applying Definition 1.1 to the inverse map
aj 7−→ ai (a ∈ A0) will give us an uncountable A1 ⊆ A such that
∆(ai, bi) = ∆(aj, bj). Repeating this procedure successively for every
pair i, j < n, we reach the conclusion of Lemma 1.3. ¤
1.4 Lemma. Every uncountable subset of a Lipschitz tree T contains
an uncountable antichain. More generally, every family A if pairwise
disjoint finite subsets of T contains an uncountable subfamily B such
that ∪B is an antichain of T .

3T ⊗ T ⊗ · · · ⊗ T (n times), is defined as the set of all n-tuples of elements of T
of equal heights equipped with the coordinatewise ordering.
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Proof. Let X be a given uncountable subset of some Lipschitz tree T .
It suffices to find an uncountable antichain in the downwards closure of
X in T , so we may in fact assume that X is already downward closed in
T . We may also assume that no x ∈ X is an end-node of T and in fact
that every splitting node x ∈ X has two successors x0 and x1 in X that
split at x and have the same height in T . Applying the fact that T is a
Lipschitz tree to the partial map f(x0) = x1 (x a splitting node of X)
gives us an uncountable set Y of splitting nodes of X such that f is
Lipschitz on Y0 = {y0 : y ∈ Y }. It follows that Y0 is an uncountable
antichain of T . The second part of the lemma follows from the first
and the fact that finite powers of T are Lipschitz as well (see 1.3). This
finishes the proof. ¤
1.5 Definition. An Aronszajn tree T is irreducible, if T ≤ U for every
uncountable downward closed subset U of T .

The following Lemma gives us the first piece of information about
the structure of the class of Lipschitz trees.

1.6 Lemma (*). Every Lipschitz tree is irreducible.

Proof. Let T be a given rooted Lipschitz tree and let U be an uncount-
able downwards closed subset of T . We assume that every t ∈ U has
extensions in U in all levels above ht(t) and will use (*) to produce a
map witnessing T ≤ U . Let C be the set of all countable limit ordinals
λ with the property that every node t of U of height < λ has infinitely
many extensions in the λth level Uλ of U . Note that C is closed and
unbounded and that 0 ∈ C.

Let P be the poset of all partial finite level-preserving Lipschitz maps
from T into U ¹ C4. Let us show that P satisfies the countable chain
condition. So let pξ (ξ < ω1) be a given sequence of elements of P .
We may assume that for every ξ < η < ω1, pξ and pη agree on the
intersection of their domains. Let aξ be the projection of dom(pξ) \
(T ¹ ξ) 5 on the ξth level Tξ of T , and let bξ be the projection of
rang(pξ)\(T ¹ ξ) on the ξth level of T . Note that if mξ is the cardinality
of aξ and nξ the cardinality of bξ, then mξ ≥ nξ. Let

h(ξ) = max{∆(s, t) + 1 : s, t ∈ aξ ∪ bξ, s 6= t}.
Note that if ξ is a limit ordinal, h(ξ) is smaller than ξ, since we are
working under the implicit assumption that our trees have the prop-
erty that different nodes on the same limit level have different sets of
predecessors. By the Pressing Down Lemma, there is a stationary set

4U ¹ C =
⋃

λ∈C Uλ.
5T ¹ ξ is the union of the first ξ levels of T .
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Γ of countable limit ordinals such that h is constantly equal to α on
Γ. Refining Γ, we may assume that for some a, b ⊆ Tα, aξ ¹ α = a
and bξ ¹ α = b for all ξ ∈ Γ. Moreover, we may assume that for some
m and n and all ξ ∈ Γ, mξ = m and nξ = n. Let aξ(i) (i < m)
and bξ(i) (i < n) be a fixed enumeration for all ξ ∈ Γ. Note that pξ

naturally extends to a map from aξ into bξ and this in turn induces a
map from m onto n. We assume that this map from m onto n does not
depend on ξ in Γ. Applying Lemma 1.4, we go to an uncountable set
Ω such that for all ξ 6= η in Ω, every node of aξ ∪ bξ is incomparable
to every node of aη ∪ bη. Now, we apply the assumption that T is a
Lipschitz tree via Lemma 1.3 to obtain an uncountable subset Σ of Ω
such that for all ξ 6= η in Σ and all i < m and k < n,

∆(aξ(i), aη(i)) = ∆(bξ(k), bη(k)).

We claim that r = pξ ∪ pη is a Lipschitz map for all ξ, η ∈ Σ. For, if
x, y ∈ dom(pξ)∪dom(pη) are either in the root, or they both come from
dom(pξ) or dom(pη), or they project to aξ(i) and aη(j) with i 6= j, then
the inequality ∆(r(x), r(y)) ≥ ∆(x, y) follows from the corresponding
inequality for pξ and pη. If they project to aξ(i) and aη(j) respectively
with i = j, then we in fact have the equality ∆(r(x), r(y)) = ∆(x, y).

For t ∈ T let Dt be the collection of all p ∈ P such that t ∈ dom(p).
By the choice of C it follows easily that each Dt is a dense-open subset
of P . Applying (*) to P and the collection Dt(t ∈ T ) of dense-open
subsets of P , one gets a total Lipschitz map f : T −→ U ¹ C. This
shows that T ≤ U and completes the proof. ¤

The following fact shows that Lipschitz trees have a representation
that is quite convenient to work with.

1.7 Lemma (*). Every Lipschitz tree T is isomorphic to a downward
closed subtree U of the tree of all maps from countable ordinals into ω
such that {ξ ∈ dom(x)∩dom(y) : x(ξ) 6= y(ξ)} is finite for all x, y ∈ U .

Proof. Define P to be the poset of all finite partial functions p from
T × ω1 into ω such that the following holds for all x 6= y in dom0(p)6:

(1) p(x, ξ) = p(y, ξ) for ξ < ∆(x, y),
(2) p(x, ξ) 6= p(y, ξ) for ξ = ∆(x, y)7.

We let p extend q, if p extends q as a function, and

6Here and below, dom0(p) = {t ∈ T : (t, α) ∈ dom(p) for some α} and
dom1(p) = {ξ ∈ ω1 : (t, ξ) ∈ dom(p) for some t ∈ T}.

7In (1) and (2) we are making the implicit requirement that for every ξ ∈ dom1(p)
and x 6= y ∈ dom0(p), if ξ ≤ ∆(x, y), then (x, ξ) ∈ dom(p) iff (y, ξ) ∈ dom(p), and
moreover, that always (x, ∆(x, y) and (y, ∆(x, y)) belong to dom(p).
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(3) p(x, ξ) = p(y, ξ) for all x, y ∈ dom0(q) and ξ < ht(x), ht(y) with
the property that ξ /∈ dom1(q).

It is clear that a sufficiently generic filter will give us the desired embed-
ding, and so we concentrate on showing that P satisfies the countable
chain condition.

So let pδ (δ < ω1) be a given sequence of elements of P . Let aδ be
the projection of dom0(pδ) onto the δth level of T and let

h(δ) = max{∆(s, t) + 1 : s, t ∈ aδ, s 6= t}.
Then there is a stationary set Γ of countable limit ordinals on which
the mapping h, as well as the mapping δ 7−→ dom(pδ) ∩ (T ¹ δ)× δ is
constant. Let α and F be these constant values respectively. We may
assume that all aδ’s project to the same set a on the αth level and all
pδ’s generate isomorphic structures over α, a and F . Thus, in particular
we want that the isomorphism between the pδ’s (δ ∈ Γ) respects a fixed
enumeration aδ(i) (i < n) of aδ, where n is the common cardinality of
these sets. As in the previous proof, we find an uncountable subset Σ
of Γ such that for all γ 6= δ in Σ:

(4) aγ(i) and aδ(j) are incomparable for all i, j < n,
(5) ∆(aγ(i), aδ(i)) = ∆(aγ(j), aδ(j)) for all i, j < n.

We claim that if γ 6= δ are in Σ then pγ and pδ are compatible in P .
By (5), we have an ordinal β smaller than both γ and δ such that

∆(aγ(i), aδ(i)) = β for all i < n.

Define r ∈ P by letting its domain be

dom(pγ) ∪ dom(pδ) ∪ {(t, β) : t ∈ dom0(pγ) ∪ dom0(pδ), ht(t) > β}
and letting r(t, β) = 0 if t ∈ dom0(pγ), ht(t) > β and r(t, β) = 1 if
t ∈ dom0(pδ), ht(t) > β. Note that r is indeed a member of P , as
it clearly satisfies the conditions (1) and (2) above. It is also easily
checked that r extends both p and q, i.e. r(x, ξ) = r(y, ξ) for all
x, y ∈ dom0(p) or x, y ∈ dom0(q) and ξ is equal to β, the only new
member of dom1(r). This finishes the proof. ¤

1.8 Definition. A coherent tree is a tree that allows to be represented
as a family T of functions from countable ordinals into ω such that
{ξ ∈ dom(s) ∩ dom(t) : s(ξ) 6= t(ξ)} is finite for all s, t ∈ T .

Lemma 1.7 tells us that in the context of (*) the class of Lipschits
trees coincides with the class of coherent Aronszajn trees giving us an



LIPSCHITZ MAPS ON TREES 9

explanation of why Lipschitz trees that one can define without appeal-
ing to additional axioms of set theory are almost always coherent.8 It
follows that the class of coherent trees is less special than one might
have expected so we shall spend some time in examining this class. The
profusion of Lipschitz maps on coherent trees is perhaps best explained
by the following general fact.

1.9 Lemma. The square of every special 9 coherent tree T can be cov-
ered by the graphs of countably many Lipschitz functions.

Proof. It suffices to show that if f : D −→ T is a level-preserving map
from a subset D of T which intersects a given level of T in at most one
point, then D can be decomposed into countably many sets on which
f is Lipschitz. Let a : T −→ ω be a fixed map such that a(s) 6= a(t),
whenever s <T t and such that a is one-to-one on levels of T . For
t ∈ D, let

Ft = {ξ ∈ ω1 : ξ = ht(t) or ξ < ht(t) and t(ξ) 6= f(t)(ξ)}.
Then Ft is a finite set of ordinals. Let pt : Ft −→ ω and qt : Ft −→ ω
be defined by

pt(ξ) = a(t ¹ ξ) and qt(ξ) = a(f(t) ¹ ξ).

Since the family of all finite partial functions from ω1 into ω can be
decomposed into countably many subfamilies of pairwise compatible
functions, it suffices to establish the inequality

∆(f(s), f(t)) ≥ ∆(s, t)

for s, t ∈ D with the following properties: a(s) = a(t), a(f(s)) =
a(f(t)) and both ps and pt as well as qs and qt are compatible functions.

To this end, let α = ∆(s, t). Then α < ht(s), ht(t), since s and t (as
well as f(s) and f(t)) are incomparable in T , as they are mapped by
a to the same integer. By the properties of our parameters s and t, we
have that Fs ∩ α = Ft ∩ α and that f(s) and f(t) agree on this set.
From the definition of Fs and Ft, we conclude that f(s) and f(t) must
agree below α, and so ∆(f(s), f(t)) ≥ α. This finishes the proof. ¤

Note also the following fact which follows from the proof of Lemma
1.9.

1.10 Lemma. A coherent tree T is Lipschitz if and only if every un-
countable subset of T contains an uncountable antichain.

8The only Lipschitz tree known to us, which is not given in this way, is the tree
T (ρ0) of [12].

9A tree is special, if it can be covered by countably many antichains.
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2. Shifts of trees

In this and following sections we assume that trees T are represented
in such a way that its elements on a given level α are simply functions
from α into ω. A tree is uniform if it contains all finite changes of its
elements. More precisely, if there is a k ≤ ω such that rang(t) ⊆ k
for all t ∈ T , then one can define the uniform k-closure T ∗ of T as
the set of all s : α −→ k for which we can find t ∈ Tα such that
{ξ < α : s(ξ) 6= t(ξ)} is finite. Thus, a tree is uniform, if it is equal to
its ω-closure, but we shall use this word to even cover the case when the
tree is equal to its k-closure for k not necessarily equal to ω. In fact,
it will be clear from below that the crucial information found in this
paper is not changed if we assume that we are working with uniform
trees only, an assumption which we choose not to make.

Let Λ denote the set of all countable limit ordinals including 0, and
for a positive integer n, let Λ + n = {λ + n : λ ∈ Λ}.
2.1 Definition. For an integer m and a tree T , we let T (m) be its mth
shift, the downward closure of {t(m) : t ∈ T ¹ Λ}, where for a limit
node t of T, we let t(m) be the function with the same domain λ as t
defined by,

t(m)(ξ) = t(ξ −m),

when ξ −m exists; otherwise (i.e., when m is positive and the largest
limit ordinal ≤ ξ is less than m steps away), we let t(m)(ξ) = 0.

2.2 Remark. Note that a positive shift T (m) of any Lipschitz tree T is
Lipschitz and that the map t 7−→ t(m) is a strictly increasing map from
T into T (m). It follows that T ≤ T (m) for all m ≥ 0. Note also that for
nonnegative integers m and n,

T (m+n) = (T (m))(n)

holds. Therefore we have that T (m) ≤ T (n) for every pair of nonnegative
integers m and n such that m ≤ n.

2.3 Lemma. If T is a Lipschitz tree, then T (m) < T (n) for every pair
of nonnegative integers m and n such that m < n.

Proof. Suppose m < n are nonnegative integers and consider a level-
preserving map f : T (n) −→ T (m). For each countable ordinal δ, pick a
representative tδ from the δth level of T and let sδ ∈ Tδ be such that

f(t
(n)
δ ) = s

(m)
δ .

By Lemma 1.3, there is an uncountable set Γ of countable limit ordinals
such that ∆(tγ, tδ) = ∆(sγ, sδ) for all γ, δ ∈ Γ, γ 6= δ. Choose γ 6= δ
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in Γ such that α = ∆(tγ, tδ) = ∆(sγ, sδ) is smaller than both γ and δ
(i.e. tγ is incomparable to tδ and sγ is incomparable to sδ). Then

∆(t(n)
γ , t

(n)
δ ) = α + n > α + m = ∆(s(m)

γ , s
(m)
δ ).

This shows that f is not a Lipschitz map, finishing the proof. ¤
The following Lemma reveals that in the realm of Lipschitz trees,

T (1) is indeed the minimal tree above T .

2.4 Lemma (*). For every pair S and T of Lipschitz trees, S < T
implies S(1) ≤ T .

Proof. Choose representatives sδ ∈ Sδ (δ < ω1) and tδ ∈ Tδ (δ < ω1).
In §5 (Lemmas 5.2 and 5.3) we show that there is an uncountable set Γ
of countable limit ordinals such that ∆(sγ, sδ) < ∆(tγ, tδ) for all γ 6= δ
in Γ. We have already seen above in the proof of Lemma 2.3 that

∆(s(1)
γ , s

(1)
δ ) = ∆(sγ, sδ) + 1 ≤ ∆(tγ, tδ)

for all γ 6= δ in Γ. Applying again Lemma 5.2, we conclude that
S(1) ≤ T . ¤

It follows that (under (*)) for every Lipschitz tree T , the chain
T (n) (n ∈ N) of positive shifts is really an N-chain, i.e. its convex
closure inside the class of Lipschitz trees is isomorphic to N as an or-
dered set. Assuming a natural conjecture in this context (which turn
out to be equivalent to Shelah’s conjecture [10]), in §8, we shall show
that for every Lipschitz tree T , the gap (T, T (1)) is actually a gap in
the class of all Aronszajn trees, so in this context the convex closure
of T (n) (n ∈ N) in the class of all Aronszajn trees is isomorphic to N.
The case of negative shifts is a bit more subtle though we shall see that
they do behave as expected.

2.5 Definition. A tree T is orthogonal to a set of ordinals Γ, if there
is an uncountable subset X of T such that ∆(x, y) /∈ Γ for all x, y ∈ X,
x 6= y.

2.6 Lemma. Suppose that n < m ≤ 0 and that T is a Lipschitz tree
which is orthogonal to Λ + k for all 0 ≤ k ≤ |n|. Then T (m) and T (n)

are also Lipschitz and T (m) � T (n).

Proof. We shall only show that T (m) � T (n), since the argument will
also contain the proof that T (m) and T (n) are Lipschitz. For each 0 ≤
k ≤ |n|, we choose an uncountable Xk ⊆ T such that ∆(x, y) /∈ Λ + k
for all x 6= y. We may assume that for some fixed Γ ⊆ Λ, each set Xk

for k ≤ |n| is enumerated as level-sequence of the form tδ(k) (δ ∈ Γ).
Applying Lemma 1.3 to 〈tδ(k) : 0 ≤ k ≤ |n|〉 (δ ∈ Γ), we get an
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uncountable set Γ0 ⊆ Γ such that for all γ 6= δ in Γ and 0 ≤ j, k ≤ |n|,
we have

∆(tγ(j), tδ(j)) = ∆(tγ(k), tδ(k)).

Let tδ = tδ(0) for δ ∈ Γ0. This gives us an uncountable level-sequence
with the property that ∆(tγ, tδ) /∈ Λ + k for all γ 6= δ in Γ0 and
0 ≤ k ≤ |n|.

Consider a level-preserving map f : T (m) −→ T (n) and for each
γ ∈ Γ0 find sγ ∈ Tγ such that

f(t(m)
γ ) = s(n)

γ .

Applying Lemma 1.3 again, we find an uncountable Γ1 ⊆ Γ0 such that
∆(sγ, sδ) = ∆(tγ, tδ) whenever γ 6= δ are chosen from Γ1. Consider
γ 6= δ in Γ0 such that α = ∆(sγ, sδ) = ∆(tγ, tδ) is smaller than both γ
and δ. Let λ be the maximal limit ordinal below α. Then α > λ + |n|,
so the ordinals α + m and α + n are well-defined and > λ. Note that

∆(t(m)
γ , t

(m)
δ ) = α + m > α + n = ∆(s(n)

γ , s
(n)
δ ).

This shows that f is not a Lipschitz map and finishes the proof. ¤
The following result summarizes what has been shown so far about

the shift operation on the class of Lipschitz trees.

2.7 Theorem (*). For every Lipschitz tree T which is orthogonal to
Λ + k for all k ≥ 0, the shifts T (n) (n ∈ Z) form a family of Lipschitz
trees with the following properties:

(1) T (m+n) ≡ (T (m))(n),
(2) T (n) < T (m) iff n < m,
(3) there is no Lipschitz tree S such that T (n) < S < T (n+1) for

some n ∈ Z.

2.8 Lemma. There exists a coherent Lipschitz tree that is orthogonal
to Λ + k for every nonnegative integer k.

Proof. Let C0 = ∅, Cα+1 = {α} and for α ∈ Λ \ {0}, choose Cα ⊆ α of
order-type ω such that if ξ ∈ Cα and k = |Cα ∩ ξ|, then ξ = λ + k + 1,
where λ is the maximal limit ordinal ≤ ξ. The sequence Cα (α < ω1)
is then used to define the walk from any countable ordinal β to some
smaller ordinal α as follows: β = β0 → β1 → . . . → βn = α, where

βi+1 = min(Cβi
\ α) (i < n).

The weight w(βi, βi+1) of the step βi → βi+1 in the walk from β to α is
defined to be equal to the cardinality of the set Cβi

∩α = Cβi
∩βi+1. This

allows us to define, for every β < ω1, a function tβ : β −→ 2 by letting
tβ(α) = 1 iff the last step of the walk from β to α is of maximal weight.
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The following facts are easily established by induction on α < β < ω1

(see [15, 1.67-1.72] where the corresponding tree is denoted by T (ρ3)):

(a) supp(tβ) ∩ (Λ + k) is finite for all k < ω10,
(b) tα =∗ tβ ¹ α11, whenever α < β < ω1,
(c) there is no t : ω1 −→ 2 such that t ¹ α =∗ tα for all α < ω1.

It follows that if we let T be the uniform 2-closure of the collection
{tβ ¹ α : α ≤ β < ω1}, we get a tree satisfying the conclusion of
Lemma 2.8. ¤

2.9 Theorem. There is a uniform coherent Lipschitz tree T so that
the corresponding shifts T (n) (n ∈ Z) are all uniform, coherent and
Lipschitz and moreover T (m) < T (n) holds whenever m < n.

Proof. By Lemmas 2.3,2.6 and 2.8 it remains to show that if T is the
tree of Lemma 2.8, then T (m) ≤ T (n) whenever m < n ≤ 0. Let

S = {t ∈ T : t(ξ) = 0 for all ξ ∈ dom(t) ∩
⋃

k≤|m|
Λ + k}.

Then S is a downwards closed subset of T with the property that
S(m) = T (m). So it suffices to observe that t(m) 7−→ t(n) (t ∈ S ¹ Λ) is a
(partial) Lipschitz map from S(m) into S(n) ⊆ T (n). ¤

2.10 Remark. This shows that the class C of Lipschitz trees is not
well-quasi-ordered under ≤. So this gives a solution to an old problem
of Laver in [6], who asked whether the larger class A is well-quasi-
ordered under even a stronger quasi-ordering. The question can also
be negatively answered, if one produces an infinite antichain in (A,≤).
This will be done in the next section.

3. Incomparable trees

In this section, we shall utilize the following slightly stronger version
of Theorem 2.9:

3.1 Lemma. There is a sequence S(n) (n ∈ Z) of uniform coherent
Lipschitz trees such that if n < m and U is an uncountable downwards
closed subtree of S(m), then U � S(n).

Proof. Note that in the proof of Lemma 2.6, the representative tδ of
the δth level can be chosen in the subtree U . ¤

10supp(tβ) = {α < β : tβ(α) = 0}.
11Here, =∗ denotes the equality modulo a finite set.
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From now on, we fix a sequence S(n) (n ∈ Z) of uniform coherent
Lipschitz trees satisfying Lemma 3.1 and for each n ∈ N and δ ∈ Λ,
we pick a representative xn

δ from the δth level of S(n). For each δ ∈
Λ \ {0}, we fix a decomposition δ =

⋃∞
k=0 Ik

δ such that for each k, Ik
δ is

a nonempty closed-open interval of ordinals with

sup(Ik
δ ) = min(Ik+1

δ ),

the ordinal that we are going to denote by δk. Thus, {δn} is a strictly
increasing sequence converging to δ.

3.2 Definition. For Γ ⊆ Λ, let T (Γ) be the collection of all mappings
t : α −→ ω, where α < ω1 such that either t ∈ S(n) for some n ∈ N,

or there exist δ ≤ α in Γ, integers l, m ∈ N, nodes yl ∈ S
(l)
α and

zk ∈ S
(k)
δk

(k < m) such that

t = (
m−1⋃

k=0

zk ¹ Ik
δ ) ∪ (

∞⋃

k=m

xk
δk

¹ Ik
δ ) ∪ (yl ¹ [δ, α)).

Clearly, T (Γ) is an Aronszajn tree for all Γ ⊆ Λ.

3.3 Lemma. If Σ, Ω ⊆ Λ are such that the difference Σ \ Ω is a sta-
tionary subset of ω1, then T (Σ) � T (Ω).

Proof. Suppose Σ \ Ω is stationary, yet there is a strictly increasing
mapping f : T (Σ) −→ T (Ω). As before, we may assume that f is also
level-preserving. For δ ∈ Σ \ Ω, we choose a representative tδ of the
δth level of T (Σ) of the form

tδ = (
m−1⋃

k=0

zk
δ ¹ Ik

δ ) ∪ (
∞⋃

k=m

xk
δk

¹ Ik
δ )

for some choice of m = m(δ) ∈ N and zk
δ ∈ S

(k)
δk

(k < m). Since f(tδ) is
a member of the δth level of T (Ω), it allows a decomposition according
to Definition 3.2:

f(tδ) = (
m̄−1⋃

k=0

z̄k
ξk

¹ Ik
ξ ) ∪ (

∞⋃

k=m̄

xk
ξk

¹ Ik
ξ ) ∪ (yl

δ ¹ [ξ, δ))

for some choices of m̄ = m̄(δ) ∈ N, l = l(δ) ∈ N, yl
δ ∈ S

(l)
δ , ξ = ξ(δ)

in Ω ∩ (δ + 1) = Ω ∩ δ, z̄k
ξk
∈ S

(k)
ξk

(k < m̄), and yl
δ ∈ S

(l)
δ . By putting

some zk
δ ’s and z̄k

ξk
’s to be equal to xk

δ ’s and xk
ξk

’s respectively, we may
assume that m(δ) = m̄(δ) > l(δ), and that δm(δ)−1 ≥ ξ(δ). By the
Pressing Down Lemma, there is a stationary set Γ ⊆ Σ \ Ω so that all
the mappings are constant on Γ. Let m, l, ξ, δk (k < m), zk (k < m)
and z̄k (k < m) be the corresponding constant values. Since Γ is a
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stationary set, we can find an integer n > m and an uncountable set
Γ0 ⊆ Γ such that:

(i) δ 7−→ δk (k < n) are all constant on Γ0.
(ii) δ 7−→ δn is strictly increasing on Γ0.

Shrinking Γ0, we assume that

δ 7−→ xn
δn

¹ δn−1 and δ 7−→ yl
δ ¹ δn−1

are constant mappings. Let U be the downward closed subtree of S(n)

generated by the set {xn
δn

: δ ∈ Γ0} and let V be the downward closed

subtree of S(l) generated by {yl
δ : δ ∈ Γ0}. Define g : U −→ V by

g(t) = f(xn
δn

¹ dom(t))

for some choice of δ ∈ Γ0 such that xn
δn

extends t. Since f is increasing,

f(xn
δn

¹ dom(t)) = f(xn
γn

¹ dom(t))

for every pair γ, δ ∈ Γ0 for which xn
γn

and xn
δn

both extend t, so the
definition does not depend on the choice of the extension xn

δn
of t. The

same argument shows that g, defined in this way, is strictly increasing.
Since n > l, this contradicts the fact that the sequence S(k) (k ∈ N)
satisfies the conclusion of Lemma 3.1. This finishes the proof. ¤
3.4 Theorem. There is a family of size 2ℵ1 of pairwise incomparable
Aronszajn trees.

Proof. Choose a family F ⊆ P(Λ) of size 2ℵ1 such that Σ\Ω is station-
ary, whenever Σ and Ω are distinct members of F . Then, T (Σ) � T (Ω)
and T (Ω) � T (Σ) for every pair Σ 6= Ω in F . ¤

Starting from a family F of ℵ1-many pairwise disjoint stationary
sets, there is a natural way (see e.g. [11, §5]) to fuse T (Σ) (Σ ∈ F)
into a single Aronszajn tree with the following extreme property that
can be considered as a culmination of one line of work on Kurepa’s
isomorphism problem for Aronszajn trees (see [5, §10.4] and [4]).

3.5 Theorem. There is an Aronszajn tree with no nontrivial strictly
increasing self-maps. ¤

4. An ultrafilter from a Lipschitz tree

Recall the definition of the distance function ∆ : T 2 −→ ω on a tree
T of height ω1. For X ⊆ T , let

∆(X) = {∆(x, y) : x, y ∈ X, x 6= y}.
We use this notation to describe a family of subsets of ω1 as follows:

U(T ) = {Γ ⊆ ω1 : Γ ⊇ ∆(X) for some uncountable X ⊆ T}.
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4.1 Lemma. The family U(T ) is a uniform filter on ω1 for every Lip-
schitz tree T .

Proof. Given two uncountable subsets X and Y of T , we need to find
an uncountable subset Z of T such that

∆(X) ∩∆(Y ) ⊇ ∆(Z).

By the assumption about T , it is clear that we may replace X and Y
by two level-sequences xδ (δ ∈ Γ) and yδ (δ ∈ Γ) indexed by the same
uncountable set Γ of limit ordinals. Moreover, we may assume that
the xδ’s and yδ’s are all pairwise incomparable (see Remark 1.2(2)).
Apply Lemma 1.3 to the subset (xδ, yδ) (δ ∈ Γ) of T ⊗ T and obtain
an uncountable set Σ ⊆ Γ such that

∆(xγ, xδ) = ∆(yγ, yδ) for all γ, δ ∈ Σ, γ 6= δ.

So we can take Z to be any of the sets {xδ : δ ∈ Σ} or {yδ : δ ∈ Σ}.
This finishes the proof. ¤

Using (*), we can say a bit more about U(T ):

4.2 Theorem (*). For every Lipschitz tree T , the filter U(T ) is in fact
an ultrafilter.

Proof. Let Γ be a given subset of ω1. We need to find an uncountable
subset X of T such that ∆(X) is included in either Γ or its complement.
Let PΓ be the poset of all finite subsets p of T that take at most one
point from a given level of T such that

∆(p) = {∆(x, y) : x, y ∈ p, x 6= y} ⊆ Γ.

If PΓ satisfies the countable chain condition, then a straightforward
application of (*) gives an uncountable X ⊆ T such that ∆(X) ⊆ Γ.
So let us consider the alternative that PΓ fails to satisfy this condition.
Let pδ (δ < ω1) be a sequence of pairwise incomparable members of
PΓ. Reenumerating, we may assume that every node of a given pδ has
height at least δ, so we can define aδ = the projection of pδ on the δth
level of T . For δ ∈ Λ, let

h(δ) = {∆(x, y) + 1 : x, y ∈ aδ, x 6= y}.
Find stationary Ω ⊆ Λ such that h is constant on Ω. Let ξ̄ be the
constant value of h. Going to an uncountable subset of Ω, we may
assume that all aδ (δ ∈ Ω) are of equal size n and that they are given
with an enumeration aδ(i) (i < n). Moreover, we may assume that
aγ(i) ¹ ξ̄ = aδ(i) ¹ ξ̄ for all γ, δ ∈ Ω. Applying Lemmas 1.3 and 1.4, we
obtain an uncountable Σ ⊆ Ω such that for all γ 6= δ in Σ:

(1) aγ(i) and aδ(j) are incomparable for all i, j < n,
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(2) ∆(aγ(i), aδ(i)) = ∆(aγ(j), aδ(j)) for all i, j < n.

It follows that for all γ 6= δ in Σ:

(3) ∆(pγ ∪ pδ) = ∆(pγ) ∪∆(pδ) ∪ {∆(aγ(0), aδ(0))}.
Since ∆(pγ) and ∆(pδ) are subsets of Γ, ∆(aγ(0), aδ(0)) /∈ Γ must hold.
This gives rise to an uncountable set X = {aδ(0) : δ ∈ Σ} with the
property that ∆(X) ∩ Γ = ∅. This finishes the proof. ¤

4.3 Remark. Note that we have just shown that PΓ satisfies the count-
able chain condition for every set Γ which belongs to the co-ideal
U(T )+ = {Σ : Σ ∩ ∆ 6= ∅ for every ∆ ∈ U(T )}. Since for disjoint
Γ0 and Γ1 the product PΓ0 × PΓ1 fails the countable chain condition
unless one of the two posets is in fact countable, this show that in The-
orem 4.2 we have used only the productiveness of the countable chain
condition rather than the full strength of (*).

5. Comparability of Lipschitz trees

Throughout this section, we assume (*) and examine the behaviour
of the quasi-ordering ≤ in the domain of Lipschitz trees. For the time
being, fix a pair S and T of Lipschitz trees, and for each δ < ω1, fix
representatives sδ and tδ from the δth level of S and T respectively.
This gives us two mappings

∆s : [ω1]
2 −→ ω1 and ∆t : [ω1]

2 −→ ω1

defined as follows:

∆s(α, β) = ∆(sα, sβ) and ∆t(α, β) = ∆(tα, tβ).

For Γ ⊆ ω1, we let ∆s(Γ) = {∆s(α, β) : α, β ∈ Γ, α 6= β} and ∆t(Γ) =
{∆t(α, β) : α, β ∈ Γ, α 6= β}. The argument from the previous section
yields the following useful description of U(T ) which in fact does not
need (*) nor any other additional set-theoretic assumption.

5.1 Lemma. For every Γ ∈ U(T ) and uncountable Ω ⊆ ω1 there is an
uncountable Σ ⊆ Ω such that ∆t(Σ) ⊆ Γ. ¤

It follows that ∆t(Σ) (Σ ⊆ ω1 uncountable) generates the filter U(T ).

5.2 Lemma (*). The following are equivalent for every pair S and T
of Lipschitz trees:

(a) S ≤ T ,
(b) there is an uncountable Γ ⊆ ω1 such that ∆s(α, β) ≤ ∆t(α, β)

for all α, β ∈ Γ, α 6= β,
(c) for every uncountable Σ ⊆ ω1 there is an uncountable Γ ⊆ Σ

such that ∆s(α, β) ≤ ∆t(α, β) for all α, β ∈ Γ, α 6= β.
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Proof. To deduce (b) from (a), suppose we are given a strictly in-
creasing level-preserving map f : S −→ T . Apply Lemma 1.3 to
(tδ, f(sδ)) (δ ∈ ω1) and obtain an uncountable Γ ⊆ ω1 such that for all
γ 6= δ:

(1) tγ and tδ are incomparable,
(2) f(sγ) and f(sδ) are incomparable,
(3) ∆(tγ, tδ) = ∆(f(sγ), f(sδ)).

Clearly, this Γ satisfies (b). Similarly one shows that (a) implies (c).
Note that clause (b) simply says that the map sδ 7−→ tδ (δ ∈ Γ) is
Lipschitz and it therefore extends to a strictly increasing map from
the downward closure S0 of the set {sδ : δ ∈ Γ} in S. By Lemma
1.6, S ≤ S0 ≤ T . This shows that (b), and therefore the stronger (c),
implies (a) and finishes the proof. ¤

The next lemma gives us a convenient reformulation of the inequality
T � S.

5.3 Lemma (*). The following are equivalent for every pair S and T
of Lipschitz trees:

(a) T � S,
(b) there is an uncountable Γ ⊆ ω1 such that ∆s(α, β) < ∆t(α, β)

for all α, β ∈ Γ, α 6= β,
(c) for every uncountable Σ ⊆ ω1 there is an uncountable Γ ⊆ Σ

such that ∆s(α, β) < ∆t(α, β) for all α, β ∈ Γ.

Proof. To see that (a) implies (b), let P be the poset of all finite p ⊆ ω1

such that

(1) ∆t(α, β) ≤ ∆s(α, β) for all α, β ∈ p, α 6= β.

If P would satisfy the countable chain condition, an application of (*)
would give us an uncountable set Γ ⊆ ω1 such that ∆t(α, β) ≤ ∆s(α, β)
for all α, β ∈ Γ, α 6= β which by Lemma 5.2 would give us T ≤ S,
contradicting (a). So let pδ (δ ∈ ω1) be a given sequence of pairwise
incompatible members of P . We may assume that min(pδ) ≥ δ for all
δ ∈ ω1. For δ ∈ ω1, let

aδ = {sξ ¹ δ : ξ ∈ pδ} and bδ = {tξ ¹ δ : ξ ∈ pδ}.
For δ ∈ Λ, let h(δ) be the maximum of all ordinals that have the form
∆(x, y) + 1, x, y ∈ aδ, x 6= y and ∆(x, y) + 1, x, y ∈ bδ, x 6= y. Find
a stationary Ω ⊆ Λ such that h is constant on Ω and let ξ̄ be the
constant value. Shrinking Ω, we may assume that all aδ (δ ∈ Ω) are
of some fixed size m, and that all bδ (δ ∈ Ω) are of some fixed size n.
Let aδ(i) (i < m) and bδ(j) (j < n) be fixed enumerations. Applying
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Lemma 1.3, we can find an uncountable Σ ⊆ Ω such that for all γ 6= δ
in Σ:

(2) aγ(i) ¹ ξ̄ = aδ(i) ¹ ξ̄ for all i < m,
(3) bγ(i) ¹ ξ̄ = bδ(i) ¹ ξ̄ for all i < n,
(4) aγ(i) and aδ(j) are incomparable for all i, j < m,
(5) bγ(i) and bδ(j) are incomparable for all i, j < m,
(6) ∆(aγ(i), aδ(i)) = ∆(aγ(j), aδ(j)) for all i, j < m,
(7) ∆(bγ(i), bδ(i)) = ∆(bγ(j), bδ(j)) for all i, j < n.

Consider γ 6= δ in Σ. Then pγ ∪ pδ fails to satisfy condition (1), i.e.
there exist ξ ∈ pγ and η ∈ pδ such that ∆(sξ, sη) < ∆(tξ, tη). Let
sξ ¹ γ = aγ(i), sη ¹ δ = aδ(j), tξ ¹ γ = bγ(k) and tη ¹ δ = bδ(l). Using
(2),(3),(4) and the fact that pγ and pδ satisfy (1), we conclude that
i = j and k = l and therefore, by (6) and (7), we have the following:

(8) ∆(aγ(0), aδ(0)) = ∆(aγ(i), aδ(i)) < ∆(bγ(k), bδ(k)) =
= ∆(bγ(0), bδ(0)).

Of course, we may assume that the enumerations of aδ and bδ are
given in a way such that if ξ(δ) = min(pδ), then sξ(δ) ¹ δ = aδ(0) and
tξ(δ) ¹ δ = bδ(0) for all δ in Σ. Let Γ = {ξ(δ) : δ ∈ Γ}. Then Γ satisfies
clause (b), finishing thus the proof that (a) implies (b). Similarly, one
proves that (a) in fact implies (c). The implication from (b) to (a)
follows from Lemma 5.2. This finishes the proof. ¤

Finally, we are in a situation to state the main result of this section.

5.4 Theorem (*). Every two Lipschitz trees are comparable.

Proof. Suppose we are given a pair S and T of Lipschitz trees such
that T � S. By Lemma 5.3, there is an uncountable Γ ⊆ ω1 such
that ∆s(α, β) < ∆t(α, β) for all α, β ∈ Γ, α 6= β. By Lemma 5.2, we
conclude that T ≤ S. This completes the proof. ¤
5.5 Remark. This result and Remark 1.8 show that under (*) coherent
Aronszajn trees are totally ordered by ≤. This in turn hints that the
construction of §3 which combines a number of different coherent trees
into a single Aronszajn tree in order to produce a pair of incomparable
trees is in some sense necessary. More on the necessity of the approach
of §3 will be seen below (see Theorem 7.7).

Recall the definition of the functor T 7−→ U(T ), whose domain is
the class of Lipschitz trees and whose range is the space of all uniform
filters on ω1 (see §3). The following result shows that T 7−→ U(T ) is
a reduction of the equivalence relation ≡ on the class of all Lipschitz
trees to the equality relation on the space U(ω1) of uniform ultrafilters
on ω1.
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5.6 Theorem (*). The following are equivalent:

(a) S ≡ T ,
(b) U(S) = U(T ).

Proof. Assume S ≡ T . Applying Lemma 5.2 twice, we get an uncount-
able set Γ ⊆ ω1 such that ∆s(α, β) = ∆t(α, β) for all α, β ∈ Γ, α 6= β.
Now, the equality U(S) = U(T ) follows from Lemma 5.1. Assume now
that, say, T � S. By Lemma 5.3, there is an uncountable set Γ ⊆ ω1

such that ∆s(α, β) < ∆t(α, β) for all α, β ∈ Γ, α 6= β. Let P be the
poset of all finite p ⊆ Γ such that ∆s(p)∩∆t(p) = ∅. It suffices to show
that P satisfies the countable chain condition. To see this, consider
a sequence pδ (δ < ω1) of elements of P . Going to a ∆-system and
noting that the root can’t contribute to the incomparability, we may
assume that all pδ’s are pairwise disjoint and in fact that min(pδ) ≥ δ
for all δ. Working as in the proof of Lemma 5.3, we define aδ, bδ and
h and obtain Ω, ξ̄ and then an uncountable Σ ⊆ Ω such that (2)-(7)
hold. It follows that for all γ 6= δ in Σ, we have:

(8) ∆s(pγ ∪ pδ) = ∆s(pγ) ∪∆s(pδ) ∪ {∆(aγ(0), aδ(0))},
(9) ∆t(pγ ∪ pδ) = ∆t(pγ) ∪∆t(pδ) ∪ {∆(bγ(0), bδ(0))}.

We may assume that our enumerations are chosen in such a way that
if ξ(δ) = min(pδ), then

(10) sξ(δ) ¹ δ = aδ(0) for all δ ∈ Σ,
(11) tξ(δ) ¹ δ = bδ(0) for all δ ∈ Σ.

It follows that for all γ 6= δ in Σ:

(12) ∆(aγ(0), aδ(0)) = ∆s(ξ(γ), ξ(δ)) < ∆t(ξ(γ), ξ(δ)) =
∆(bγ(0), bδ(0)).

This together with (2)-(7) and (8),(9) gives the desired conclusion that
pγ and pδ are compatible in P for some (all) γ 6= δ in Σ. This finishes
the proof. ¤

5.7 Remark. Note that the implication from S ≡ T to U(S) = U(T )
needs neither (*) nor any other additional assumption.

5.8 Theorem (*). Two uniform Lipschitz trees which have the same
branching degrees are isomorphic if and only if they are equivalent.

Proof. If S ≡ T , then by Lemma 5.2, there is an uncountable set
Γ ⊆ ω1 such that ∆s and ∆t agree on pairs from Γ. Let P be the
poset of all partial finite level-preserving isomorphisms p from S into T
which extend to isomorphisms between downward closures of dom(p)
in S and rang(p) in T . Using the agreement of ∆s and ∆t on Γ and
the argument from the proof of Lemma 5.3, one shows that P satisfies
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the countable chain condition. The uniformity of the trees S and T are
used to show that all sets of the form

Dx = {p ∈ P : x ∈ dom(p)} (x ∈ S),

Ey = {p ∈ P : y ∈ rang(p)} (y ∈ T )

are dense open in P . A filter of P which intersects all these sets gives
us the required isomorphism between S and T . ¤
5.9 Remark. The Schroeder-Bernstein phenomenon encountered in
Theorem 5.8 does not hold in the wider class of all Aronszajn trees.
To see this, let T (n) (n ∈ Z) be the sequence of Lipschitz trees from
Theorem 2.9 and let S be the free sum of T (2k+1) (k ∈ Z) with a root
attached to them, and let T be the free sum of T (2k) (k ∈ Z) again
with a root attached to them. It is clear that S ≤ T and T ≤ S and it
is easily checked that S and T are not isomorphic.

6. Equivalence of Ultrafilters

In this section, we give a more detailed analysis of the functor T 7−→
U(T ) on the class C of Lipschitz trees. In particular, we show that
using (*) that all ultrafilters of the form U(T ) for T ∈ C are equivalent.

6.1 Definition. Two Lipschitz trees S and T are ∆-equivalent on some
set of ordinals Γ, if there are level-sequences sα ∈ Sα (α ∈ Γ) and
tα ∈ Tα (α ∈ Γ) such that for every unordered triple α, β, γ of elements
of Γ,

(1) ∆(sα, sβ) > ∆(sα, sγ) iff ∆(tα, tβ) > ∆(tα, tγ).

6.2 Lemma (*). Every pair of Lipschitz trees S and T is ∆-equivalent
on some uncountable set of levels.

Proof. Fix level-sequences sα ∈ Sα (α ∈ ω1) and tα ∈ Tα (α ∈ ω1). Let
P be the set of all pairs p = (Γp, Cp) of finite subsets of ω1 such that
S and T are equivalent on Γp as witnessed by the fixed level-sequences
and such that for all α, β ∈ Γp and ξ ∈ Cp,

(2) ∆(sα, sβ) < ξ iff ∆(tα, tβ) < ξ.

We let P be ordered by coordinatewise inclusions. To see that P is
a proper partial ordering, note that if M is a countable elementary
submodel of some large-enough structure of the form (H(θ),∈) then
for every p ∈ P ∩ M , the extension q = (Γp, Cp ∪ {M ∩ ω1}) is an
M -generic condition of P . Note also that a condition of the form
({ξ}, {ξ}), where ξ = M ∩ ω1 for such a model M forces that the
unions of both projections of the generic filter are uncountable. Hence
an application of (*) gives us the conclusion of Lemma 6.2. ¤
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6.3 Definition. Suppose that g is a partial map from ω1 into ω1 and
that T is a given tree represented as a family of functions as in §2.
Then the g-shift of T , denoted by T (g) is the downwards closure of
{t(g) : t ∈ T ¹ Ω}, where Ω = {δ < ω1 : g′′δ ⊆ δ} and t(g) is defined by

t(g)(ξ) = t(g(ξ))

if ξ ∈ dom(g); otherwise t(g)(ξ) = 0.

In §2 we considered the shifts T (g) for maps of the form g(ξ) = ξ−m,
but it should be clear that the arguments from that section are sufficient
to give us the following facts:

6.4 Lemma. If g is a partial strictly increasing map on ω1 and if
rang(g) ∈ U(T ) for some Lipschitz tree T , then the g-shift T (g) is also
a Lipschitz tree. ¤
6.5 Lemma. Suppose that T is a Lipschitz tree and g is a strictly
increasing partial map on ω1 such that rang(g) ∈ U(T ). If g is re-
gressive12 then T (g) � T . On the other hand, if g is expanding13 then
T � T (g). ¤
6.6 Remark. Note that if g is a strictly increasing regressive partial
map on ω1 such that rang(g) = ω1, then T < T (g) holds for every Lip-
schitz tree T . This observation can be used to construct both strictly
increasing and strictly decreasing ω1-sequences of Lipschitz trees.

6.7 Theorem (*). For every pair S and T of Lipschitz trees, there is
a strictly increasing partial map g on ω1 such that S ≡ T (g).

Proof. By Lemma 6.2, we have an uncountable Γ ⊆ ω1 on which S and
T are ∆-equivalent for some choice of level-sequences sα ∈ Sα (α ∈ Γ)
and tα ∈ Tα (α ∈ Γ). Define

g : {∆(sα, sβ) : α, β ∈ Γ, α 6= β} −→ {∆(tα, tβ) : α, β ∈ Γ, α 6= β}
by letting g(∆(sα, sβ)) = ∆(tα, tβ). By (1), this is a well-defined strictly
increasing partial map on ω1 such that dom(g) ∈ U(S) and rang(g) ∈
U(T ). Let Ω = {δ < ω1 : g′′δ ⊆ δ}. Assuming that {sα : α ∈ Γ}
and {tα : α ∈ Γ} form antichains, then replacing each sα and tα by
their extensions on the δ(α)th level of S and T respectively, where
δ(α) = min(Ω \ α + 1), and finally replacing Γ with {δ(α) : α ∈ Γ}, we
may assume that Γ is actually a subset of Ω. By Lemma 6.4, the shift

T (g) is a Lipschitz tree and t
(g)
α (α ∈ Γ) is its level-sequence such that

(3) ∆(t(g)
α , t

(g)
β ) = ∆(sα, sβ) for all α, β ∈ Γ, α 6= β.

12I.e. g(ξ) < ξ for all ξ ∈ dom(g).
13I.e. g(ξ) > ξ for all ξ ∈ dom(g).
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By Lemma 5.2 we conclude that S ≡ T (g). This finishes the proof. ¤
6.8 Corollary (*). For every pair S and T of Lipschitz trees, there is
a strictly increasing partial map g on ω1 which maps U(S) into U(T ).

Proof. By Theorems 5.6 and 6.7 we may assume that in fact S = T (g)

for some strictly increasing partial map g on ω1 with rang(g) ∈ U(T ).
Now note that dom(g) ∈ U(T (g)) and that g′′A ∈ U(T ) for every A ∈
U(T (g)). ¤

7. Coinitiality and Cofinality

In this section we show that the chain C of Lipschitz trees is cofinal
as well as coinitial in (A,≤).

7.1 Lemma (*). For every Aronszajn tree S, there is a Lipschitz tree
T such that S ≤ T .

Proof. Let P be the set of all finite partial functions p from S×ω1 into
ω such that:

(1) ξ < ht(x) for all (x, ξ) ∈ dom(p),
(2) p(x, ξ) = p(y, ξ) for all (x, ξ), (y, ξ) ∈ dom(p) with ξ < ∆(x, y).

We let p extend q if p extends q as a function and

(3) p(x, ξ) = p(y, ξ) for all (x, ξ), (y, ξ) ∈ dom(p)\dom(q) such that
x, y ∈ dom0(q)

14,
(4) p(x, ξ) 6= q(x, η) for all (x, η) ∈ dom(q) and (x, ξ) ∈ dom(p) \

dom(q).

A simple ∆-system argument (contained in the proofs of Lemmas 1.6
and 1.7 above) shows that P satisfies the countable chain condition, so
an application of (*) gives us a map g from S × ω1 into ω so that its
fibers gx(ξ) = g(x, ξ) are total maps from ht(x) into ω for all x ∈ S
and such that:

(5) gx : ht(x) −→ ω is a finite-to-one map for all x ∈ S,
(6) ∆(x, y) ≤ ∆(gx, gy) for all x, y ∈ S,
(7) {ξ : gx(ξ) 6= gy(ξ)} is finite for all x, y ∈ S.

It follows that the downwards closure T of {gx : x ∈ S} is a coherent
Aronszajn tree and that x 7−→ gx is a Lipschitz map from S into T .
This finishes the proof. ¤
7.2 Lemma (*). For every Aronszajn tree S, there is a Lipschitz tree
T such that T ≤ S.

14Recall the notations dom0(p) = {x : (x, η) ∈ dom(p) for some η} and
dom1(p) = {η : (x, η) ∈ dom(p) for some x}.
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Proof. Let P be the set of all finite partial functions p from S×ω1 into
ω such that:

(8) ξ < ht(x) for all (x, ξ) ∈ dom(p),
(9) for every pair x and y of incomparable nodes from dom0(p),

there is ξ ≤ ∆(x, y) with (x, ξ), (y, ξ) ∈ dom(p) and p(x, ξ) 6=
p(y, ξ).

We let p extend q if p extends q as a function and

(10) p(x, ξ) = p(y, ξ) for all (x, ξ), (y, ξ) ∈ dom(p)\dom(q) such that
x, y ∈ dom0(q),

(11) p(x, ξ) 6= q(x, η) for all (x, η) ∈ dom(q) and (x, ξ) ∈ dom(p) \
dom(q).

To prove that P satisfies the countable chain condition, we start with
an uncountable subset X of P and perform the ∆-system argument
from the proof of Lemma 1.6, obtaining two conditions p and q in X
such that for some ξ̄ < α < β, v0, . . . , vn ∈ Sξ̄, s0, . . . , sn ∈ Sα and
t0, . . . tn ∈ Sβ we have

(12) every node of dom0(p) is either of height < ξ̄ or it extends some
si (i ≤ n),

(13) every node of dom0(q) is either of height < ξ̄ or it extends some
ti (i ≤ n),

(14) dom1(p) ⊆ ξ̄ ∪ (α, β) and dom1(q) ⊆ ξ̄ ∪ (β, ω1),
(15) vi 6= vj for i 6= j ≤ n,
(16) si and ti extend vi but are incomparable for all i ≤ n,
(17) p and q are isomorphic conditions via an isomorphism that is

the identity on ξ̄, vi (i ≤ n) and maps si to ti for all i ≤ n.

We claim that such p and q can be amalgamated into a condition r
of P that extends them both. Let ξ = min{∆(si, ti) : i ≤ n}. Then
ξ̄ ≤ ξ < α. Let k = max(rang(p)) = max(rang(q)). Let dom(r) be
equal to the union of dom(p), dom(q) and the following two sets:

D = {(x, ξ) : x ∈ dom0(p), ht(x) ≥ α},
E = {(y, ξ) : y ∈ dom0(q), ht(y) ≥ β}.

Define r by giving it constant value k+1 on D and constant value k+2
on E. Note that r satisfies (8) and (9) as well as conditions (10) and
(11) for extending both p and q.

Applying (*) to P gives us a partial map g : S × ω1 −→ ω so that if
gx(ξ) = g(x, ξ) then:

(18) gx is a finite-to-one map from ht(x) into ω for all x ∈ S,
(19) ∆(gx, gy) ≤ ∆(x, y) for all x, y ∈ S,
(20) {ξ : gx(ξ) 6= gy(ξ)} is finite for all x, y ∈ S.
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It follows that the downwards closure T of {gx : x ∈ S} is a Lipschitz
tree and that gx 7−→ x is a partial Lipschitz map from T into S,
witnessing the relation T ≤ S. This finishes the proof. ¤

7.3 Theorem (*). There is no maximal Aronszajn tree.

Proof. Given an Aronszajn tree S by Lemma 7.1 we find a Lipschitz
tree T such that S ≤ T . By Lemma 2.3, T < T (1), so in particular
S < T (1). ¤

7.4 Theorem (*). For every Lipschitz tree T there is a Lipschitz tree
S such that S < T .

Proof. Fix a level-sequence tα ∈ Tα (α ∈ ω1) in a given Lipschitz
tree T . Let ∆t : [ω1]

2 −→ ω1 be the corresponding distance function
∆t(α, β) = ∆(tα, tβ). For Γ ⊆ ω1, let

∆t(Γ) = {∆t(α, β) : α, β ∈ Γ, α 6= β}.
Let P be the set of all pairs p = (fp, Γp) such that:

(21) Γp is a finite subset of ω1,
(22) fp is a finite partial strictly increasing map from ω1 into ω1

which can be extended to a total strictly increasing and contin-
uous map f : ω1 −→ ω1 so that rang(f) is disjoint from ∆t(Γp)
and separates15 the points of ∆t(Γp).

We order P by coordinatewise inclusion. To show that P is proper,
consider a countable elementary submodel M of some large-enough
structure of the form (H(θ),∈) such that M contains P , T and the level-
sequence tα (α ∈ ω1). For a given p ∈ P ∩M let q = (fp ∪{〈δ, δ〉}, Γp),
where δ = M ∩ ω1. We claim that q is an M -generic condition of P .
To show this, consider a dense-open subset D of P such that D ∈ M
and an extension r of q. We need to show that r is compatible with a
member of D∩M . Extending r, we may assume r ∈ D. Let vi (i ≤ n)
be a one-to-one enumeration of {tα ¹ δ : α ∈ Γp \ δ}. Let p̄ = r ¹ M .
Then p̄ ∈ P ∩ M and so we can find an extension f̄ : ω1 −→ ω1 of
fp̄ satisfying (22) for p̄ such that f̄ ∈ M . Let ξ̄ ∈ (max(Γp̄), δ) be a
fixed point of f̄ . Find a copy r̄ of r in D∩M such that if we let δ̄ and
v̄i (i ≤ n) be its versions of δ and vi (i ≤ n), then

(23) vi ¹ ξ̄ = v̄i ¹ ξ̄ for all i ≤ n,
(24) vi and v̄i are incomparable for all i ≤ n,
(25) ∆(v0, v̄0) = . . . = ∆(vn, v̄n).

15i.e. between every two members of ∆t(Γp), there is a member of rang(f).
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It is clear that we can combine the function f̄ with the normal functions
witnessing (22) for r̄, r and obtain a strictly increasing continuous
function f : ω1 −→ ω1 which fixes ξ̄ and witnesses (22) simultaneously
for r̄, r and moreover, the ordinal ∆(v0, v̄0) is not in its range. Since

∆t(Γr̄ ∪ Γr) = ∆t(Γr̄) ∪∆t(Γr) ∪ {∆(v0, v̄0)},
this shows that (fr̄ ∪ fr, Γr̄ ∪ Γr) is a member of P witnessing the
compatibility of r̄ and r.

Applying (*) to P gives us an uncountable Γ ⊆ ω1 and a closed
unbounded set C ⊆ ω1 such that C ∩∆t(Γ) = ∅ and C separates the
points of ∆t(Γ). For δ < ω1, let δ+ be the minimal point of C above δ.
Define

C0 = {δ ∈ C : (δ, δ+) ∩∆t(Γ) 6= ∅}.
Note that for δ ∈ C, there is only one point of ∆t(Γ) in the interval
(δ, δ+). Call this point g(δ). This defines a strictly increasing map g
from C0 onto ∆t(Γ). So in particular, rang(g) ∈ U(T ). Let S = T (g)

(see Definition 6.3). From Lemma 6.4 we conclude that S is a Lipschitz
tree. Since clearly g(δ) > δ for all δ ∈ C0, we conclude that T � S
from Lemma 6.5. This finishes the proof. ¤
7.5 Corollary (*). There is no minimal Aronszajn tree.

Proof. This follows from Lemma 7.2 and Theorem 7.4. ¤
7.6 Corollary (*). The class C of Lipschitz trees is a chain which is
coinitial and cofinal in (A,≤) and moreover, it has neither a maximum
nor minimum. ¤

In §3, we have seen many pairs of Aronszajn trees S and T such that
S � T and T � S. The trees S and T have been constructed by using
members of some fixed sequence of coherent trees as building blocks.
Can one improve the construction by making S and T ’coherently in-
compatible’? The following result answers this question.

7.7 Theorem (*). For every pair S and T of Aronszajn trees there is
a coherent tree U such that U ≤ S and U ≤ T .

Proof. By Lemma 7.2, find two coherent trees U0 and U1 such that
U0 ≤ S and U1 ≤ T . By Theorem 5.4 we have that either U0 ≤ U1 or
else U1 ≤ U0. So U = min{U0, U1} will satisfy the conclusion of the
Theorem. ¤

This finishes our analysis of the structure theory of the chain C of
Lipschitz trees inside the class A of Aronszajn trees under the assump-
tion of (*). In the next section we shall see that under a natural
strengthening of (*) some more structure theory can be developed.
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8. The Lipschitz-map conjecture

We have seen above that under (*), for every one-to-one level-pre-
serving map f from an uncountable subset of one Lipschitz tree into
another Lipschitz tree, f or its inverse f−1 is Lipschitz on an uncount-
able subset of its domain. In the previous section, we have seen that in
this context, Lipschitz trees appear as subtrees of any other Aronszajn
tree. It is therefore quite natural to pose the following conjecture about
Lipschitz maps on arbitrary Aronszajn trees:

Lipschitz-map conjecture:16 If f is a one-to-one level-preserving
map from an uncountable subset of an Aronszajn tree into another,
then f or f−1 has an uncountable Lipschitz restriction.

Note that LMC immediately gives that every two irreducible Aron-
szajn trees are comparable under ≤, so one can view LMC as some sort
of linearity conjecture for the class A. The following result shows that
combining LMC with (*), one has considerably more comparabilites
inside (A,≤).

8.1 Proposition (*). The Lipschitz-map conjecture implies that every
irreducible Aronszajn tree is comparable with any other Aronszajn tree.

Proof. Let T be a given irreducible Aronszajn tree and let S be any
other Aronszajn tree. Let P be the poset of all finite partial level-
preserving Lipschitz maps from S into T . If P satisfies the countable
chain condition, then an application of (*) would give us a total Lip-
schitz map f : S −→ T witnessing thus the relation S ≤ T . So we
are left with the alternative that P fails to satisfy the countable chain
condition. Let X be an uncountable family of pairwise incomparable
members of P . We may assume that X forms a ∆-system. Remov-
ing the root, which obviously does not contribute to incomparability,
we may in fact assume that dom(p) (p ∈ X ) is a family of pairwise
disjoint finite subsets of S, all of some fixed size n. For p ∈ X , let
si(p) (i < n) enumerate dom(p) and let ti(p) = p(si(p))(i < n). Apply-
ing the ∆-Lemma again, we obtain an uncountable subfamily Y of X
such that

{∆(si(p), sj(p) : i < j < n)} p ∈ Y),

and

{∆(ti(p), tj(p) : i < j < n)} p ∈ Y)

both form ∆-systems. Shrinking Y further, we may assume that if α
is the least upper bound of the roots of these two ∆-systems, then for

16LMC in short.
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all p 6= q in Y :

si(p) ¹ α = si(q) ¹ α and ti(p) ¹ α = ti(q) ¹ α for all i < n.

Since any p 6= q from Y are incompatible in P , it follows that there
exists i = i(p, q) < n such that:

∆(si(p), si(q)) > ∆(ti(p), ti(q)).

Apply LMC n times successively and obtain an uncountable subset Z
of Y such that for all i < n, the map

si(p) 7−→ ti(p) (p ∈ Z)

or its inverse is Lipschitz. If for every i < n, the map si(p) 7−→
ti(p) (p ∈ Z) is Lipschitz, we would obtain two compatible members
of X contradicting our initial assumption about X . So, there must be
i < n so that the inverse map

g : ti(p) 7−→ si(p) (p ∈ Z)

is Lipschitz. Let T0 be the downward closure of {ti(p) : p ∈ Z) in T .
Then T0 is uncountable and g extends to a Lipschitz map ĝ : T0 −→ S.
It follows that T0 ≤ S. Since T is irreducible, we have that T ≤ T0,
and therefore T ≤ S. This finishes the proof. ¤

It follows that under LMC, the chain Airr of irreducible Aronszajn
trees, and therefore the chain C of Lipschitz trees, naturally splits the
whole class A into a family of pairwise comparable convex blocks which
can then be studied independently of each other. It would be interest-
ing to find out more about the cuts of (C,≤), where members of A \ C
can appear. The following result, which strengthens Lemma 2.6, gives
some information on this.

8.2 Proposition (*). The Lipschitz-map conjecture implies that no
Aronszajn tree is strictly between a Lipschitz tree T and its shift T (1).

Proof. Suppose there is an Aronszajn tree S such that T < S < T (1).
During the course of the proof of Proposition 8.1 we have seen that since
the poset of all finite Lipschitz maps from S into T fails to satisfy the
countable chain condition, an application of LMC to an uncountable
family of pairwise incomparable members of this poset will provide us
with an uncountable set Γ ⊆ Λ and level-sequences sγ ∈ Sγ (γ ∈ Γ),
tγ ∈ Tγ (γ ∈ Γ) such that

∆(sγ, sδ) > ∆(tγ, tδ) for all γ 6= δ in Γ.

Let S0 be the downward closure of {sγ : γ ∈ Γ} in S. Consider now the
poset of all finite partial Lipschitz maps from T (1) into S0. By (*), this
poset cannot satisfy the countable chain condition either. So applying
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LMC to an uncountable family of pairwise incompatible members of
this poset would give us uncountable level-sequences rγ ∈ Sγ (γ ∈ Σ),

q
(1)
γ ∈ T

(1)
γ (γ ∈ Σ) such that

∆(q(1)
γ , q

(1)
δ ) > ∆(rγ, rδ) for all γ 6= δ in Σ.

For each γ ∈ Σ, choose ξ(γ) ∈ Γ such that

ξ(γ) ≥ γ and rγ = sξ(γ) ¹ γ.

We may assume that {qγ : γ ∈ Σ}, {q(1)
γ : γ ∈ Σ} and {rγ : γ ∈ Σ} are

all antichains in their respective trees. For each γ ∈ Σ, find pξ(γ) ∈ Tξ(γ)

such that pξ(γ) ¹ γ = qγ and therefore

p
(1)
ξ(γ) ¹ γ = q(1)

γ .

Applying Lemma 1.3, we get an uncountable Σ0 ⊆ Σ such that

∆(tξ(γ), tξ(δ)) = ∆(pξ(γ), pξ(δ)) for all γ 6= δ in Σ0.

Combining all this, we get the following for all γ 6= δ in Σ0:

∆(p
(1)
ξ(γ), p

(1)
ξ(δ)) = ∆(q(1)

γ , q
(1)
δ ) > ∆(rγ, rδ) = ∆(sξ(γ), sξ(δ)) >

> ∆(tξ(γ), tξ(δ)) = ∆(pξ(γ), pξ(δ)).

It follows that for γ 6= δ in Σ0:

∆(p
(1)
ξ(γ), q

(1)
ξ(δ)) ≥ ∆(pξ(γ), pξ(δ)) + 2,

a contradiction. This finishes the proof of Proposition 8.2. ¤
We finish this section by showing that the Lipschitz-map conjecture

is equivalent to a well-known conjecture about a basis for a class of
uncountable linear orderings.

Shelah’s conjecture:17 Every uncountable linear ordering contains
either an uncountable well-ordered or conversely well-ordered subset,
an uncountable separable ordering, or an uncountable ordering whose
cartesian square is the union of countably many chains.

It will be more convenient to connect LMC with the following state-
ment appearing in a paper of Abraham and Shelah [1, p.79] that came
after that of Shelah [10] where SC first appeared.

Coloring Axiom for Aronszajn trees:18 For any partition T =
K0 ∪ K1 of an Aronszajn tree T , there is an uncountable set X ⊆ T
and i < 2 such that x ∧ y ∈ Ki for all x, y ∈ X, x 6= y.19

17SC in short. That SC is a consistent postulate has been conjectured by S.
Shelah [10, Conjecture 1].

18CAT in short.
19Recall that x ∧ y denotes the maximal z ∈ T such that z ≤T x and z ≤T y.
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8.3 Remark. It clearly makes sense considering this coloring state-
ment for an arbitrary uncountable tree T . However, a simple analy-
sis involving some standard results from this area shows that the full
weight of CAT is reached only in the class of Aronszajn trees. In fact,
it turns out that, modulo (*), the postulate CAT for the whole class of
Aronszajn trees is in fact equivalent to its version for a single Aronszajn
tree T with no difference in the choice of T . This fact will essentially be
established below during the course of proving the claimed equivalence
of these statements, and it is this fact that explains our choice for the
notation for this postulate.

8.4 Proposition (*). The Lipschitz-map conjecture is equivalent to
the Coloring Axiom for Aronszajn trees.

Proof. In order to show that LMC implies CAT, let T = K0 ∪K1 be a
given partition of some Aronszajn tree T . For i < 2, let T i be the tree
obtained from T by inserting a point between every node u ∈ Ki and
its immediate successors in T . Considering T as a subset of T 0 and
T 1, we apply LMC successively to the identity function id restricted
to T ¹ Λ viewed as a partial map from T 0 into T 1 and vice versa. This
will give us uncountable X ⊆ T ¹ Λ and i < 2 such that id ¹ X, as a
partial map from T i to T 1−i, is Lipschitz. Then x ∧ y /∈ K1−i for all
x 6= y in X.

To prove that CAT implies LMC, we consider a one-to-one level-
preserving map from an uncountable subset X of an Aronszajn tree S
into an Aronszajn tree T . Clearly, we may assume that X is a level-
antichain of S and that f ′′X is a level-antichain of T .20 Applying (*)
and shrinking X, we may assume that the downward closure U of the
graph of f in the product tree S ⊗ T is binary. We are using here the
easily checked fact that the poset of all finite subsets of an Aronszajn
tree with (at most) binary downward closures satisfies the countable
chain condition. Let K0 be the collection of all splitting nodes u ∈ U
with the property that x0 6= y0 where (x0, x1) and (y0, y1) are the two
immediate successors of u in U . An application of CAT gives us an
uncountable subset Z of Y such that all splittings between elements of
the set (x, f(x)) (x ∈ Z) inside the tree U either all belong to K0 or
all fall outside of K0. In the first case, the inverse of f ¹ Z is Lipschitz
and in the second case, f ¹ Z itself is Lipschitz. ¤

Before going further let us recall the coherent Aronszajn tree T (ρ3)
constructed above for proving Lemma 2.8, and let C(ρ3) be the linearly

20A level-antichain is an antichain of a given tree which takes at most one point
from any level of the tree.



LIPSCHITZ MAPS ON TREES 31

ordered set obtained by lexicographically ordering T (ρ3). We shall need
the following two facts about C(ρ3) (see [15, Section 1] for proofs):

8.5 Lemma. The square of C(ρ3) with the product partial ordering can
be decomposed into countably many chains. ¤
8.6 Lemma (*). For every uncountable X ⊆ C(ρ3), we have that
C(ρ3) ≤ X.21 ¤

The claim that SC and CAT are ’consistency-wise equivalent’ ap-
peared without proof in [1, p.79]. It was perhaps the following fact
that the authors of [1] had in mind when they were writing those lines.

8.7 Proposition (*). (see [1, p.79] and [14]) Shelah’s conjecture is
equivalent to the Coloring Axiom for Aronszajn trees.

Proof. To prove that CAT implies SC, let L be a given uncountable
linear ordering with neither an uncountable well-ordered nor conversely
well-ordered subset, nor an uncountable separable subset. It is well-
known and easily shown (see [11, §5]), that there is an Aronszajn tree
T and a lexicographical ordering <lex of T such that L is isomorphic
to a subset of (T, <lex). Going to a subset of T , we may assume that T
is binary. (This can be achieved either by using (*) or by constructing
a binary tree T that would represent an uncountable subset of L.) By
the result of Abraham and Shelah[1] which can be seen to use only (*),
we can choose a closed and unbounded set C ⊆ ω1 and an isomorphism
f : T ¹ C −→ T (ρ3) ¹ C (see also [11]). Going to a subtree of T , we
may assume that C separates the heights of every pair of comparable
splitting nodes of T . This can be achieved by applying (*) to the
poset of all finite subsets of T whose downward closures are separated
by C in this way, a poset that is easily seen to satisfy the countable
chain condition. Thus, to every splitting node u = x ∧ y of T , there
corresponds a unique splitting node v = f(x) ∧ f(y) of T (ρ3) and the
association does not depend on which x and y we pick in T to represent
u. Let K0 be the collection of all splitting nodes u = x ∧ y of T such
that x <lex y iff f(x) <lex f(y). Note again that the definition does not
depend on the x and y in T we choose to represent u. By OCAT , there
is an uncountable antichain X of T such that {x∧ y : x, y ∈ X, x 6= y}
is either included in K0 or is disjoint from it. In the first case, f ¹ X
is strictly increasing and in the second case, it is strictly decreasing,
relative to the lexicographical orderings on T and T (ρ3).

To prove that SC implies CAT, let T = K0 ∪ K1 be a given par-
tition of some Aronszajn tree T . For each splitting node u of T , we

21For a pair K and L of linearly ordered sets, K ≤ L denotes the fact that there
is a strictly increasing map from K into L.
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choose a linear ordering <u of its immediate successors. Let <0 be the
lexicographical ordering generated by <u (u ∈ T ) and let <1 be the
lexicographical ordering generated by <u (u ∈ K0) and >u (u /∈ K0).
By SC, there is an uncountable set X ⊆ T such that the cartesian
square of (X, <0) can be decomposed into countably many chains. Ap-
plying SC again, we get an uncountable Y ⊆ X so that the square of
(Y,<1) can also be decomposed into countably many chains. Let P
be the poset of all finite subsets of Y on which <0 and <1 agree. If
P satisfies the countable chain condition, then an application of (*)
would give us an uncountable Z ⊆ Y on which <0 and <1 agree, which
translates into the fact that x ∧ y ∈ K0 for all x, y ∈ Z, x 6= y. If P
fails to satisfy the countable chain condition, then using the properties
of <0 and <1 on Y , one can easily produce an uncountable Z ⊆ Y on
which <0 and <1 are reverse of each other. This in turn would translate
into the fact that x ∧ y /∈ K0 for all x, y ∈ Z, x 6= y. ¤

8.8 Corollary (*). The Lipschitz-map conjecture is equivalent to She-
lah’s conjecture asserting that every uncountable linear ordering con-
tains either an uncountable well-ordered subset, an uncountable con-
versely well-ordered subset, an uncountable separable ordering, or an
uncountable ordering whose cartesian square is the union of countably
many chains.

Using a deep result of Baumgartner[2] one can say a bit more:

8.9 Proposition (*). The Lipschitz-map conjecture implies that for
any set of reals B of size ℵ1, the family ω1, ω

∗
1, B, C(ρ3), C(ρ3)

∗ forms
a basis for the class of all uncountable linear orderings.22

Proof. The fact that there is a strictly increasing map from B into
any other uncountable separable linear ordering is the result of Baum-
gartner (see [2]). So let us consider an uncountable linear ordering
L which contains neither an uncountable well-ordered nor conversely
well-ordered subset, nor an uncountable separable subordering. By the
proof of the implication from CAT to SC, we know that there is an
uncountable set X ⊆ C(ρ3) such that X ≤ L or X∗ ≤ L. By Lemma
8.6, we have that C(ρ3) ≤ X. This finishes the proof. ¤

Added in proof. Building on this work J. Moore[7] has recently veri-
fied Shelah’s conjecture by deducing SC from a standard set-theoretic
postulate that is stronger than (*). It follows that the additional struc-
ture theory of the classes C, Airr, andA described above in Propositions

22I.e., every uncountable linear ordering contains an isomorphic copy of one of
these.
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8.1 and 8.2 using LMC is a consistent extension of the structure theory
developed above in the first seven sections of this paper.
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